Object-Based Image Editing

William A. Barrett
batrett@cs.byu.edu

Alan S. Cheney
cheneya@cs.byu.edu

Department of Computer Science, Brigham Young University

Figure 1 Animation of a static, digital photo: Mrs. Potato [Hasbro 2001] Takes a Bow. (a) Digital photo of a toy on a carpet background. Frames c-e
are edited versions of tAis digital photo - not computer graphic models. (b) Image objects (arms, eyes, nose, mouth, ear, tongue, body) are selected
in about 27 seconds (~3 sec./object) (c) Object editing: arms are stretched and bent in real time using gesture motions with a mouse; ears, eyes,
nose mouth and tongue (top of head) are shifted down, scaled and warped to simulate foreshortening. Background texture is filled in automatically.
(d) Object editing continues. (e) Final pose: Foreshortened body occludes shoes; arm occludes body; ears occlude arms; “texture painting” was
applied to fix imperfect background filling above eyes. All editing operations were performed interactively in a total of about 2 minutes.

Abstract

We introduce Object-Based Image Editing (OBIE) for real-time
animation and manipulation of static digital photographs. Individual
image objects (such as an arm or nose, Figure 1) are selected, scaled,
stretched, bent, warped or even deleted (with automatic bole filling) - at
the object, rather than the pixel level - using simple gesture motions with a
mouse. OBIE gives the user direct, local control over object shape,
size, and placement while dramatically reducing the time required to
perform image editing tasks.

Object selection is performed by manually collecting (subobject)
regions detected by a watershed algorithm. Objects are tessellated
into a triangular mesh, allowing shape modification to be performed
in real time using OpenGL’s texture mapping hardware.

Through the use of anchor points, the user is able to interactively
perform editing operations on a whole object, or just part(s) of an
object - including moving, scaling, rotating, stretching, bending, and
deleting. Indirect manipulation of object shape is also provided
through the use of sliders and Bezier curves. Holes created by move-
ment are filled in real-time based on surrounding texture.

When objects stretch or scale, we provide a method for preserving
texcture granularity or scale. We also present a fexture brush, which allows
the user to “paint” texture into different parts of an image, using
existing image texture(s).

OBIE allows the user to perform interactive, high-level editing of
image objects in a few seconds to a few ten’s of seconds

Keywords: Image Editing, Image-based rendering, Animation,
Texture Synthesis, Image Warping

1 INTRODUCTION

Object-based editing operations have traditionally been limited to
well defined graphical objects (circles, rectangles, etc.) created in a
drawing or modeling application. In contrast, image editing pro-
grams, such as Photoshop provide a rich assortment of pixel-based

Copyright © 2002 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions Dept,
ACM Inc., fax +1-212-869-0481 or e-mail permissions@acm.org.

© 2002 ACM 1-58113-521-1/02/0007 $5.00

i

editing tools (cloning, pixel brushing, etc.) but limit object-based edit-
ing operations, such as scaling, warping, rotation or recoloring, to glo-
bal manipulation of a bounding box over groups of selected pixels.

Object-based image editing (OBIE), presented in this paper,
allows the user to animate static objects in digital photographs with
direct, local object (and subobject) control. Tools are created for
object selection, triangulation, stretching and bending, with texture
preservation and background filling, producing new gestures and
poses with foreshortening and self-occlusion - all interactively. This
greatly increases the freedom with which image objects can be edited
and animated, while dramatically reducing the time needed to pet-
form such editing operations. OBIE tools make a fundamental con-
tribution to the problem of image editing by changing the granularity
of editing operations from the pixel to the object (or subobject) level.
These tools operate in a way that is more natural to the object’s
topography, rather than requiring that editing operations be limited to
a standard rectangular grid. OBIE can also be used to animate
objects in static digital frames, as shown in Figures 1 and 16.

There are three image-editing methods currently in use, each of
which have their own drawbacks. Pixel-based methods (clone tools,
pixel painting, and nudge warping [Adobe 2000; GIMP; Scansoft
2001]) push pixels around to produce surprisingly good results, but
are very time-intensive and do not allow direct, object-level manipula-
tion. Region-of-interest (ROI) methods such as rectangle-based tools
[Adobe 2000; GIMP] limit pixel modification to global manipulation
of an axis-aligned bounding box and do not update the pixel colors in
the region until the mouse movement stops. One ROI method [Elder
and Goldberg 1998] does allow some object-level control, but requires
the user to perform lengthy contour grouping operations and to
work with disconnected contours vs. well-defined regions. Image-
based editing methods (such as warping with thin-plate splines and
with radial basis functions [Beier and Neely 1992; Bookstein 1989;
ScanSoft 2001]) affect the entire image, like a rubber sheet, but do
not allow for efficient, local control of an object’s shape independent
of surrounding background.

Recent work in segmentation and semi-automated object selection
[McInerney and Terzopoulos 2000; Mortensen and Barrett 2001;
Mortensen and Barrett 1995; Mortensen and Barrett 1998;
Mortensen and Barrett 1999; Mortensen et al. 2000; Reese 1999] as
well as texture synthesis [Efros and Leung 1999; Efros and Freeman
2001; Harrison 2001; Praun et al. 2000; Wei and Levoy 2000; Xu et al.
2000] has accelerated the interest in object-based image editing. In
this paper we integrate into a single, interactive framework, a suite of
tools for object selection and editing (with automatic hole-filling),

that provides real-time feedback while preserving the scale and varia-
tion native to object and background textures. Objects can be
manipulated directly with a mouse or indirectly using curve deformers to
attenuate length, thickness, and rotational bend. We also introduce
texture painting for advanced cloning operations and creation of a
variety of painterly effects.

2 OBJECT SELECTION

Before performing editing operations, the object is selected and
broken down into a triangular network that captures the subobject
detail. Object selection is based on zobogganing, a watershed algorithm
[Vincent and Soille 1991] used in recently published interactive seg-
mentation techniques [Mortensen and Barrett 1999; Mortensen et al.
2000; Reese 1999]. Watershed tobogganing amounts to sliding
downward in the gradient magnitude image, to points of lowest gra-
dient magnitude (base points). Pixels which slide to the same base
point define catchment basins (~5-15 pixels). An algorithm for auto-
mated grouping of catchment basins, based on statistical similarity,
was first developed for Intelligent Paint object selection [Reese 1999],
and subsequently applied to Intelligent Scissors [Mortensen and Bar-
rett 1999]. Grouped catchment basins consist of a few ten’s to hun-
dred’s of pixels, referred to in this paper as TRAPs (Tobogganed
Regions of Accumulated Plateaus). While TRAPs still produce an
oversegmented image (Figure 2a), they adhere well to object and sub-
object edges and correspond nicely to the level of subobject detail
needed without grouping object and background TRAPs.

We begin by computing TRAPs for the entire image (Figure 2a).
All image pixels are associated with their corresponding TRAPs and
labelled accordingly for later tagging and object definition. Note that
in the zoomed portion of the image (Figure 2b), although the object
is oversegmented, the TRAPs do a reasonable job of automatically cap-
turing the subobject detail (fingers, hand, wrist).

Object selection is performed by manually collecting the TRAPs
belonging to the object: when the user clicks the mouse on the
image, the TRAP region containing that pixel is selected, adding it to
the selected object and storing it in the selection list. Figure 2c shows
the hand TRAPs comprising the object selected in blue.

Multiple TRAPs can be selected together by dragging a selection
box over the object of interest. Deselection can be similarly accom-
plished by clicking on a TRAP already selected, which toggles it off,
and removes it from the selection list. In the case that an object will
move or shrink, creating a hole, something needs to be done to fill
those exposed pixels. As will be explained later, surrounding (or
“background”) TRAPs are used in filling in these holes. When an
object is selected, participating background TRAPs can be automati-
cally selected, using a breadth-first connected component algorithm -
dealing with TRAPs instead of pixels as the base components - con-

C

Figure 2: TRAP Tagging. (a) TRAP boundaries calculated in about 4

seconds for a 5122 image. (b) Close-up of hand with fine-grained
TRAP boundaries overlaid. (c) Tagged TRAPs shown in blue.

tinuing outward for as many layers out as requested. The new layers
of TRAPs form a background object.

3 OBJECT REPRESENTATION

The object boundary is detected by applying a contour following
algorithm to the union of the selected TRAPs, treated as a single
binaty object.

In order to manipulate the object in real-time with OpenGL we
create a Delaunay triangular network from the object boundary and
its associated TRAPs. Triangulation of the object requires triangular
vertices (nodes) along the object boundaty as well as nodes internal
to the object. Boundary nodes are determined by polygonalizing the
boundary with a simple recursive divide & conquer algorithm. The
vertices of the resulting polygon define the boundary nodes. The
number of boundary nodes is determined by specifying the tolerance
level of the polygonal line fit.

Internal nodes (acting as Steiner points [Bern and Eppstein 1992]
for the triangulation) are placed at base points (valleys) and where
three or more TRAP boundaries (ridges) meet to form junctions (Fig-
ure 3) in the gradient magnitude image. A Delaunay triangulation is
then performed on the object, using the specified internal nodes and
an algorithm from [Shewchuk 1996], resulting in the creation of more
optimally-shaped triangles. If a true Delaunay triangulation is not
possible, because there are not enough input nodes given, then a close
approximation to it is found. Alternative, but more computational tri-
angulation schemes, such as found in [Yu et. al 2001] are also possible.

Triangular representation of individual TRAPs occurs in the same
way by treating TRAPs as objects, in which case the only internal
node is the base point. Triangular representation of individual
TRAPs is necessary for the implementation of texture painting (dis-
cussed later) where TRAP connectivity is not required. Figure 4
shows the triangulation of individual hand TRAPs from Figure 2c
overlaid in red.

Triangles are used frequently to represent the topography of an
object, especially in 3D models, and are also used effectively in
OBIE. By texture mapping these triangles with corresponding

Figure 3: TRAP Boundary Junction. Top left TRAP boundary
pixels (green), right TRAP boundary (blue), bottom TRAP
boundary (purple). White dot represents three -TRAP junction,
where a ridge node is placed for object triangulation.

Figure 4: Triangulated TRAPs. Triangles are shown in red, with TRAP
boundaries from Figure 2b shown in gray.

regions of the image, we take advantage of OpenGL’s hardware
acceleration to perform editing operations at interactive rates.

4 OBJECT-BASED EDITING OPERATIONS

After an object has been selected and triangulated, its shape is
ready to be edited. Editing operations include traditional linear affine
transformations (scale, rotate, translate) as well as #zew non-linear
transformations for localized stretching, warping and rotational bend.
Objects can be edited directly using gesture motions with the mouse,
or indirectly by attaching object geometry to curve deformers.
Included also in our suite of editing tools is “object delete” with auto-
matic filling of the space previously occupied by the object.

4.1 Implementation

Efficient implementation of object-based editing operations
requires the support of four basic system components: (1) Conver-
sion to, and transformations within a local coordinate system
(2) Object and background layering (3) Antialiasing within OpenGL
(4) Pivot point placement for localized warping.

For efficiency and simplicity in carrying out otherwise complex
object manipulation and editing operations, object vertices are first
transformed into a local coordinate system. FEvery subsequent
mouse movement calls the current tool’s warping function, which
watps the object’s temporary vertices in the local coordinate space.
Local coordinate transformation coupled with OpenGL rendering of
the edited object provides visual update rates of 10-20 frames per
second, which is sufficient for interactive object editing.

Second, the selected object is stored on a separate layer from the
rest of the image, facilitating overlap with other scene components
resulting from the object being pulled and stretched separately from
the background.

Third, because the object is stored on its own layer, edges some-
times appear jaggy because of aliasing, Using OpenGL, we provide a
simple alpha blending “fix” for the edges of the object. The object
polygon is drawn multiple times with decreasing thicknesses into the
background (destination) alpha, summing up the alpha into a “ridge”
with its peak along the actual boundary. When the object is blended
onto the background, edges take on a “feathered” look, providing
efficient and reasonable antialiasing (Figure 5). This provides greater
degrees of freedom, as compared to [Sander et. al 2000], in the total
width of the transition interval (2.5/2 pixels, for example) as well as in
the functional form of the transition, as specified by each step incre-
ment and its associated alpha value (e.g .15, .35, ...).

Fourth, the object’s pivot point (initially at its center of gravity) is
adjustable, and can be moved to any location within the object to
allow localized warping by stretching the object with respect to that
pivot point.

Figure 5: OpenGL Antialiasing of Object Boundary Segment using
Alpha Buildup. .(Thick) object outlines straddling the actual object
boundary (shown in blue) are drawn onto the background, adding only
alpha amounts (and no color values) to each other. Lines of decreas-
ing width are stacked on top of each other, accumulating alpha values.
The object is then blended onto the background using the background
alpha values to specify how transparent it is when blended. Where the
image is most transparent (checkers are most visible) the object will be
opaque over the background. At the object boundary, where the alpha
value is .85, the object will be almost completely transparent.

779

4.2 Linear Transformations

Object translation, rotation and scaling are performed with respect
to the pivot point in the traditional way, but at interactive rates pro-
viding continuous visual feedback. This saves time and eliminates
guesswork inherent in other iterative, trial-and-error approaches
because the feedback is immediate, and the user can verify the cot-
rectness of the desired result while the object is being edited.

4.3 Background Filling Behind Objects

When objects ate deleted, moved, or otherwise modified in such a
way as to leave a hole in the image, the hole needs to be filled some-
how. Many methods have been proposed to replicate texture to fill
holes, expand borders of an image, and create tileable texture. Efros
and Leung presented a fairly successful algorithm [Efros and Leung
1999] that has been built upon in subsequent research [Harrison
2001; Wei and Levoy 2000], accelerating the process from hours
down to many seconds. While giving some impressive results for
many types of texture, none of these techniques run fast enough to
be interactive with normal image sizes.

More recently, many algorithms have surfaced that use regions of
texture, rather than computing each pixel separately. There are vari-
ous methods used for connecting these regions of texture, from
alpha channel blending [Xu et al. 2000], to growing the regions
together [Efros and Freeman 2001; Praun et al. 2000]. These algo-
rithms are faster, but still require excessive computation and/or a
region specifying phase.

Whenever an object’s shape is modified, there is a chance that the
background behind it will be partly or completely exposed. Since our
hole-filling processes run at interactive rates, we simply fill in the
entire space behind an object whenever it is modified. We have imple-
mented two of many possible algorithms for filling the hole: scale-
down filling and random-grid filling. Both methods use texture
TRAPs in much the same way as the texture-preserving operations
below.

Scale-down filling uses concentric, ovetlapping displacement of
TRAP: to fill toward the center of the object. The scaling is done in
steps, the number of which are based on the average background
TRAP size. At each step in the scale, copies of all of the background
TRAPs are laid down. Figure 6, parts 2a and 3a illustrate this tech-
nique.

Random-grid filling creates a grid the size of the object’s bounding
box, with grid points spaced relative to the average background
TRAP size. A random background TRAP is placed at each intersec-
tion in the grid, filling the entire grid with overlapping TRAPs. This
technique is illustrated in Figure 6, parts 2b and 3b. Since both of
these algorithms allow TRAPs to land outside of the object hole, they
are again masked off by the shape of the original object.

4.4 Texture-Preserving Operations

When an object is stretched, if its texture is high in detail, the tex-
ture becomes ovetly smoothed, looking unnatural and incorrect. To
fix this, we disconnect the object TRAPs, keeping their sizes con-
stant, and warp only their basepoint positions.

Each TRAP is triangulated separately as described in Section 3.
Once the TRAP primitives are disconnected, as ate the white TRAPs
in Figure 7 part 2, rather than warping all of their vertices, we leave
them rigid at the same scale, and warp only the positions of their
basepoints.

Since spaces will be created between texture TRAPs, we lay down
TRAPs continuously with each frame update as we stretch the object,
as shown in Figure 7, parts 2 & 3. TRAPs continue to build up in lay-
ers as the mouse is moved so that the user can continue to drag the
mouse back and forth until the object is sufficiently dense with tex-
ture TRAPs. The new TRAPs can be slightly jittered around (moved
small random amounts in x and y) to increase randomness in the tex-
ture, and can be laid down more sparsely if the density is too thick.

As the region is stretched, the boundary continues to mask off the
rest of the stray TRAPs, using a mask shown in Figure 7, part 4.
Black areas in the mask represent pixels that will not be drawn to the
screen, and correspond to the pixels outside of the object boundary.
Jitter amount (extent of the random movements of each TRAP in
terms of its bounding box size) and density (percentage of the origi-
nal TRAPs that will be laid down at each frame), as well as opacity
(TRAP transparency), can easily be adjusted with sliders in the user
interface.

4.5 Non-linear Transformations

The non-linear stretching and bending tools make use of the local
coordinate system transformations discussed eatlier and the pivot
point placement. The pivot point also acts as a “thumbtack,” to stop
all movement in the negative x regions of the object’s local coordinate
system. Figure 8 represents the thumbtack/pivot point as a cyan
square near the shoulder of the arm.

When using the stretch tool, the user grabs any point on the
object and uses it as a handle to stretch the object with respect to the
pivot point. In this way, mouse movement affects both the length
and width of the object. Movements in the object’s local x direction
stretch the object along that x axis for object parts between the han-
dle and the pivot point, and movements in its local y direction
increase and decrease the thickness of the object. For any given ver-
tex in the object, its new position (x', ') is computed using

O

Y XUV
R
A T e

Figure 6: Two Different Hole Filling Techniques. The object hole,
showing the immediately surrounding background TRAPs (1) is filled
in one of two ways: (2a-3a) Selected background TRAPs are scaled in
iteratively, and pasted down at each step. When they reach the center,
the hole is filled (3a). (2b-3b) In the second hole-filling approach,
selected background TRAPs are randomly placed in a grid-like fash-
ion. The grid spacing is based on the average TRAP size in both X and
Y. Pasting TRAPs at each grid location fills the hole (3b). In both
approaches, the surrounding background TRAPs mask off the random
texture TRAPs to the hole’s boundary.

780

X' =x(@D

where A[i] is a general attenuation multiplier, b, and b, are the posi-
tive x and y dimensions of the object’s bounding box, and Ax and Ay
are the x and y changes in cursor position. Figure 11 (inset curves)
and Figure 13 (bottom) show examples of A[i]. An option is also
available which allows the object to preserve area as it stretches. As
the length increases, the width decteases inversely, and vice versa.
The bend tool essentially rotates the object, but with a (possibly)
non-linear attenuation A[7] towards the thumbtack/pivot point, stop-
ping all movement in the negative x regions of the object’s local coor-
dinate system. For any given vertex in the object, its new position is
cos(0A4[i]) -sin(0A[i]

computed using
)| |x
sin(0A4[i]) cos(BA[])| |»

where G4[i] is the attennated rotation angle or the “rotational bend.”

An example of rotational bending is shown with Mrs. Potato’s arm
in Figure 8b. The green outlines show where the arm used to be, and
the red line indicates the excursion caused by G4[].

Since it can be more intuitive for a user to stretch an object as it is
bending, rather than performing the tasks separately, we have com-
bined the two into a single tool. When the cutsor-pivot vector is
determined for the angle of rotation (Figure 9), the ratio of its length
to the length of the original (red) vector is used to compute the
stretch factor. Then the stretched position is passed to the rotation
computation, which proceeds in the same way as the normal rotation
above. For any given vertex in the object, its new position is com-
puted using:

) o=
o v

U}

(x', ")

(2)

1 4

Figure 7: Texture Preservation Diagram. (1) Original object, with
TRAPs adjacent to each other, and cursor position as it starts the drag.
(2) As the object is expanded, the original (white) TRAPs move with the
scale, but stay the same size. They lay down a copy of themselves
(orange TRAPs) in a random location near their current position. (3) At
each next step of the drag copies (green TRAPs) are laid down near the
new positions of each original TRAP. (4) In order to maintain the object
boundary while dragging, a binary mask is used in the OpenGL stencil
buffer. White/black mask areas allow pixels to be drawn/not drawn,
clipping off parts of TRAPs that stray outside the object boundary,
such as those in 2 and 3.

a

Figure 8: Object Bending. (a) Arm selected (green), anchor point (blue),
object axis (red). (b) Rotational bend using cursor movement and A[i].

Vn

¥ = 1e it oy =y 3
ey c9s(eA,[i]) -sin(04,[i]) ﬂ @)
sin(04,[i]) cos(04,[i]) !

where v, is the cursor-pivot vector length (Figure 9), v, is the original
vector length (red), A;[i] is the general attenuation multiplier for

length, A,[7] is the attenuation muldplier for rotation and 04,.[7] is
the attennated rotation angle. Compounding of the attenuation multi-
pliers increases significantly the degrees of freedom with which
objects can be stretched and warped.

Figure 9 diagrams the process of stretching and bending an object.
This requires two steps computationally, but only a single user inter-
action. For example, Figure 10 shows the Potato’s arm being
stretched and bent simultaneously in two different positions, each
requiring only a single interaction. The green outlines show where
the original arm was in relation to the modified arm. The red lines
show the angle of rotational bend.

5 INDIRECT EDITING WITH CURVE DEFORMERS

Section 4 introduced the use of A[]’s, general attenuation multipli-
ers, to modulate the effect of non-linear warping operations. Curve
deformers (Figure 11) are one possible way of specifying the A[i]’s.

After direct editing, additional modifications to the object can be
made Zndirectly using curve deformer tools. Curve deformers are
implemented using a Bezier curve with four control points to inter-
actively modify the shape of the curve. Control points are con-

X

1 2 3

Figure 9: Stretching and Bending an Object. (1) Original object: Black
square = anchor/pivot point, open circle = object handle identified
with cursor (black arrow), red line = object axis. (2) Dashed line = cur-
sor drag (user interaction), gray lines = computation which amounts
to a traditional stretch and rotation of the object through angle @with
the important difference that the stretch and rotation are now attenu-
ated by 4,[7] and 4,[i] (egs. 3-4). (3) The result is a “rotational bend”

obtained from compounding the effects of 4,[/] and 4,[i].

a
Figure 10: Stretching and Bending Arm. (a) Arm bent and stretched
simultaneously using 4,[i] and 4,[i] (see Figure 9) with boundaries
(green), axis of rotation (red). (b) Arm bent more to show occlusion.

781

strained to move only in the y direction. The curve is then sampled
into a lookup table that defines A[i]. After an object has been
stretched or bent, selected curves corresponding to length A[i],
width 4,,[7], and rotation A4,[i], can be modified, just as in any draw-
ing application, to reposition, regesture, or otherwise manipulate the
object. Figure 11b-f (top) show examples of common curve deform-
ers with their corresponding effect or “fall-off”” on the original object
in Figure 11a. Notice that while the length of the object may stay the
same, the texture of its middle section changes position according to
the shape of the corresponding curve deformer.

As control points on the various curves are moved, the object
changes shape interactively. Figure 12a shows a close-up similar to
Figure 1c, with a default stretch. The hand is somewhat large, which
could be useful to show sharp perspective. Figure 12b shows how
the thickness curve can be used to shape the already stretched object
to a more natural shape and scale.

Any curve deformers, A;[i] and 4[], can be used together. For
example, Figure 13a shows the arm bent with the default values for
both length and rotation fall-off. The fingers appear distorted and
unnaturally large. Figure 13b shows how the length deformer mini-

c d

f
Figure 11: Curve Deformers for Indirect Editing. Examples of how
editing the curve shape can modify the object shown in (a). (b-d)

show various fall-off amounts for stretching, and (e,f) show two dif-
ferent fall-off amounts for bending.

b

Figure 12: Let’s Give Mrs. Potato a Big Hand! (a) The hand stretched

with the default thickness values. (b) The same cursor motion, but
with different thickness values, especially towards the end of the
object (the hand area).

mizes distortion at the end of the object. Because the deformers can
work in concert, we can also adjust the rotation fall-off to “tuck” in,
and regesture the elbow and forearm area slightly, creating a nicer
hand shape as well.

Length Stretch Rotation Falloff Length Stretch Rotation Fallofl Length Stretch Rotation Falloff
— .

i
a b

Figure 13: Compounding Curve Deformers. Combining length and
rotation fall-off. (a) Default values for length and rotation. (b) Length
deformer is adjusted to pull hand back, minimizing distortion.
(c) Rotation fall-off deformer is also adjusted to tuck in elbow to
improve foreshortening effect, giving user more “gesture” control.

6 TEXTURE PAINTING

Texture painting is performed by “spraying” TRAPs over a region.
Various painterly effects are achieved by varying the jitter, opacity,
scale and density of the TRAPs (Figure 14).

TRAPs are selected (in groups) and then used as the “paint” for a
texture brush. Similar to the process for texture preservation (Figure
7), texture TRAPs are laid down as the brush moves in the image.
The texture brush can be used to create new regions from an existing
texture. It also constitutes an effective delete tool. In Figure 15 the
texture brush accomplishes both purposes.

Figure 15 illustrates the process of painting out a horse from a
field. Texture TRAPs are selected in the upper left part of the field
(shown with a red outline in Figure 15b), and used to paint out the
top part of the horse. More TRAPs are selected in the middle left
region (Figure 15¢) and used to paint the bottom half. Finally, a
region of TRAPs in the lower left corner is selected and used to ran-
domize the seam between the two sections of painted texture, using
various amounts of scale and jitter.

Brush options are provided for better artistic usability, and are
attached to the GUI by means of sliders. The amount of jitter, opac-
ity and density can be adjusted for the brush. The brush scale can
also be adjusted, which changes the size of each TRAP relative to its
original selected size. A clone tool provides a similar function to that
found in Photoshop, but with the distinctive difference that as the
mouse moves to paint, the tethered selection moves, sampling new
TRAPs each time with the powerful variations offered in Figure 14.
This tool is particularly effective with the jitter and scale options.

6@ e\
§ Lot

Density 50%
Jitter 30%

&

Scale 60%
Opacity 50%
Jitter 30%

Original
Position

Opacity 50%
Jitter 30%

Figure 14: Texture Painting Options. (1) Selected TRAPs in their orig-
inal positions. (2) TRAPs painted with 50% opacity and 30% jitter. (3)
TRAPs painted with 50% opacity, 30% jitter, at 60% of original scale.
(4) TRAPs painted with 50% density and 30% jitter.

782

(b) Texture

Figure 15: Hard to Find Good Help.
TRAPs sampled from the upper left (red contour) to paint out top half
of horse. (c) TRAPs sampled from middle left to paint out bottom half.
(d) TRAPs sampled from lower left to give a more random look to the
already painted TRAPs. (e) Detail of region of painted texture (blue
brackets) where pack horse was originally.

(@) Original image.

7 RESULTS

Object selection, which typically requires 3-5 seconds, allows
OBIE to be applied successfully to a variety of images (Figures 16-
24). An Athlon MP 1.2 GHz dual processor, with an nVidia GeForce
3 graphics card was used for all results. Only a few seconds are
required for tool and parameter selection. An immense amount of
time could be saved in the application of OBIE to 2D animation or
claymation (Figures 1,16). OBIE “extends the reach” (Figure 17) of
image editing beyond that available in pixel-based applications.

Figure 20 shows two children “choking a goose,” with two other
techniques for texturing out the goose shown in (b) and (c). To really
get rid of the goose using OBIE, we first delete the head and neck,
specifying water as the replacement background. Then we select and
delete the body and feet, sampling nearby grass as background. This
deletion required 10 seconds because it had to be done in 2 steps.

An extended compatison of OBIE with other popular image-edit-
ing software, Adobe Photoshop [Adobe 2000], Scansoft’s (Kai’s)
SuperGoo [Scansoft 2001], and Resynthesizer [Harrison 2001], a
GIMP plug-in, is given in Figures 19, 20, and 22. The other software
often produces reasonable results, but at the expense of noticeable
artifacts or excessive user interaction and/or processing time

8 CONCLUSIONS

Object-based image editing changes fundamentally the way image
editing is performed by changing the granularity of editing operations
from the pixel to the object level, and in a way that provides greater
control over the object’s shape and topography. Individual image
objects can be selected and edited, both directly and indirectly, in a

Figure 16: 2D Character Animation. [Smith 2002] (a) Original digitized animation frame.
(b) Intermediate frame in sequence. Green outlines show the selected objects’ original
positions. (c) Arm drooped, flower and hand bent, head and hair drooped, smile bent. Note
that the background was filled in all cases as well. Each object required ~5 seconds to
select and 5-10 seconds to bend/move, while preserving frame-to-frame color coherence. - €
Total time per keyframe was ~2 minutes compared with ~30 minutes to draw by hand. arm are warped with the bend-stretch tool [insets].
“Background sand” automatically fills object “holes.”

L

b
Figure 18: Desktop Editing. (a) Original scene with various a b d
common items. (b) Cup, pen and fork are bent, and spoon Figure 19: “And it was THIS Big!” (a) Original image. (b) Scales scaled. (c) Photo-
is painted out with the texture brush. shop 19 seconds - smeared snow, jeans and scale texture in parts. (d) SuperGoo -

18 seconds - similar smearing problems. (e) OBIE - 2 seconds - stretched the fish
and filled holes automatically with 1 user-specified sample region of snow TRAPs,
leaving snow and jeans as they were.

Figure 20: (@) Goose choking fun (b) Resynthesizer fix - 8 min. (c) Photoshop - 3 min., 10
samples (d) OBIE - 10 sec., 2 samples.

Figure 21: Improving Composition.
(a) Original image. (b) Sail stretched.

Figure 22: The Water Hole. (a) Original image. Goal is to fill in the space (hole) where the £ £
duck was. (b) Photoshop - 28 seconds - required only one sample (clone) point and water da

appears copied into the hole. (c) Resynthesizer - 17 minutes - less convincing. (d) Duck Figure 23: To Dali-ize. (a) Original image. (b
moved with OBIE, and hole filled automatically in 6 seconds, with 1 user-specified sample SIGGRAPH droop.

region of water.

783

Goal is to

Figure 24: Extending Flower Beds. (a) Original
extend foreground garden across lawn to meet hill, using clone tools.
(b) Photoshop - 10 seconds, 1 sample (clone region); flowers look like

image.

a direct copy and are same scale as closer ones. (c) Resynthesizer
requires map creation for texture sampling. Total time to fill texture
(including map making) - 20 minutes. (d) OBIE - 10 seconds, 1 starting
user-specified sample region of flower TRAPs. Note slightly smaller
back layer appears more distant, demonstrating more natural variation.

few seconds to a few 10’ of seconds, in ways not possible or practical
using pixel-based editing or polygonal warping,

The visual quality of edited images compares favorably with
images edited using Photoshop, GIMP’s Resynthesizer plug-in, or
SuperGoo. Additionally, tedious tasks such as selecting new sample
points for Photoshop’s clone tool, and painting to fill in holes, are
largely or completely automated. Time taken to perform many sim-
ple tasks is shortened dramatically, requiring a matter of seconds,
compared with a matter of minutes or hours using Photoshop or
Resynthesizer. Object manipulation and textute painting/hole-filling
(for stochastic textures) are now interactive tasks, giving the user
important visual feedback during mouse interaction.

Object selection fails (rarely) when image gradients completely
disappeat at perceived object boundaries, because object and back-
ground pixels combine into a single TRAP. While this can be overrid-
den manually, other techniques for object segmentation and
decomposition may overcome this automatically and provide a
coarser, more appropriate level of subobject detail.

One area that needs significant improvement is background filling.
Concentric and gridded filling work reasonably well for stochastic
textures but struggle with complex backgrounds composed of regular
or well-defined structures. Filling to a medial axis and exploiting
recent work in texture synthesis could significantly improve back-
ground filling, Intelligent Paint or Intelligent Scissors with sub-pixel
accuracy [Mortensen and Barrett 1999] could also be used to remove
object fringe from background (see Figure 10).

While a single anchor point provides significant flexibility in
object deformation, we would like to also introduce anchor lines or
curves, and allow the use of multiple anchor points simultaneously.

We would also like to extend curve deformers to include other
object shape properties (area, eccentricity, etc.) - all compoundable,
and allow curve deformers to affect object shape independent of any
initial stretch or scale. Depth-ordered object layers could also be used.

784

If the user desires to warp an image on a global scale with smooth
continuity, OBIE tools would not be the correct choice, because
pieces will start to break apart. However, for object-level control,
OBIE has much to offer over current pixel-based methods.

References
ADOBE SYSTEMS INCORPORATED 2000. Adobe Photoshop Version 6.0 User Guide.

BEIER, T. AND NEELY, S. 1992. Feature Based Image Metamorphosis. In Computer Graph-
ics (Proceedings of ACM SIGGRAPH 92), 26(2), ACM, 35-42.

BERN, M. AND EPPSTEIN, D. 1992. Polynomial-size nonobtuse triangulation of polygons.
Inter Journal of Com Geometry and Applications 2(3), 241-255.

BOOKSTEIN, E L. 1989. Principal Warps: thin-plate splines and the decomposition of
deformations. In IEEE Transactions on PAMI, 11(6), 567-585.

EFROS, A. A. AND LEUNG, T. K. 1999. Texture Synthesis by Non-parametric Sampling,
In IEEE International Conference on Computer Vision (ICC1” 99), Corfu, Greece.

EFROS, A. A. AND FREEMAN, W. 2001. Image Quilting for Texture Synthesis and Trans-
fer. In Proceedings of ACM SIGGRAPH 2001, ACM Press/ACM SIGGRAPH, New
York. E. Fiume, Ed., Computer Graphics Proceedings, Annual Conference Series,
ACM, 341-346.

ELDER,]. H. AND GOLDBERG, R. M. 1998. Image Editing in the Contour Domain. In Pro-
ceedings of IEEE Conference on Computer Vision and Pattern Recognition (C1'PR 98), 374-281.

GAO, P. AND SEDERBERG, T. W. 1998. A work minimization approach to image mor-
phing, The Visual Computer 14, 390-400.

THE GIMP. http://www.gimp.org.

HARRISON, P. 2001. A Non-hierarchical Procedure for Re-synthesis of Complex Tex-
tures. In Proceedings of Winter School of Computer Graphics 2001, 190-197.

HASBRO, INC. 2001. Mrs. Potato Head. http://www.hasbropreschool.com/

MCINERNEY, T. AND TERZOPOULOS, D. 2000. T-Snakes: Topology Adaptive Snakes. In
Medical Image Analysis, 1ol. 4, 73-91.

MORTENSEN, E. N., AND BARRETT, W. A. 2001. A Confidence Measure for Boundary
Detection and Object Selection. In Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition (CUPR 2001), 170l. 1, 477-484.

MORTENSEN, E. N. AND BARRETT, W. A. 1995. Intelligent Scissors for Image Composi-
tion. In Proceedings of ACM SIGGRAPH 1995, ACM Press/ ACM SIGGRAPH, Com-
puter Graphics Proceedings, Annual Conference Series, ACM, 191-198.

MORTENSEN, E. N. AND BARRETT, W. A. 1998. Interactive Segmentation with Intelligent
Scissors. In Graphical Models and Image Processing, 60(5), 349-384.

MORTENSEN, E. N. AND BARRETT, W. A. 1999. Toboggan-Based Intelligent Scissors
with a Four Parameter Edge Model. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (C1PR 99), 452-458.

MORTENSEN, E. N,, REESE, L. J., AND BARRETT, W. A. 2000. Intelligent Selection Tools.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (C1'PR 99),
Vol 11, 776-777.

MOUNT, D. M., AND SAALFELD, A. 1988. Globally-equiangular Triangulations of Co-circu-
lar Point in O(n log n) Time. In Proceedings of the 4th Symposinm on Comp. Geometry, ACM.

PRAUN, E., ET AL. 2000. Lapped Textures. In Proceedings of ACM SIGGRAPH 2000, ACM
Press/ACM SIGGRAPH, Computer Graphics Proceedings, Annual Conference
Series, ACM, 465-470.

REESE, L. J. 1999. Intelligent Paint: Region-Based Interactive Image Segmentation. Masters Thesis,
Department of Computer Science, Brigham Young University, Provo, UT.

SANDER, P. V,, ET AL. 2000. Silhouette Clipping. In Proceedings of ACM SIGGRAPH 2000,
ACM Press/ACM SIGGRAPH, Computer Graphics Proceedings, Annual Conference
Series, ACM, 327-334.

SCANSOFT, INC. 2001. Kai’s SuperGoo. http://www.scansoft.com/products/goo.

SHEWCHUK, J. R. 1996. Triangle: Engineering a 2D Quality Mesh Generator and Delaunay
Triangulator. First Workshop on Applied Computational Geometry, ACM, 124-133.

SIBSON, R. 1978. Locally equiangular triangulations. Computer Journal, 21:243-245.

SMITH, M. D. 2002. Sally’s Flower. Graphics Lab, Brigham Young University.
mike_d_smith@byu.edu. Received by personal communication.

VINCENT, L. AND SOILLE, P. 1991. Watersheds in Digital Spaces: An Efficient Algo-

rithm Based on Immersion Simulations. In IEEE Transactions on Pattern Analysis and
Machine Intelligence, 13(6):583-598.

WEI, L. AND LEVOY, M. 2000. Fast Texture Synthesis using Tree-structured Vector
Quantization. In Proceedings of ACM SIGGRAPH 2000, ACM Press/ACM SIG-
GRAPH, Computer Graphics Proceedings, Annual Conference Series, ACM, 479-488.

WOLBERG, G. 1998. Image Morphing: a Survey, The 1isual Computer 14, 360-372.

Xu, Y., ET AL. 2000. Chaos Mosaic: Fast and Memory Efficient Texture Synthesis. Tech-
nical Report MSR-TR-2000-32, Microsoft Research.

YU, XIAOHUA, MORSE, B. S., AND SEDERBERG, T. W. 2001. Image Reconstruction Using
Data-Dependent Triangulation. IEEE Computer Graphics and Applications Vol. 21, No. 3,
62-68.

