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Abstract 1 Introduction

) 1.1 Overview of the problem
In this paper, we present a new method to recover an approxima-
tion of the bidirectional reflectance distribution function (BRDF) Since its origin, Computer Graphics has aimed at depicting reality.

OL”:e surfﬁces dpreggnt Ina r;eal scecr;el. ?:LS is done f_:_?lm a S"rtg!eRendering algorithms have been developed specifically to generate
photograph and a sL geometric model of the Scéne. [The resull ISy harfact images under realistic illumination conditions. It is of-

a full model of the reflectance properties of all surfaces, which can 4o, gitficult to say if such images are realistic or not because there
b.e renqlered ur](_jer povel |IIum|nat|o.n.cond|t|ons with, fo_r example, is no real reference such as a photograph. Moreover, the application
viewpoint modification and the addition of new synthetic objects. o\ haad to create novel viewpoints and/or novel illumination con-
b0ur t]:achmquet prod_H::es a reflect?nce modfhl LIISIng a sme}ll nt“n:'ditions from a sparse set of photographs. This is difficult to achieve
er of parameters. These parameters nevertheless approximate thg, ot ysing image-based modeling and rendering algorithms. For
BRDF and aIIovy the recovery .Of the photometrlc properties Of.d'f' example, suppose we want to insert a new synthetic object on top of
fuse, specular, isotropic or anisotropic textured objects. The input o4 "anisotropic mirror inside a real scene. This operation clearly

data} are a geometric model of the scene |ng|ud|r!g the light Sourcerequires taking into account the interaction between the new object
positions and the camera properties, and a single image captured us;

g thi our algorith t thetic i and its environment (especially this mirror). This is impossible to
Ing this camera. Luraigorithm generates a new synth€lic Image us-, it \ye do not have an approximation of the reflectance properties
ing classic rendering techniques, and a lambertian hypothesis abouf¢ 1 e surfaces in the image. Therefore specific algorithms are
the reflectance model of the surfaces. Then, it iteratively compares

N necessary to recover these reflectance properties from the real im-
the original image to the new one, and chooses a more complex re-,

flectance model if the difference between the two images is greater Many authors have contributed to the resolution of this problem
than a user-defined threshold. [21, 25, 32, 31, 33, 26, 27, 34, 7, 41, 23, 24, 30, 29, 14, 11, 28].
We present several synthetic images that are compared to the origig 4g0rithms that they have produced vary greatly and not all can
nal ones, and some possible applications in augmented reality. o vo_sed for our applications. Considerable work has been done
for the reflectance estimation of an isolated object in particular il-
CR Categories: 1.2.10 [Artificial Intelligence]: Vision and Scene  lumination conditions [21, 25, 32, 31, 33, 26, 27] . Although these
Understanding—modeling and recovery of physical attributes; 1.3.3 techniques often bring very detailed reflectance information (i.e. a
[Computer Graphics]: Picture/lmage Generation—Display algo- full BRDF sometimes), their goal is more to replace the use of an
rithms; 1.3.7 [Computer Graphics]: Three-Dimensional Graph- expensive gonioreflectometer rather than to be able to change the
ics and Realism—Color, shading, shadowing, and texture 1.3.7 viewpoint and/or the illumination. Recently, several methods have
[Computer Graphics]: Three-Dimensional Graphics and Realism— been developed to take into account the interaction between objects
Radiosity, Ray Tracing; 1.4.8 [Image Processing and Computer Vi- inside a real scene, from a sparse set of photographs [7, 41, 23, 24].
sion]: Scene Analysis—Color, Photometry, Shading; Fournier [14] proposed a different approach but with the use of a
single image. However, his technique was limited to perfectly dif-
Keywords: Image-Based Rendering, Reflectance Recovery, fuse environments and was not be able to take into account specular
BRDF Models, Radiance, Radiosity, Rendering, Inverse Render- Surfaces. Our method has the similar ambition to recover an approx-
ing, Rerendering, Global lllumination imation of the BRDF of the surfaces from a single image, including
the processing of specular, isotropic or anisotropic surfaces. This
is extremely difficult to achieve because it is not possible to com-
pute a full BRDF correctly without having several images, except
for trivial cases.

*email: { Samuel.BoivinAndre.Gagalowick@inria.fr
We propose a hierarchical and iterative technique that computes
the best possible approximation of a real image, using the error
computed between the rerendered image and the real one. Each of
the new images is generated by making more and more complex as-
sumptions about the reflectance properties of the real surfaces. Itis
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personal or classroom use is granted without fee provided that copies these reflectance changes (see figure 1). The main advantages of
are not made or distributed for profit or commercial advantage and that our approach are: it does not need any special device to capture
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otherwise, to republish, to post on servers or to redistribute to lists, reflectances of all types of surfaces (including anisotropic mirrors)
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3D geometrical model

Analysis Path of he redi scene 2.1 Reflectance Recovery using a Specific Device

Inverse

re B o or _ Ward [37] proposed to directly measure the reflectances of an ob-
image | MenstiesComerson | — "epence o KRR CENE | e encse ject, using a low-cost device. Ward introduced a device to estimate
(photograph) Fumltﬂon o j ! . g . i . .
T'0 the five parameters of his anisotropic BRDF model, that he devel-
oped for these purposes. Karner et al. [20] presented another device
) Error for the correction of the surfaces reflectances Using the Wal‘d's BRDF model.

Baribeau et al. [2] described a method for measuring three re-
e v flectance parameters of several objects inside a scene. The diffuse
nsifies Conversion N Z .
comey oo B e | — Foorce reflectance, the Fresnel term and the roughness of the objects are
() estimated using a polychromatic laser range sensor. However, this
method is limited to uniform reflectance properties over each ob-
3D geometrical model ject
of the real scene * ) ) L. )
Dana et al. [6] suggest using a device containing a robotic ma-
Figure 1: General Principle of our Method this figure shows the global nipulator and CCD camera to allow simultaneous measurement of

scheme of the inverse rendering process. Initial data are: one real image ant€ BTF (Bidirectional Texture Function) and the BRDF of large
a 3D geometrical model of the scene. samples (aboutOcm x 10cm).

point position, the light sourcésr the objects orientation. The 2.2 Reflectance Recovery from Several Images
goal of our method is to recover an approximation of the BRDF of ™~ . o
the surfaces, and to compute the best synthetic image preservin®.2.1 Methods without Global lllumination

the real properties of the scene (a real mirror has to be simulated askay et al. [21] described a method to compute the surface re-

a specular surface and not as a textured surface for example). flectances using the Torrance-Sparrow light reflection model [35].
.. They used a depth map and four or eight images obtained with dif-

1.2 Organization of the paper ferent point light sources. By increasing the number of intensity

The paper is organized as follows. In the next section, we dis- images, they estimated the parameters of the Torrance-Sparrow’s

cuss previous work related to image-based rendering. Section 3model, reduced to three terms: the diffuse reflection coeffidignt

describes the bases and the tools necessary to our algorithm. Ir]fhe specular reflection coefficielt and the roughness factarLu

particular we introduce the notion of group which solves the prob- etal. [25] did not use any reflection model, but directly estimated

lem of objects that are not directly seen in the image, and the BRDF _the reflectances from the pixel intensities. Nineteen black and white

model that we use. We also give a short description of the input da’[a'r:;‘.'jlges were ciptur_zd using Ia cu?tohm %ewc; Flhat tu:ns around the
and the rendering software that we have developed. Section 4 de? ject. For each incident angle of light, they built a reflection func-

scribes the algorithm in full detail using the previously discussed t'or\'(’ gzrfgré?g? g‘ztgi]m a:élrr;lergdptlgerlelnitsetgfI;yrgnthee maggb eta
tools. In particular, we explain the methods to process each case, -, * : ! prop 9 9 pltog

of reflectance property separately. In section 5, we describe oneSC, 980metric model) and a set of color images of an object, using
of the advantages inherent in our methodology: the possibility of 2560 degrees rotation device. Next, they extracted the pixel inten-
analyzing some surfaces that are not directly seen in the real im-?'“?s dfrontw ﬂ:ﬁ Images at;'d frgn;)tt;fe 3D| mc_)tci]el oth|:1e object reptro-
age, but indirectly through a mirror. Section 6 completes the tech- /€€ ondot e |magtes %?h -butter atgotr;n n;_.ﬁ ese parametersd
nical discussion by explaining the optimizations that we have im- were use | 0 Separate atn . etnhcc;mpu ef the LI USE c?mporcljerlw an
plemented to accelarate the rerendering process. Section 7 showg]edsﬁggu ardcomponer}, 1.e. I.}? gr;" or the Sam erts TIO e
several results of rerendering, including images containing many an dtl s andc terms of a simplified Torrance-Sparrow reflection
kinds of photometric properties. Some applications are given in the mode.

domain of augmented reality, including rendering of new images corTwl SLJ?(teotﬁfa%ll'b[rfﬂgee-eSdefrzr%\(/:v?slor;rrgarlr?:tséflsndirzr:gﬁnmazﬁz tc?iﬁuse
under novel viewpoints, novel illumination conditions and the in- P P P » Sép g

; : - : .__and the specular component. They recovered the BRDF of highly
sertion/removal of objects. The last section gives some conclusions ; . . . . h .
and future research directions. textured objects (this was impossible to do with previous techniques

presented in [21, 25, 32]), and proposed the creation of new images
under novel viewpoints and novel illumination conditions.
2 Background and Related Work Marschner et al. [26, 27] directly estimated the Lafortune’s et al.
BRDF [22] of an object from a set of image30j. To obtain the
All the techniques and ideas in this paper have been inspired BRDF, the radiance received by the pixels from the object is divided
by works about photorealistic rendering including global illumi- by the irradiance received by this object from the light source. He
nation and ray tracing, image-based modeling and BRDF mod- applied this computation to the rerendering of objects under novel
eling. However, the most relevant domains deal witherse illumination conditions.
rendering image-based renderirgnd reflectance recovery We Finally, Wong et al. [34] described a method that recovers the
can split thereflectance recovergigorithms into three parts: di-  reflectance of each pixel of an image, considered as a set of small
rect measure of reflectances on the object using a specific devicdacets, each one having its own BRDF. The BRDFs are estimated
[37, 20, 2, 6], the extraction of reflectances from a set of images from a set of images taken under different viewpoint and illumi-
[21, 25, 32, 31, 33, 26, 27, 34, 7, 41, 23, 24], and the extraction of hation conditions, as the ratio of the pixel intensity divided by the
reflectances from a single image [30, 29, 14, 11, 28]. The last two light source intensity. Wong et al. applied their method to the re-
parts may be subdivided into two categories, depending on whetherillumination of the scene with new light sources.
the method takes into account energetic interreflections (using a
global illumination algorithm for example) or not. 2.2.2 Methods with Global lllumination

Synthesis Path

YIn fact, the emittances of the light sources are supposed to be known.Debevec [7] used global illumination for augmented reality appli-
However, if itis not the case Fournier et al. [14] propose a method to recover cations. To insert new objects inside a real image, he needed to
them automatically. take into account interreflections and compute the reflectances of
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the surfaces in the part of the scene influenced by this insertion. He  An extension of the previous method was developed by Dret-
created a geometrical 3D model of this part of the scene (called thetakis et al. [11]. They proposed an interactive version of the initial
local sceng and calculated manually the reflectance parameters of paper and added a vision algorithm for the camera calibration and
all the modeled objects. Each of the non-diffuse BRDF parame- the 3D geometrical model automatic positioning. They described a
ters are changed by the user iteratively until the rerendered imageslightly different technique for the estimation of the reflectances of
becomes close enough to the original one. The perfectly diffuse pa-the surfaces and they used a hierarchical radiosity algorithm [18] to
rameters are set by an automatic procedure. compute a new synthetic image close to the real one.

Yu et al. [41] proposed a complete solution for the recovery  An approach similar to Fournier et al.’s was chosen by Gagalow-
of the surfaces BRDF from a sparse set of images captured withicz [28]. It included a feedback that compares the real image to the
a camera (twelve of th&50 images were taken specifically to get  synthetic one. He described a technique to generate a new synthetic
specular highlights on surfaces). They bdilt radiance maps for image from a single one (except the 3D geometrical model, which
the estimation of the reflectance parameters and the computation ofvas built from two stereo images) using an iterative method that
the radiance-to-pixel intensities conversion function (camera trans- minimizes the error between the real image and the synthetic one.
fer function) [8]. Using an image-based modeling software such as However, this technique is limited to a pure lambertian approxima-
Facadd9], a 3D geometrical model of the scene was built from the tion of the surface reflectances.
set ofimages. Allthese data were then utilized to recover the BRDF
of the modeled surfaces. Their method minimized the erroronthe 3 Elements of Reflectance Recovery
parameters of the Ward’s anisotropic BRDF model [37] to estimate
the best possible BRDF for each object. This work was applied to .
the insertion of new objects in the scene, to the modification of the 3.1 The Notion of Group

illumination conditions and to the rendering of a new scene under 1 inputs of our reflectance recovery algorithm are separated into
novel viewpoints. However, this method only works if at least one 4 categories, the 3D geometrical model of the scene and a single
specular highlight is visible on an object. Otherwise this object is jmage of this scene captured with a standard camera. This method
simulated as perfectly diffuse. is based on the extraction of the object reflectances from the pixels

Loscos et al. [23] proposed a method based on an original ideacqyered by the projection of these objects in the image (as described
from Fournier et al. [14]. Their algorithm recovers the diffuse re- |5ter in section 4).

flectances of the surfaces inside a set of photographs of a scene, ging a single image to recover all the surface reflectances of the
taking into account the textures of the objects (each surface has t0;cene rajses several problems related to the geometrical model and
be unshadowed in at least one image of the set). They applied theify,g 5j7¢ of the projection of the objects in the image. First of all,
technique, to insert/remove objects and to modify the lighting con- (here are generally many surfaces that are not directly visible in the
ditions of the original scene (insertion of a new light source for real image. It is then extremely difficult (sometimes impossible)
example). More recently, Loscos et al. [24] extended this tech- 15 compute their reflectances because no information is available
nique by removing the constraint of the unshadowed surfaces. Togpqt them. This is not important if the position of the observer is
improve _the resglts, tl_1ey transformed their reflectance recovery al-pever changed. However, it is usual to modify this position espe-
gorithm into an iterative process. However, the method remained ;ia|y in augmented reality applications. Therefore, we introduce
Ilmltt_ad to perfectly dn‘fuse surfaces (the mirrors are considered t0 tha notion ofgroupof objects and surfaces. Thegeoupsspecify
be diffuse textured objects for example). the objects and the surfaces which have the same reflectance prop-
. erties. This is a very fast manual operation left to the user after or
2.3 Reflectance Recovery from a Single Image during the geometrical modeling process. For example, in figure
231 Methods without Global lllumination 2 the ’re_d cube’ was modeled a@a)upcontainin.g six planar ob-
jects which have the same reflectance properties. Our reflectance
K. Sato et al. [30] described an algorithm for the reflectance re- algorithm will then use this description to propagate the estimated
covery of an isolated object from a single image and a 3D geomet- reflectance from the three visible faces of the cube to the three other
rical model of this object. They applied some constraints on the ones.
light source position and the camera parameters. In addition, they This group notion often solves the second modeling problem
simplified the Torrance-Sparrow reflection model. This way, they which could happen during the reflectance estimation. Indeed, the
estimated separately the diffuse component and the specular comarea covered by the projection of some objects in the real image
ponent to recover the uniform reflectance of the surface. could be too small to give a good approximation to the reflectance
More recently, I. Sato et al. [29] proposed to recover the BRDF of these objects. Therefore, if the user joins these objects with oth-
of an object, using the shadows generated by the surfaces of theers which have the same reflectance and a bigger projection area
scene. They used a single omnidirectional image of the environ-in the real image, it becomes possible to obtain a better approxi-
ment and a 3D geometrical description of the surfaces. They devel-mation of their reflectance. However, if there are no other bigger
oped a 6-step iterative algorithm to minimize the error between the objects, a very rough approximation of the reflectance will be com-
real and the synthetic image with respect to the BRDF parametersputed for these small objects, and the resulting image may be bi-

of the surfaces. ased. This problem is inherent in all image-based rendering meth-
) o ods [7, 41, 23, 24, 14, 11, 28] which use the area covered by the
2.3.2 Methods with Global lllumination projection of an object in the real image to determine its reflectance.

Nevertheless, as our method uses a feedback through the compari-
son between the real and synthetic image, bias is considerably re-
duced.

A pioneering work in this domain was completed by Fournier et al.
[14] in 1993. He proposed to rerender an original image using a
3D representation of the scene (including the positions of the light
source and the camera parameters) and a single image of this scene.

All the surfaces are considered as perfectly diffuse, and they used3 7 Reflectance Model and Data Description

their reprojection on the real image to estimate their reflectances. A

radiosity-based algorithm then computes an image applying theseFor the past several years, the construction of a 3D geometrical
reflectances to a progressive radiosity technique [4] to obtain a newmodel from a single image or a set of images has been widely
synthetic image. investigated and is known d@mage-based modelingsee [9] for
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an overview of these methods). In our paper, the 3D geometrical surfaces. This algorithm is iterative and will proceed to successive
model is built interactively usind\lias| Wavefrons Mayamodeler. corrections of the surface reflectances by minimizing the error be-
The positioning of the full 3D geometrical model of figure 2 took tween the real and the synthetic image. Indeed, each computed
around six hours to be complete, including the recovery of the cam- error for a group of objects having the same photometric proper-
era parameters and the light sources positions. Typically, for the ties drives the correction of their reflectance. Our technique suc-
camera parameters we use the Dementhon and Davis [10] techniqueessively applies the selected assumption on the group reflectances
combined with adownhill simplexminimization method [17, 19]. until the error became smaller than a user-defined threshold. The
The light sources have been modeled approximately (because ohotion of threshold and how to fix its value to give them will be
their complex geometry) and they have been placed manually with adiscussed in the section 6.

precision of+ 5cnf. Our photometric recovery method is based on .
the use of Ward's reflectance model [37]. We chose the same BRDF
model as Yu et al. [41] because of its small number of parameters
and its ability to simulate anisotropic surfaces. This model only re-
quires the knowledge of five parameters for a complex BRRF:

the diffuse reflectance, the specular reflectancé the anisotropy
direction (called theébrushed directionand the anisotropic rough-
ness parameteks, anda, (see [37] for a detailed description of
this BRDF model). Furthermore, this model avoids the costly com-
putation of the Fresnel term which has been replaced by a normal-
ization factor.

Surface assumed fo
be perfect diffuse

5ces  Computation of error L]
(real image - synthetic image)
[3-threshold O<threshele

after 4 iterations___ Surface confimed
on Ly as perfect diffuse

Diffuse surface
Iterptive correction of [y

Original Real Image

Surface assumed to
be perfect specular Iterative conecfion of L}y
(G, =1.0.04=00)

Computation of error [
(real image - synthetic image)
D-threshold D<threshold—»

Surface confimed
as perfect specular

Surface assumed fo be
non-perfect specular
(04 <1.0,04=0.0)
Computation of error []
(real image - synthetic image)
[threshold D<threshold

after 4 iterations  Surface confirmed as

lon-perfect specular surface
ltgrative correction of Oy

9 onky non-perfect specular
Rendering m“m& surface assumed to be P 3
Software Phoenix diffuse and non-perfect specular| Herative correction of [}
b 4 (0 <1.0,04<1.0)
N S ) 0 +04<=1.0

Computafion of error [
(real image - synthetic image)

Surface confimed as diffuse
C-threshold O<threshold —»

and non-perfect specular

Surface assumed to be

isotropic (rough)

(0 <=1.0,04<1.00 )| Minimization on 0y 04 0
0 +04<=1.0

Computation of error ]
(real image - synthetic image)
Ghreshold [D<threshold — Surface confimed isotropic

Storage of the computed [y O
Surface assumed to be

anisofropic (rough) Mifiqization on 0,0y,
(G <=1.004<10, Computgtion of the anisotropic
OOy R g8 §<=1.0)| diectiohx (brushed direction)

Computation of error [
(real image - synthetic image)

B-threshold D<threshold—» Surface confimed as anisofropic

Figure 2:Example of a real image with the superposition of its 3D recon-
structed geometrical model (in white)

When the 3D geometrical model (objects, camera and light
sources positions) and the photometric model (reflectances and
light sources intensity) are determined, it is possible to render
a synthetic image using a classical rendering software such as
Radiancg38]. We developed our own rendering software called
Phoenixto obtain a high-performance computing power and to 9 Comptation of eror 1]
take advantage of the specific architecture of the Silicon Graphics ™™ ‘m"ge'\ﬁmzm'ﬁ‘i‘hffj‘d
workstations use€d Phoenixis a global illumination software. It
computes the form factors of a progressive radiosity system [4] us- Figure 3: General iterative and hierarchical algorithm for reflectance re-
ing a 64 bit A-Buffer [3, 13] mapped on each face of the hemicube covery. Each surface of the scene is analyzed separately, depending on the
[5]. This increases the resolution of each face of the hemicube by assumption about its reflectance (perfectly diffuse, perfectly specular, etc.).
a factor of 64 with a negligible increase in computation time, with _Ifth_e assumption is false (the error b_etween the real and the synthetic ir_nage
respect to a classical Z-Buffer software. is plg), th_en_the surface reflectaqce is assumed to be more complex (hierar-

Moreover, Phoenix uses advancedOpenGL programming f:hlcal pljn(:lple). If_ the assumption is correct then the surface reflectance
techniques calledffscreen renderingp compute the index buffers 1S modified accordingly in order to minimize the error between the two
(or item bufers{39]) necessary for the exiraction of the pixel 8 VA PUERE ENE o e 10 take nto ac
Innlj(rantiletrleii ftri?(;nir?:jeexogglfrf]:rl :;n de;(?:teaénctjeittf?gr Sgntnfjlc I?Sr?].belfa(c:)? count the incident energy coming from any surface for which the BRDF has
an object number, depending on whether we nged tF()) computé thechanged (a diffuse surface which becapeefectly speculafor example).
reflectance of a group or of an object. We start the algorithm with thperfectly diffusecase without

. . considering texture (the diffuse reflectance of a group is computed
4 Inverse Rendering from a Single Image averaging the radiances covered by its projection in the real image).
. . All the surfaces are then considered as perfectly lambertian, and
4.1 Overview of the Algorithm the rendering softwarePhoenixin this cas®) computes a new ap-
The core of our technique is incremental and hierarchical (see figureproximation of the image. If the difference between the real and
3). Itis incremental because the surface reflectances evolve to theiithe synthetic image for a group is greater than a fixed threshold on
optimum value. It is hierarchical because the general algorithm all the group projection, then the reflectance of this group is con-
forces the surface BRDFs to be more and more complex if the error sidered agperfectly speculafor the next rerendering iteration. If,
between the real and the synthetic image does not decrease for thesafter Phoenixhas recomputed a new image using the new assump-

Surface assumed to be
fextured
([ ky)<=1.004=00)

Iterative correction of Ciyxy)

2Qur technique can be used regardless of how the geometry is acquired. It is possible to use any other global illumination rendering software,
3This work was carried out on a SGI Octane S R12000 300Mhz. such asRadiancd38] for example.
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tion, the error for this group remains large, then its reflectance ig ¢; andé; are respectively the total error between the original|and
simulated asion-perfectly specularWe apply the same principle | the synthetic image for groujand objecy.
to change again the group reflectance tw#h diffuse and specular | n; is the number of objects for group
one. Until then, all the surfaces were considered with no roughnessmd is the median of the errors (selects the middle value of the
term (only ap,; and ap, were estimated). In the next assumption, |sorted samples).

if the difference between the two images still produces big errors, X is the authorized dispersion criteria.

they are considered as isotropic and a roughness fagjdrgs to m; is the number of pixels covered by the projection of object
be evaluated. This assumption is extended to anisotropic propertie
if the user-defined threshold for the error has not been reached. IfThe functionf () eliminates problems generated by smaller objects
all assumptions have failed, the group is presumed to be highly tex-for which the error is very important, because they are more sensi-
tured. Since only a single image is available, it is extremely difficult tive to the image noise (their projection in the image cover a small
and sometimes impossible to create a combination between this texamount of pixels). An example of iterative correctionggfis pro-

ture and other reflectance properties (a glossy textured surface fowvided by figure 4 on a very simple synthetic scene, nevertheless
example). This situation is discussed in paragraph 4.7. containing high color bleeding effects (see how the green cube is

influenced by the blue floor for example).
one. During the first inverse rendering iteration, all the objects of

the scene are simulated as perfectly diffuse. A diffuse reflectance .....

(pa) is then computed for each group, as the average of radiances v
covered by the projection of the groups in the original image. This ’ 5
technique is different from Drettakis et al. [11, 14] because we do | 5
not pay attention to the texture of the surfaces. It is interesting to "o

note that some textured surface may be simulated using a pure dif-
fuse reflectance (as shown in figure 14), to create a good visual ap-
proximation. This method is very different from [11, 14] because Figure 4:Inthe top row, from left to right: the original synthetic image (top

it is not limited to the computation of the average reflectance to left) generated using a rendering software was rerendered for 4 iterations
produce the new final synthetic image. We correct this reflectance (the next four images). The differences between this original image and
iteratively until the error between the original and the rerendered the regenerated images are shown in the bottom row and displayed using a
image becomes small. For an object, this error is computed as thespecific error colormap (at the bottom right). We observe a regular decrease
ratio between the average of the radiaf@@wered by the projec- ~ ©f the error from left to right.

tion of the groups in the original image, and the average of the radi-  As textures are not taken into account in this section, we only
ances covered by the projection of the groups in the synthetic imageconsider a diffuse reflectance parameter It could be interesting

[

4.2 The case of perfectly diffuse surfaces

One of the simplest cases of reflectances isgbdectly diffuse

(in pixel

Sum of th

(see equation 1). and maybe faster to directly inverse the radiosity equation as sug-
— — gested by Yu et al. [41]. If we know the radiances, the emittances
P Bo,  T7'(P) B and the full geometry (i.e. the form factors), it is possible to directly
7 §n\ o T—I/(TD ) solve the radiosity equation [16] for the reflectances. However, this
’ i is not so simple, because we work with a single image. Because

= — : . of this, there may be some surfaces that are not directly visible in
B,; and I, are respectively the average of the radiances and the the original image. Therefore, their radiosities are unknown and it

;)/|>ng coxt_e\red by the prgjectlon of objecin the O”gm,al image. is impossible to guess their values. Thus, we can not inverse the
By, andpP,; are respectl\_/ely_the average of the radlances and the radiosity equation.

pixels covered by the projection of objecin the synthetic imageg.
T'() is the camera transfer function{ecorrection function here).

— 4.3 The case of perfectly and non-perfectly spec-
Since the average radiand® of objectj is proportional to the ular surfaces

diffuse reflectancey;, the iterative correction of thpy; can be
written for each rerendering iteratignas:

Pdigy1 = Pdip X € 2
S FE) - x my)
j=1
Pdiyy1 = Pdip X P 3
D fE)m
j=1
S——- .
£0 Figure 5:Simulation of hierarchical inverse rendering, where the top row
from left to right consists of the real image captured with a camera, the syn-
~ 0 if é; > (14+X)-md thetic image with a pure diffuse assumption (first iteration), the synthetic
and f(&;) = 1 else image with perfectly diffuse and perfectly specular assumptions (fifth iter-

ation) and the synthetic image with pure diffuse and non-perfectly specular

surfaces (seventh iteration). On the bottom row, we can see the error images
5These radiances have been obtained using the inverse of the cameraorresponding to the difference between the real and the synthetic image.

transfer function that was simulated ag eorrection function with g value

of 2.2 according to Tumblin et al. [36]. However a more powerful algorithm If the previous diffuse hypothesis about the surface reflectance

could be applied if we had more than one photograph of our scene [8]. failed, it is now considered asgerfect mirror It is the easiest case
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to solve because the diffuse reflectance of a perfect mirrorhas anull A first ideaisto use aclassical minimization algorithm to solve
value p; = 0) and its specular reflectance is equal tpl & 1). for these three paremeters. However, the error function (difference
It is worth noting that there is no need to iterate on the specular re- between the real and the synthetic image) for an anisotropic sur-
flectance and a new synthetic image can be directly rendered. Onface is radically different if pq is varying in ]0.0; 1.0[ (figure 4.5)
the other hand, the reflectance for a non-perfectly specular objector if p; has a null value (figure 7). Directly minimizing the er-
has to be iteratively modified to obtain an optimwgn The iter- ror function for p4, ps and « in the interval [0.0; 1.0[ is thus not
ative correction of; is similar to equation 3, except; has to be possible. We propose to miminize the error function using two sep-
replaced by,. An example of the use of the hierarchical algorithm arate error functions: one for the interval ]0.0; 1.0[ and the other
on a scene containing both diffuse, non-perfectly specular surfacesfor the p; = 0 particular case. The minimization agorithm (we

is shown in figure 5. use the downhill simplex method [17, 19] for the two minimiza-
tions) that provides the smallest error will determine thefin_al val ue
4.4 The case of both diffuse and Specu'ar sur- of Pdy Ps and . One of the d|SadVantages of the method is that it

could take a lot of time minimizing such functions. Indeed, these
isotropic surfaces use ray-tracing [1] techniques for their correct
At this point of the algorithm, surfaces with big errors are now con- Simulation. Even if optimization techniques greatly accelerate the
sidered as both diffuse and speculay & 0 andp,s # 0) but still rendering [15, 12], it still could take around one hour and fifty min-
with no roughness. utes to recover the pg, ps and « values (using ten bounced rays for
The differences between the real image and the synthetic are mini-€ach primary ray (nine per pixel) that reached aglossy surface). In
mized as a function gf; andp, (in the Ward’s BRDF model [37]):  fact, the optimum values of pq and ps are found in only two min-

faces with no roughness factor

nbg utes because the resulting value does not need to be obtained with
(T~ (Loynin) =T~ (1,))? = Z(Pd'Bd ¥ pe-Bs =T~ (1)) aprecision better than 1 - 10=2 (the visual difference became im-
syn o - s s o

perceptible). On the other hand, « requires a determination with a
1-10~* precision (according to Ward [37], the « parameters may
vary between 0.001 for a perfectly specular surface to 0.2 for a
This minimization has an analytical solution for eaghvelength mostly diffuse surface).

i=1
with nbg, the number of pixels covered by the group projection.

R,G, B: Figure 8 shows the result of these minimizations: the aluminium
. . -1 surface (in the center of image) has been simulated as isotropic,

Z Bal™ o) Z Ba Z BabBs and an optimum value of p; = 0.0 and ps = 1.0 has been found.

( Pd ) - nbg nbg nbg However the error image shows that maybe a better approxima-
ps Z BT~ 1(I,) Z ByB, Z B2 tion seems to be possible for this particular surface. The error re-
ba oa oa mains important in the extent of the specular reflection area of the

two books on this surface. Therefore a more complex BRDF is

In practice, such surfaces in real cases are very rare but not imposheeded and the algorithms tries now to simulate the surface as an
sible. For example, the top face of the desk in the figure 14 presentsaniSotropic one.
some photometric properties very close to this approximation.

Pg=0.0
4.5 The case of isotropic surfaces -

1 s H
&
I f
o

" ps

Until now, all the surfaces were supposed to be without roughness.
In the case of an isotropic surface, the diffuse reflectapcehe
specular reflectancg, and a roughness coefficieat have to be o
recovered according to Ward’s BRDF model.

Figure 7: Error function (synthetic image - rea image), for p; = 0 with

Pg=01 pg=02 pg=03 respect to variations of « (isotropy value), and ps (specular reflectance).
. 70
3 @
N é‘.?_ 2
s T "es
: — =)
' = o C
0 03
pg=04 pg=06 Error image for the glossy surface 27 f »é
simulated as an isotropic one o c
g =
w

0

Figure 8: Approximation of the aluminium surface (anisotropic) of the
o > B real image (left) by an isotropic surface in the synthetic image (center). The

pd=07 Pd=08 Pd=09 error between these two images for the aluminium surface is visible in the
right image. We remark that the error is still important in the area of the
specular reflection of the books. The red pixels correspond to a high error
but they are not significant because they are coming from an approximative
positioning of the 3D geometrical model ont the image, especialy on the
edges of the objects.

4.6 The case of anisotropic surfaces

Figure 6: Error function (synthetic image - real image), for a fixed dif- . . . . . .
fuse reflectance, with respect to variations of the isotropic values o, and g Working with anisotropic surfaces is clearly the most complicated
specular reflectance. The evolving steps are 0.018 for o and 0.1 for p. case of our algorithm because the anisotropic model of Ward re-
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quires minimizing a function of five parameters. the diffuse re-
flectance pq, the specular reflectance ps, the anisotropy direction
Z (or brushed direction [37]) and the roughness factors a., ay.
However, it is possible to keep the previous p; and ps values com-
puted for the isotropic case: the error functions (see figure 4.5 and
7) show that the p, parameter is not correlated to the o parameter,
because these functions are quite constant with respect to a. We
may then suppose that the p; and p, do no differ from theisotropic
case to the anisotropic one.

The error function to minimize has now three parameters|eft (see
figure 9). We remark on this figure that for a given rotating angle 6
of the vector Z and varying values of a, and a, this error function
presents several minimaon all the curves, and they are very similar
for al 6 values. This confirms that a standard minimization algo-
rithm will probably not find a global minimum.

To prove this assumption, we have computed the four images
corresponding to the four smallest minimafound by a downhill sim-
plex minimization algorithm (figure 10). Itisinteresting to note that
the rerendered images remain far from the original one and that the
error is bigger than for the isotropic case. This brings us to the
conclusion that a minimization procedure is not the correct way to
solve the anisotropic case. Therefore, we propose to determine the
anisotropy vector & directly from the real image.

=00 =18 0=36

Figure 9: Error function (synthetic image - real image), for different
anisotropy directions & (the vector is turned around the normal to the sur-
face using a step of 18 degrees) with respect to variations of the roughness
parameters oy, oy, (with a step of 0.018). The diffuse reflectance and the
specular reflectance terms have been estimated during the isotropy analysis.

In afirst step, we consider the anisotropic surface as a perfect
mirror and compute a synthetic image. Next, we estimate the dif-
ference between the real image and the synthetic one to visualize
the part of the anisotropic mirror where the specular reflection is
“extended”. This area corresponds to an attenuation of the specular
reflection, and this effect is always very important in the direction
perpendicular to the brushed direction (or anisotropy direction). In
a second step, we compute an index buffer for this mirror of all the
surfaces visible through it. We then look for areference surface that
has the biggest reflection area on the anisotropic surface, while be-

b ams
Figure 10: The first image (top left) is the original one (reduced here to
the interest area). The next four images have been produced using the four
smallest minima found by the minimization algorithm. We can see that all
of these images are far from the origina one (the vertical black line on the
white book (see figure 8) has disappeared from the specular reflection) and
that a lot of details have been smoothed. The error colormap remained the
same as on figure 8.

ing as close as possible to it. This surface is then selected in a such

manner that the ratio Area(ref!jeécszt’ici surface) is maximized (with
d(S,P), the euclidean distance between the center of gravity of the
selected surface and the center of gravity of the anisotropic mirror).
The motivation of this choice resides in the fact that surfaces very
far from the anisotropic object exhibit areflection pattern that istoo
small or too noisy to be usable for the recovery of the brushed direc-
tion. In athird step, the anisotropy direction is sampled creating Z
vectors around the normal to the anisotropic surface. Each of these
sampled directions determine adirection to traverse the error image
and compute the average of the standard error deviations computed
in the error image. Finally, the algorithm selects the direction for
which this average value is the smallest one (see figure 11). Figure
12 summarizes the complete procedure.

8 8 & &

standard deviation

80 60 -40 60 80

8 (degreey
Figure 11: The selected object used here to recover the anisotropy direc-
tion is the violet book of the lower left real image of figure 14. The 3D
surface (left image) shows the error image for the difference between the
perfectly specular reflection area of this selected object, and its correspond-
ing area in the real image. The 2D curve (right) shows the average of the
standard error deviations computed from the error image along the sampled
anisotropy directions (see aso figure 12).

Once the anisotropy direction Z has been recovered, a downhill
simplex minimization agorithm is used to estimate the roughness
parameters o, and ay. Typically, for the synthetic image in the
lower right corner of the figure 14, it took 50 iterations and 2h30
to recover the full BRDF of the anisotropic surface. The algorithm
found an optimum anisotropy vector for a rotation angle of 0 de-
grees and then minimized the error function of the upper left corner
of the figure 9. The estimated values of «, and «, were 0.01 and
0.062 respectively.

4.7 The case of textured surfaces

When the simulation of a surface as anisotropic still produces big
errorsin the difference image, we proceed to texture extraction.
Extracting the texture from thereal imageisan easy task that can be
realized using the technique proposed by [40] for example. How-
ever, we have to extract this texture while taking into account the
fact that it already has received the energy from the light sources,
and that the pixels covered by its projection in the real image con-
tain this information. Otherwise, if we send the energy of the
light sources to these textures again, they will be over-illuminated.
Therefore, we introduce here a notion called radiosity texture that
balances the extracted texture with an intermediate texture in order
to minimize the error between the real and the synthetic image. As
for the perfectly diffuse reflectance case, this intermediate texture
is computed by an iterative method.



Extraction of the surface supposed fo be anisofropic

Rendering of the surface supposed to be anisofropic
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Figure 12: Computation method of the anisotropy direction Z for a glossy
surface.

At the first iteration, the texture used to rerender the image is
the texture directly extracted from the real image. At the second
iteration, the texture used to obtain the resulting synthetic image is
multiplied by the ratio between the newly extracted texture of this
synthetic image and the texture of the real image. This iterative
process stops when the user-defined threshold for textured surface
has been reached. The textures of the poster and the books in the
rerendered images of section 7 have been obtained using this tech-
nique. The problem of this method is that it computes a texture
including the shadows, the specular reflections and the highlights.
Typically, suppose that we have a marbled floor on which a sphere
isreflected. The texture of thisfloor in the real image then includes
the marble characteristics, its reflectance properties and the sphere
reflection including its own reflectance properties. How to extract
the marble characteristics only and independently of the rest of the
scene ? Thisisan extremely hard problem, and according to Y. Sato
et al. [33] no algorithm has been proposed yet to solve it using a
single image.

5 Advanced Analysis of Reflectances

Our inverse rendering procedure provides the opportunity to ana-
lyze the reflectances of some surfaces that are not directly seen in
the original image. Indeed, if a surface is detected and confirmed
as a perfectly or non-perfectly specular one, we can extend our re-
flectance recovery algorithm to the surfaces that are seen through
thismirror in the real image.

First of al, the index buffer of the groups visible through the
mirror are computed using a ray tracing agorithm. If there exists
a surface in this buffer that was not directly visible before in the
real image, then its reflectance is computed taking into account the
current assumption made for its group reflectance (the surface has
the same photometric properties asits group). In the next iteration,
this reflectance is balanced by the mirror reflectance (if it is anon-
perfect one), and it isthen considered for the correction of the group
reflectance (see figure 13).

To our knowledge, thisisthe first time that an image-based ren-
dering technique deliberatley exploits mirror surfaces to enhance
the BRDF recovery processin a scene.
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Figure 13: Example of surface not directly seen in the original image. The
reflectance of this surface becomes computable through the mirror put on
theright wall. This surface belongs to the ' cube’ group and now contributes
to the estimation of its reflectance. If this face had a specific reflectance
(new group), it would be computable only at this point.

6 Optimizations and Determination of
Thresholds

Since the refl ectance recovery algorithm takes around two hours to
simulate an isotropic surface, and two more hoursin an anisotropic
case, this means that all textured surfaces (which is the final hy-
pothesis after the isotropy and the anisotropy tests) will need four
hoursto be correctly estimated. Thisis not acceptable when alot of
surfaces are textured in areal image, but the computing time could
be greatly reduced if we can find that the surface is textured before
treating the isotropic case. Therefore we introduced a heuristic to
solve this problem. It isrelated to the choice of the thresholds that
determineif asurfaceiscorrectly smulated. Indeed, after each syn-
thetic image has been produced, it is compared to the real one us-
ing a user-defined error threshold to know if the assumptions made
about the surface reflectances are correct. For the presented im-
ages, the following thresholds were used to produce the results of
the section 7. Such thresholds are not critical to the behavior of the
technique but will affect speed because it will always find asolution
regarding the fixed thresholds.

From the case of the perfectly diffuse assumption up to the
isotropic one, the sum of the three R,G,B errors coming from the
difference between the real and the synthetic image must have a
value smaller than 5%. However, during the non-perfect specular
assumption, if the error is greater than 50%, we can directly avoid
the isotropic and the anisotropic cases and so greatly increase the
performance of the algorithm. We do not have a formal characteri-
zation of thisoptimization, but in practice it seemsto work well (see
section 7). The isotropic-to-anisotropic threshold has been chosen
equal to 1%, to ensure that the agorithm tries the anisotropic case.
On the other hand, the threshold used to come to a texture assump-
tion is equa to 5%. Finaly, the last threshold is a global threshold
that forces all the groups in the synthetic image to have an error
smaller than 5%.

7 Results

All the following synthetic images have been generated using
Phoenix as rendering and inverse rendering software. The first syn-
thetic image at the top right of figure 14 has been generated in 37
minutes using the hierarchical algorithm, from the left real photo-
graph. Two specular surfaces have been recovered and simulated as
non-perfect mirrors. Neither the isotropic nor anisotropic hypothe-



ses have been tried thanks to the optimization technique described
in section 6, and 14 rerendering iterations were necessary to gener-
ate the final image.

The inverse algorithm tooks 4 hours and 40 minutes to produce
the image at the bottom right of figure 14. Roughly 4 hours of
this time were necessary to recover the anisotropic BRDF of the
aluminium surface. The fina rendering stage took 32 minutes to
render the final image (100 bounced rays have been used for the
anisotropic surface).

The images of figure 15 show examples of applications in aug-
mented reality. Some synthetic objects have been added such as a
small robot and aluxo-like desk lamp. It is aso possible to modify
the reflectances easily too. New viewpoints can be generated and
new illumination conditions can be created as well.

8 Conclusion and Future Work

In this paper, we have presented a new technique that approximates
the reflectance properties of the surfaces of a 3D scene. An incre-
mental and hierarchical algorithm iteratively estimates the diffuse,
specular, isotropic and anisotropic reflectance parameters. In afinal
step, the textured surfaces are considered as a specia case of re-
flectances to be simulated. The method takes as input a single pho-
tograph of the scene taken under known illumination conditions as
well asa 3D geometric model of the scene. The result isacomplete
description of the photometric properties of the scene which may
be used to produce a photorealistic synthetic image very similar to
thereal one. We showed that the method is robust and provides the
opportunity to visualize the original scene from new angle, with any
illumination conditions and with the addition, removal and modifi-
cation of objects.

Our work has currently some limitations, especialy regarding
textured surfaces. Until now, we have not been able to discriminate
the shadows or highlights from an assumed textured surface. Inthis
regard, it will be interesting to extend our method to these cases,
although we think that thisis a very difficult problem, if one sticks
to the single image assumption.

While many challenges remain, we believe that algorithms for
recovering an approximation of the reflectances inside areal scene
are an important direction of research for both Computer Visionand
Computer Graphics communities. In Computer Vision, it could be
possible for example to use our method to enhance the positioning
of mirrors using a minimization algorithm between the real and the
synthetic image. Regarding Computer Graphics, we may extend
the reflectance recovery algorithm to objects that have more com-
plex photometric properties such as light beams, small fires, caus-
tics, etc. The hierarchical property of our technique offers many
possible extensions.
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Figure 14: Two different examples of synthetic images (right) rerendered from a single real image (l&ft). We remark that the perfectly diffuse assumption is
realistic enough for many surfaces (including the walls, the floor, the desk, etc.).

Figure 15: Examples of several augmented redlity applications. All these new images were rendered using our global illumination software Phoenix, which
first recovered the surface reflectances from the bottom left image of figure 14. The top left image shows the original scene removing some objects (the feet of
the desk and the red cube). Note that the right mirror has taken into account the modification. The right top image shows the original scene rendered under a
novel viewpoint. The bottom left image shows the scene with modified photometric properties, and the addition of an object (a small robot). The bottom right
image presents the scene under novel illumination conditions with the addition and deletion of objects.
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