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Abstract

Real-time control of three-dimensional avatars is an important
problem in the context of computer games and virtual environ-
ments. Avatar animation and control is difficult, however, because
a large repertoire of avatar behaviors must be made available, and
the user must be able to select from this set of behaviors, possibly
with a low-dimensional input device. One appealing approach to
obtaining a rich set of avatar behaviors is to collect an extended,
unlabeled sequence of motion data appropriate to the application.
In this paper, we show that such a motion database can be prepro-
cessed for flexibility in behavior and efficient search and exploited
for real-time avatar control. Flexibility is created by identifying
plausible transitions between motion segments, and efficient search
through the resulting graph structure is obtained through clustering.
Three interface techniques are demonstrated for controlling avatar
motion using this data structure: the user selects from a set of avail-
able choices, sketches a path through an environment, or acts out
a desired motion in front of a video camera. We demonstrate the
flexibility of the approach through four different applications and
compare the avatar motion to directly recorded human motion.

CR Categories: I.3.7 [Three-Dimensional Graphics and Realism]:
Animation—Virtual reality

Keywords: human motion, motion capture, avatars, virtual envi-
ronments, interactive control

1 Introduction

The popularity of three-dimensional computer games with human
characters has demonstrated that the real-time control of avatars
is an important problem. Two difficulties arise in animating and
controlling avatars, however: designing a rich set of behaviors for
the avatar, and giving the user control over those behaviors. De-
signing a set of behaviors for an avatar is difficult primarily due to
the real-time constraint, especially if we wish to make use of rel-
atively unstructured motion data for behavior generation. The raw
material for smooth, appealing, and realistic avatar motion can be
provided through a large motion database, and this approach is fre-
quently used in video games today. Preparing such a database, how-

{jehee|jchai|jkh}@cs.cmu.edu,{psar|nsp}@cs.brown.edu

Figure 1: Real-time avatar control in our system. (Top) The user
controls the avatar’s motion using sketched paths in maze and rough
terrain environments. (Bottom left) The user selects from a number
of choices in a playground environment. (Bottom right) The user is
controlling the avatar by performing a motion in front of a camera.
In this case only, the avatar’s motion lags the user’s input by several
seconds.

ever, requires substantial manual processing and careful design so
that the character’s behavior matches the user’s expectations. Such
databases currently tend to consist of many short, carefully planned,
labeled motion clips. A more flexible and more broadly useful ap-
proach would allow extended, unlabeled sequences of motion cap-
ture data to be exploited for avatar control. If such unstructured data
is used, however, searching for an appropriate motion in an on-line
fashion becomes a significant challenge.

Providing the user with an intuitive interface to control the
avatar’s motion is difficult because the character’s motion is high
dimensional and most of the available input devices are not. In-
put from devices such as mice and joysticks typically indicates a
position (go to this location), velocity (travel in this direction at
this speed) or behavior (perform this kick or pick up this object).
This input must then be supplemented with autonomous behaviors
and transitions to compute the full motion of the avatar. Control of
individual degrees of freedom is not possible for interactive envi-
ronments unless the user can use his or her own body to act out or
pantomime the motion.

In this paper, we show that a rich, connected set of avatar be-
haviors can be created from extended, freeform sequences of mo-
tion, automatically organized for efficient search, and exploited for
real-time avatar control using a variety of interface techniques. The
motion is preprocessed to add variety and flexibility by creating
connecting transitions where good matches in poses, velocities, and
contact state of the character exist. The motion is then clustered into



groups for efficient searching and for presentation in the interfaces.
A unique aspect of our approach is that the original motion data and
the generalization of that data are closely linked;each frameof the
original motion data is associated with a tree of clusters that cap-
tures the set of actions that can be performed by the avatar from that
specific frame. The resultingcluster forestallows us to take advan-
tage of the power of clusters to generalize the motion data without
losing the actual connectivity and detail that can be derived from
that data. This two-layer data structure can be efficiently searched
at run time to find appropriate paths to behaviors and locations spec-
ified by the user.

We explore three different interfaces to provide the user with
intuitive control of the avatar’s motion: choice, sketch, and per-
formance (figure 1). In choice interfaces, the user selects among
a number of options (directions, locations, or behaviors) every few
seconds. The options that are presented to the user are selected from
among the clusters created during the preprocessing of the motion
data. In the sketching interface, the user specifies a path through
the environment by sketching on the terrain, and the data structure
is searched to find motion sequences that follow that path. In per-
formance interfaces, the user acts out a behavior in front of a video
camera. The best fit for his or her motion is then used for the avatar,
perhaps with an intervening segment of motion to provide a smooth
transition. For all three interface techniques, our motion data struc-
ture makes it possible to transform possibly low-dimensional user
input into realistic motion of the avatar.

We demonstrate the power of this approach through examples in
four environments (figure 1) and through comparison with directly
recorded human motion in similar environments. We note that the
vision-based interface, due to the higher dimensional nature of the
input, gives the most control over the details of the avatar’s mo-
tion, but that the choice and sketch interfaces provide the user with
simple techniques for directing the avatar to achieve specific goals.

2 Background

The behaviors required for animating virtual humans range from
very subtle motions such as a slight smile to highly dynamic, whole
body motions such as diving or running. Many of the applications
envisioned for avatars have involved interpersonal communication
and as a result, much of the research has focused on the subtle as-
pects of the avatar’s appearance and motion that are essential for
communication: facial expressions, speech, eye gaze direction, and
emotional expression [Cassell 2000; Chopra-Khullar and Badler
1999]. Because our focus is on applications in which whole body
actions are required and subtle communication is not, we review
only the research related to whole body human motion.

Animated human figures have been driven by keyframed mo-
tion, rule-based systems [Bruderlin and Calvert 1989; Perlin 1995;
Bruderlin and Calvert 1996; Perlin and Goldberg 1996; Chi et al.
2000; Cassell et al. 2001], control systems and dynamics [Hodgins
et al. 1995; Wooten and Hodgins 1996; Laszlo et al. 1996; Falout-
sos et al. 2001a; Faloutsos et al. 2001b], and, of course, motion
capture data. Motion capture data is the most common technique in
commercial systems because many of the subtle details of human
motion are naturally present in the data rather than having to be in-
troduced via domain knowledge. Most research on handling motion
capture data has focused on techniques for modifying and varying
existing motions. See Gleicher [2001] for a survey. This need may
be partially obviated by the growing availability of significant quan-
tities of data. However, adaptation techniques will still be required
for interactive applications in which the required motions cannot be
precisely or completely predicted in advance.

A number of researchers have shared our goal of creating new
motion for a controllable avatar from a set of examples. For sim-
ple behaviors like reaching and pointing that can be adequately

spanned by a data set, straightforward interpolation works remark-
ably well [Wiley and Hahn 1997]. Several groups explored methods
for decomposing the motion into a behavior and a style or emo-
tion using a Fourier expansion [Unuma et al. 1995], radial basis
functions [Rose et al. 1998] or hidden Markov models with simi-
lar structure across styles [Brand and Hertzmann 2000]. Other re-
searchers have explored introducing random variations into motion
in a statistically reasonable way: large variations were introduced
using chaos by Bradley and Stuart [1997] and small variations were
introduced using a kernel-based representation of joint probability
distributions by Pullen and Bregler [2000]. Domain specific knowl-
edge can be very effective: Sun and Metaxas [2001] used principles
from biomechanics to represent walking motion in such a way that
it could be adapted to walking on slopes and around curves.

Lamouret and van de Panne [1996] implemented a system that
was quite similar to ours albeit for a far simpler character, a hopping
planar Luxo lamp. A database of physically simulated motion was
searched for good transitions, based on the state of the character,
local terrain, and user preferences. The selected hop is then adapted
to match the terrain.

A number of researchers have used statistical models of human
motion to synthesize new animation sequences. Galata and her col-
leagues [2001] use variable length hidden Markov models to al-
low the length of temporal dependencies to vary. Bowden [2000]
uses principle component analysis (PCA) to simplify the motion,
K-means clustering to collect like motions, and a Markov chain
to model temporal constraints. Brand and Hertzmann’s system al-
lowed the reconstruction of a variety of motions statistically derived
from the original dataset. Li et al. [2002] combine low level, noise
driven motion generators with a high level Markov process to gen-
erate new motions with variations in the fine details. All of these
systems used generalizations of the motion rather than the original
motion data for synthesis, which runs the risk of smoothing out sub-
tle motion details. These systems also did not emphasize control of
the avatar’s motion or behavior.

Recent research efforts have demonstrated approaches similar to
ours in that they retain the original motion data for use in synthesis.
Sidenbladh and her colleagues [2002] have developed a probabilis-
tic model for human motion tracking and synthesis of animations
from motion capture data that predicts each next frame of motion
based on the preceedingd frames. PCA dimensionality reduction
combined with storage of motion data fragments in a binary tree
help to contain the complexity of a search for a matching motion
fragment in the database. Pullen and Bregler [2002] allow an an-
imator to keyframe motion for a subset of degrees of freedom of
the character and use a motion capture library to synthesize motion
for the missing degrees of freedom and add texture to those that
were keyframed. Kovar and his colleagues [2002] generate a graph
structure from motion data and show that branch and bound search
is very effective for controlling a character’s motion for constraints
such as sketched paths where the motion can be constructed incre-
mentally. Their approach is similar to our sketch-based interface
when no clustering is used. It has the advantage over our sketch-
based interface, however, that the locomotion style (or other labeled
characteristics of the motion) can be specified for the sketched path.
Arikan and Forsyth [2002] use a hierarchy of graphs to represent
connectivity of a motion database and perform randomized search
to identify motions that satisfy user constraints such as motion du-
ration and pose of the body at given keyframes. One advantage
of their work over similar techniques is flexibility in the types of
constraints that can be specified by the user. To our knowledge
the first paper to be published using this general approach was by
Molina-Tanco and Hilton [2000], who created a system that can be
controlled by the selection of start and ending keyframes. Prepro-
cessing of the motion data included PCA dimensionality reduction
and clustering. The user-specified keyframes are identified in par-



Figure 2: A subject wearing retro-reflective markers in the motion
capture laboratory.

ticular clusters, a connecting path of clusters is found via dynamic
programming, and the most probable sequence of motion segments
passing through these clusters is used to generate the details of the
new motion. Their underlying data structure is similar to ours, al-
though our use ofcluster treesoffers more flexibility in paths avail-
able to the avatar at a given frame.

In the area of interface techniques for controlling avatars, most
successful solutions to date have given the character sufficient au-
tonomy that it can be “directed” with a low dimensional input. Be-
sides the standard mouse or joystick, this input may come from
vision (e.g. [Blumberg and Galyean 1995]) or from a puppet (e.g.
[Blumberg 1998]).

Control at a more detailed level can be provided if the user is able
to act out a desired motion. The infrared sensor-based “mocap”
games Mocap Boxing and Police 911 by Konami are an interesting
commercial example of this class of interface. The user’s motion is
not precisely matched, although the impact of the user’s motion on
characters in the environment is essential for game play. In the re-
search community, a number of groups have explored avatar control
via real time magnetic motion capture systems (e.g. [Badler et al.
1993] [Semwal et al. 1998] [Molet et al. 1996] [Molet et al. 1999]).
Alternatives to magnetic motion capture are available for capturing
whole body motion in real time optically [Oxford Metric Systems
2002] or via an exoskeleton [Sarcos 2002].

Vision-based interfaces are appealing because they allow the
user to move unencumbered by sensors. Vision data from a sin-
gle camera, however, does not provide complete information about
the user’s motion, and a number of researchers have used motion
capture data to develop mappings or models to assist in reconstruc-
tion of three-dimensional pose and motion from video (e.g. [Ros-
ales et al. 2001] [Brand 1999]). In the area of database retrieval,
Ben-Arie and his colleagues [2001] use video data to index into
a database of human motions that was created from video data and
show that activity classes can be discriminated based on a sparse set
of frames from a query video sequence. In our approach, the prob-
lem of controlling an avatar from vision is more similar to database
retrieval than pose estimation in the sense that the system selects an
action for the avatar from among a finite number of possibilities.

3 Human Motion Database

The size and quality of the database is key to the success of this
work. The database must be large enough that good transitions can
be found as needed and the motion must be free of glitches and
other characteristic problems such as feet that slip on the ground.
The human motion data was captured with a Vicon optical motion
capture system. The system has twelve cameras, each of which
is capable of recording at 120Hz with images of 1000x1000 res-
olution. We used a marker set with 43 14mm markers that is an
adaptation of a standard biomechanical marker set with additional
markers to facilitate distinguishing the left side of the body from
the right side in an automatic fashion. The motions were captured
in a working volume for the subject of approximately 8’x24’. A
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Figure 3: Two layer structure for representing human motion data.
The lower layer retains the details of the original motion data, while
the higher layer generalizes that data for efficient search and for
presentation of possible actions to the user.

subject is shown in the motion capture laboratory in figure 2.
We captured subjects performing several different sets of mo-

tions: interacting with a step stool (stepping on, jumping over,
walking around, and sitting on), walking around an empty envi-
ronment (forwards, backwards, and sideways), walking over “poles
and holes” rough terrain, and swinging and climbing on a piece
of playground equipment. Each subject’s motion is represented by
a skeleton that includes his or her limb lengths and joint range of
motion (computed automatically during a calibration phase). Each
motion sequence contains trajectories for the position and orienta-
tion of the root node (pelvis) as well as relative joint angles for each
body part. For the examples presented here, only one subject’s mo-
tion was used for each example.

The motion database contains a single motion (about 5 minutes
long) for the step stool example, 9 motions for walking around the
environment, 26 motions on the rough terrain and 11 motions on
the playground equipment. The motion is captured in long clips
(an average of 40 seconds excluding the step stool motion) to allow
the subjects to perform natural transitions between behaviors. Our
representation of the motion data does not require hand segmenting
the motion data into individual actions as that occurs naturally as
part of the clustering of the data in preprocessing.

Contact with the environment is an important perceptual fea-
ture of motion, and the database must be annotated with contact
information for generation of good transitions between motion seg-
ments. The data is automatically processed to have this informa-
tion. The system determines if a body segment and an environment
object are in contact by considering their relative velocity and prox-
imity. For instance, feet are considered to be on the ground if one of
their adjacent joints (either the ankle or the toe) is sufficiently close
to the ground and its velocity is below some threshold.

4 Data Representation

Human motion is typically represented either in a form that pre-
serves the original motion frames or in a form that generalizes those
frames with a parametric or probabilistic model. Both representa-
tions have advantages; the former allows details of the original mo-
tion to be retained for motion synthesis, while the latter creates a
simpler structure for searching through or presenting the data. Our
representation attempts to capture the strengths of both by combin-
ing them in a two-layer structure (figure 3). The higher layer is
a statistical model that provides support for the user interfaces by



clustering the data to capture similarities among character states.
The lower layer is a Markov process that creates new motion se-
quences by selecting transitions between motion frames based on
the high-level directions of the user. A unique aspect of our data
structure is the link between these layers: trees of accessible clus-
ters are stored in the lower layer on a frame by frame basis, pro-
viding a high-level and correct description of the set of behaviors
achievable from each specific motion frame. The next two sections
describe the details of the two layers and the link between these
layers, beginning with the lower-level Markov process.

4.1 Lower Layer: Markov Process

We model motion data as a first-order Markov process, inspired by
the work on creating non-repeating series of images presented in
Scḧodl et al. [2000]. The transition from one state to the next of a
first-order Markov process depends only on the current state, which
is a single frame of motion.

The Markov process is represented as a matrix of probabilities
with the elementsPij describing the probability of transitioning
from framei to framej. As in Scḧodl et al. [2000], the probabilities
are estimated from a measure of similarity between frames using a
exponential function:

Pij ∝ exp(−Di,j−1/σ), (1)

whereDi,j−1 represents the distance between framei and frame
j − 1, andσ controls the mapping between the distance measure
and the probability of transition. The distance function is computed
as

Dij = d(pi, pj) + νd(vi, vj). (2)

The first termd(pi, pj) describes the weighted differences of joint
angles, and the second termd(vi, vj) represents the weighted dif-
ferences of joint velocities. Parameterν weights velocity differ-
ences with respect to position differences. The velocity term helps
to preserve the dynamics of motion by, for example, discriminating
between similar poses in forward walk and backward walk.

In our implementation, Euclidean differences are used for veloc-
ities. Position differences are expressed as

d(pi, pj) = ‖pi,0 − pj,0‖2 +

m∑
k=1

wk‖ log
(
q−1

j,kqi,k

)
‖2 (3)

wherepi,0 ∈ R3 is the translational position of the character at
framei, qi,k ∈ S3 is the orientation of jointk with respect to its
parent in framei, and joint angle differences are summed overm
rotational joints. The value oflog(q−1

a qb) is a vectorv such that a
rotation of2‖v‖ about the axis v

‖v‖ takes a body from orientation
qa to orientationqb. Important joints are selected manually to deter-
mine weights; weightswk are set to one for joints at the shoulders,
elbows, hips, knees, pelvis, and spine. Weights are set to zero for
joints at the neck, ankle, toes and wrists, which have less impact on
visible differences between poses.

The matrix of probabilitiesPij computed using equation 1 is
dense and requiresO(n2) storage space forn motion frames. Be-
cause the motion database is large (4000 to 12000 frames depending
on the application),O(n2) storage space may be prohibitive. Many
of the transitions are of low probability and pruning them not only
reduces the required storage space but also improves the quality of
the resulting motion by avoiding too frequent transitions. We use
four rules to prune the transitions (table 1). The first rule is based on
the observation that contact is a key element of a motion. It prunes
transitions between motion segments with dissimilar contact states
and is described below. The second rule sets all probabilities be-
low a user-specified threshold to zero. The third rule favors the

total # of Pruning Criteria
frames contact likelihood similarity SCC

Maze 8318 394284 32229 N/A 31469
Terrain 12879 520193 60130 N/A 59043
Step Stool 4576 30058 4964 N/A 4831
Playground 5971 984152 37209 7091 5458

Table 1: The number of transition edges remaining after pruning
edges present in the lower layer Markov model of motion for our
examples. The total number of frames indicates initial database size
for each example, and the number of possible edges is the square of
this number. Edges are pruned based on contact conditions, based
on a probability threshold, to eliminate similar transitions, and to
remove edges that do not fall entirely within the largest strongly
connected component (SCC) of the graph.

best transition among many similar transitions by selecting local
maxima in the transition matrix and setting the probabilities of the
others to zero. The fourth rule eliminates edges that are not fully
contained in the single largest connected component of the graph as
described below.

Pruning based on contact.Pruning based on contact is done by
examining contact states of the two motion segments at the transi-
tion. A transition from framei to framej is pruned if framesi and
j−1 or framesi+1 andj are in different contact states. For exam-
ple, a transition is not allowed from a pose where the foot is about
to leave the ground to another pose where the foot is about to touch
the ground even if the configurations are similar. In practice, in all
of our examples except the playground, this rule is made even more
strict; transitions are allowed only during a contact change, and this
same contact change must occur from framei to framei + 1 and
from framej − 1 to framej. Pruning of similar transitions is not
necessary when this stricter contact pruning rule is in force. Be-
cause contact change is a discrete event, no similar, neighboring
sets of transitions exist to be pruned.

Avoiding dead ends. As pointed out by Scḧodl et al. [2000],
transitions might lead to a portion of motion that has no exits. They
suggested avoiding dead ends by predicting the anticipated future
cost of a transition and giving high cost to dead ends. Although their
method works well in practice, it does not guarantee that dead ends
will never be encountered. We instead find the strongly connected
subcomponent of the directed graph whose nodes are the frames of
the motion and whose edges are the non-zero transitions. We imple-
mented Tarjan’s algorithm [Tarjan 1972], with running time linear
in the number of nodes, to find all the strongly connected subcom-
ponents. In our experiments, the algorithm usually found one large
strongly connected component and a number of small components
most of which consist of a single node. We set the transition proba-
bilities to zero if the transitions leave the largest strongly connected
component.

4.1.1 Blending Transitions

Although most transitions should introduce only a small disconti-
nuity in the motion, a transition might be noticeable if the motion
sequence simply jumped from one frame to another. Instead the
system modifies the motion sequence after the transition to match
the sequence before the transition. If the transition is from framei
to framej, the frames betweenj − 1 andj + b− 1 are modified so
that the pose and velocity at framej− 1 is matched to the pose and
velocity at framei. Displacement mapping techniques are used to
preserve the fine details of the motion [Witkin and Popović 1995;
Bruderlin and Williams 1995]. In our experiments, blend intervalb
ranges from1 to 2 seconds, depending on the example. We main-
tain a buffer of motion frames during the blend interval. If a transi-
tion happens before the previous transition has completed, motion



frames in the buffer are used instead of the original motion frames
for the overlap between the current and previous blend intervals.

Although blending avoids jerkiness in the transitions, it can
cause undesirable side effects such as foot sliding when there is
contact between the character and the environment during the blend
interval. This problem can be addressed by using constraint-based
motion editing techniques such as [Gleicher 1997; Gleicher 1998;
Lee and Shin 1999]. We use the hierarchical motion fitting algo-
rithm presented by Lee and Shin [1999].

A good set of contact constraints, expressed as a desired trajec-
tory (both translation and rotation) for each contacting body, must
be provided to the motion fitting algorithm. These constraints are
obtained from one of the two motion sequences involved in the
blend. Suppose the transition is from framei to framej, and a body
is in contact with the environment between framek and framel. If
there is an overlap between the blending interval and the contact
interval [k, l], we establish the constraint based on the following
cases:

Case 1
Case 2

Case 3
Case 4

i i+b

lbjjk
lbiik

bjlkj

lbjkj

bilik

≤−+<≤
≤+<≤

−+<<<

≤−+<<

+<<≤

1

1

1

or:4CASE

:3CASE

:2CASE

:1CASE

j-1 j+b-1

In Case 1, the constraint lies over the start of the blending interval
and between framei and framel the foot should follow the tra-
jectory of the motion sequence before the transition. Similarly in
Case 2the constraint lies over the end of the blending interval and
for framek to framej + b− 1 the trajectory is taken from the mo-
tion sequence after the transition. InCase 3, the contact interval
is contained within the blending interval and the trajectory of the
foot can be taken from either side. Our implementation chooses the
closer side. InCase 4, the constraint lies over both boundaries and
there is no smooth transition. In this situation, the system allows
the foot to slip or disables the transition by setting the correspond-
ing probability to zero.

4.1.2 Fixed and Relative Coordinate Systems

The motion in the database is stored as a position and orientation for
the root (pelvis) in every frame, along with joint angles in the form
of orientation of each body with respect to its parent. The position
and orientation of the root segment at framei can be represented
in a fixed, world coordinate system or as a relative translation and
rotation with respect to the previous frame of motion (framei− 1).
The decision of whether to represent the root in a fixed or relative
coordinate system affects the implementation of Markov process
for human motion data.

With a fixed coordinate system, transitions will only oc-
cur between motion sequences that are located nearby in three-
dimensional space, while the relative coordinate system allows tran-
sitions to similar motion recorded anywhere in the capture region.
The relative coordinate system effectively ignores translation on the
horizontal plane and rotation about the vertical axis when consider-
ing whether two motions are similar or not.

The decision as to which coordinate system is most appropri-
ate depends on the amount of structure in the environment created
for the motion capture subjects: highly structured environments al-
lowed less flexibility than unstructured environments. In our exper-
iments, we used a fixed coordinate system for the playground and
step stool examples, because they involved interaction with fixed
objects. We used a relative coordinate system for the maze exam-
ple, where motion data was captured in an environment with no ob-
stacles. For the uneven terrain example, we ignored vertical transla-
tion of the ground plane, allowed rotations about the vertical axis in

integer multiples of90 degrees, and allowed horizontal translations
that were close to integer multiples of block size. This arrangement
provided flexibility in terrain height and extent while preserving
step locations relative to the discontinuities in the terrain.

4.2 Higher Layer: Statistical Models

While the lower layer Markov model captures motion detail and
provides the avatar with a broad variety of motion choices, the re-
sulting data structure may be too complex for efficient search or
clear presentation in a user interface. The higher layer is a gener-
alization of the motion data that captures the distribution of frames
and transitions. Our method for generalizing the data is based on
cluster analysis. Clusters are formed from the original motion data.
These clusters capture similarities in motion frames, but they do
not capture the connections between frames (figure 4). To capture
these connections, or the tree of choices available to the avatar at
any given motion frame, we construct a data structure called aclus-
ter treeat each motion frame. The entire higher layer is then called
acluster forest.

4.2.1 Cluster Analysis

Cluster analysis is a method for sorting observed values into groups.
The data are assumed to have been generated from a mixture of
probabilistic distributions. Each distribution represents a different
cluster. Fraley and Raftery [1998] provides an excellent survey on
cluster analysis. In our application, we use the isometric Gaussian
mixture model in which each cluster is an isometric multivariate
Gaussian distribution with variable standard deviation. Our goal is
to capture similar motion states within the same cluster.

Motion state for framei (referred to below as observationxi)
is a vector containing root positionpi,0, weighted root orientation
qi,0, and weighted orientationsqi,k of all bodiesk with respect to
their parents as follows:

xi = [pi,0 w0 log(qi,0) w1 log(qi,1) ... wm log(qi,m)]T (4)

where weightswk for the shoulders, elbows, hips, knees, pelvis,
and spine are set to one in our examples and all other weights are
set to zero, as in equation 3. Specifying root orientation requires
careful selection of the reference frame to avoid the singularity in
the expressionlog(qi,0) whenqi,0 is a rotation of2π radians about
any axis. We select a reference orientationq̂ from a series of root
orientations{qi,0} such that it minimizes the distance to the far-
thest orientation in{qi,0}. The distance between two orientations is
computed asd(qa, qb) = min(‖ log(q−1

a qb)‖, ‖ log(q−1
a (−qb))‖).

Given a set of observations (motion frames)x = (x1, · · · ,xN ),
let fk(xi|θk) be the density ofxi from the k-th cluster, where
θk are the parameters (the mean and the variance of the Gaus-
sian distribution) of thek-th cluster. The Expectation Maximiza-
tion (EM) algorithm is a general method to find the parameters
θ = (θ1, · · · , θK) of clusters that maximize the mixture log-
likelihood

L(θk, τk, zik|x) =

N∑
i=1

K∑
k=1

zik log (τkfk(xi|θk)) , (5)

whereτk is the prior probability of each clusterk, andzik is the
posterior probability that observationxi belongs to thek-th cluster.
Given initial values for the parameters of clusters, the EM algorithm
iterates between the expectation step in whichzik are computed
from the current parameters and maximization step in which the
parameters are updated based on the new values forzik (See [Fraley
and Raftery 1998] for details).

For cluster analysis, we need to choose the numberK of clus-
ters. We use the Bayesian information criterion (BIC) [Fraley and
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Figure 4: Motion data preprocessing. (A) The motion database ini-
tially consists of a number of motion clips containing many frames.
(B) Many frame-to-frame transitions are created to form a directed
graph. (C) Similar poses are clustered into groups. (D) To capture
connections across cluster boundaries, we construct a cluster tree
for each motion frame by traversing the graph to identify clusters
that are reachable within a given depth (time) bound (6 transitions in
this figure). When a transition (thick arrow) crossing cluster bound-
aries is encountered, a new node is added to the cluster tree. Note
that frames within the same cluster may have different cluster trees.

Raftery 1998] of a mixture modelM = {θk, τk, zik} to estimate
the number of clusters:

BIC(M) ≡ 2L(M|x)−mM log N, (6)

whereL(M|x) is the maximized mixture log-likelihood for the
model, andmM is the number of independent parameters to be es-
timated in the model (the number of clusters× the dimension of the
clusters). A larger value ofBIC(M) provides stronger evidence
for the model. To estimate the number of clusters, we run the EM
algorithm for a series of models with different numbers of clusters
and choose the highest value ofBIC(M).

The result of expectation maximization depends greatly on the
initial values for the parameters. A typical method is to repeat
the EM algorithm with different (randomly generated) initial con-
ditions and select the best result that gives the maximum log-
likelihood. An alternative method is to select several keyframes by
hand and take those frames as initial values for the means of clus-
ters. This is the approach we used in practice. In our examples, 15
to 25 keyframes were selected by hand to provide a starting point
for the EM algorithm. This small amount of manual input appeared
to result in much better statistical models.

4.2.2 Cluster Forest

After the motion frames are clustered, we construct acluster forest
to encode the choices available to the avatar. The cluster forest con-
sists of a collection ofcluster treesrepresenting sets of avatar be-
haviors. Each frame in the database has its own cluster tree, which
reflects the behaviors immediately available to the avatar from that
frame. This arrangement allows the interface techniques to consider
only relevant behaviors. For example, if the avatar is far from the
step stool, the behaviors that involve interacting with the step stool
are not relevant although they may become important as the avatar
moves nearer.

A cluster tree for a given motion framer is computed as follows.
The algorithm begins with a one-node tree consisting of the cluster
to whichr belongs. When a new framej is visited from framei that
belongs to thek-th cluster, the algorithm checks if framej belongs
to thek-th cluster. If not, the cluster including framej is added to
the tree as a child of the current node. In either case, the children
of framej are traversed recursively. The recursion terminates when
the depth of the spanning tree reaches a given maximum depth (time
bound). In the examples presented here, the time bound was set to
15 seconds. Figure 4 shows some simple example cluster trees.

Cluster trees are constructed for all frames that have multiple
out-going transitions. Frames with a single out-going transition are
assigned to the first cluster tree reachable by traversing the lower
layer graph from that frame. We note that because a cluster tree is
assigned to each frame in the lower layer graph and because there
are no dead ends in the lower layer graph, there will be no dead
ends created in the resulting higher layer structure.

4.2.3 Cluster Paths and Most Probable Motions

A cluster pathis a path from the root of a cluster tree to one of its
leaves. If the cluster tree for a frame hask leaves, it will containk
cluster paths, each representing a collection of actions available to
the avatar.

For any given cluster path, we can find the most probable se-
quence of motion frames. This sequence of frames is one of a gen-
erally large number of possible motions that pass through the given
cluster path, but it provides a concrete representation of that cluster
path that is a useful reference for the interface techniques used to
control the avatar.

Suppose that cluster pathp, associated with frames0, consists
of the sequence of clusters(θ1, θ2, · · · , θp). The most probable
sequence of motion framess = (s0, s1, · · · , sN ) through the se-
quencep can be defined in such a way that it maximizes

P (s,p) = P (s)P (p|s) =

N∏
i=1

P (si−1 → si)P (θ(si)|si), (7)

whereθ(si) is the cluster to which framesi belongs. The most
probable path can be found by traversing all possible paths that start
from s0, are contained withinp, and are within a given time bound.
The joint probabilityP (s,p) is evaluated for each of these paths,
and the most probable one is selected.

4.2.4 Practical Use of Clustering

Clustering was not used in all of our examples; the playground and
step stool examples made use of clustering, while the maze and
rough terrain examples did not. We found that the value of cluster-
ing depended on both the richness of the dataset and on the type of
interface used. For sketch-based interfaces in the maze and rough
terrain examples, clustering was not necessary, and we could simply
search the lower layer graph for the motion that best matched the
sketch. For the choice-based interface in the playground example,
clustering was needed to limit the number of options presented to



Figure 5: (Top to bottom) Maze, terrain, and playground exam-
ples. The left column shows the avatar being controlled in syn-
thetic environments, and the right column shows the original data
captured in our motion capture studio. Avatar motion in the maze
and terrain environments is controlled using the sketch-based inter-
face, and avatar motion in the playground environment is controlled
using choice.

the user. For the vision-based interface used in the step stool exam-
ple, clustering was required for efficiency in matching user actions
to possible avatar actions. User actions were compared against tens
of paths in a cluster tree instead of millions of paths in the lower
layer graph.

5 Controlling the Avatar

Users of our system can control an avatar interactively through in-
terfaces based on choice, sketching of paths, and performance (fig-
ure 5). This section describes the interfaces we explored and the
process of mapping from user input to avatar motion.

5.1 Choice

In a choice-based interface, the user is continuously presented with
a set of actions from which to choose (figure 5, bottom). As the
avatar moves, the display changes so that the choices remain ap-
propriate to the context. When the user selects an action, the avatar
performs that action. Whenever there is no currently selected ac-
tion, the avatar’s motion is probabilistically determined.

One of the primary requirements for the choice-based interface
is that the display should be uncluttered to avoid confusing the user.

Time window

Space window

Figure 6: Windows in space and time can be used to constrain the
set of clusters considered for presentation of possible actions to the
user. In this figure, the pink nodes are selected, because they fall in
the intersection of the time bounds and the space bounds set by the
user. The two rightmost of these nodes, the leaves of the selected
subtree, will be portrayed as possible avatar actions.

Virtual environmentMotion Capture Region

Sketched 
path

Obstacles

Figure 7: The sketch interface for the maze example. (Top left) Mo-
tion data was recorded from a small, empty capture region in which
a motion capture subject walked around. (Bottom left) Through
graph search, we select a series of motion segments that are con-
nected through the lower layer graph. (Right) These motion seg-
ments are translated and rotated to match the sketched path in an
environment with obstacles. Note that paths with collisions were
eliminated during the search, and the selected path differs signifi-
cantly from the sketched path where necessary to avoid the obstacle.

In practice, this means that roughly three or four actions should be
presented to the user at any given time. We use the cluster tree at
the current frame to obtain a small set of actions for display that
are typically well-dispersed. By default, leaves of the currently ac-
tive cluster tree are portrayed as example poses. Additional visual
information such as the path that would be traced by the charac-
ter root or footprints along that path can provide more detail about
available actions when desired. The user has some ability to con-
trol how many and which actions are displayed by setting bounds
on lookahead time and bounds on the desired location of the avatar
in the environment (figure 6).

5.2 Sketching

The sketch-based interface allows the user to draw paths on
the screen using a mouse. The two-dimensional paths are pro-
jected onto the surfaces of environment objects to provide three-
dimensional coordinates. In our examples, the sketched paths are
assumed to represent the trajectory of the center of mass projected
onto the ground plane. We have implemented two different ways
to determine avatar motion from a sketched path. In the first ap-
proach, used in the step stool environment (figure 8, top right), the
most appropriate action currently available to the avatar is selected.
In the second approach, used in the maze and rough terrain envi-
ronments (figure 5, top and middle), avatar motion is constructed
incrementally.

Our first approach to sketch-based avatar control exploits the fact
that it is often possible to find a good match to a sketched path based
on the cluster tree at the current frame. For a given cluster tree, the



Figure 8: Step stool example. (Top left) Choice-based interface.
(Top right) Sketch-based interface. (Middle and bottom left) The
user performing a motion in front of a video camera and her sil-
houette extracted from the video. (Middle and bottom right) The
avatar being controlled through the vision-based interface and the
rendered silhouette that matches the user’s silhouette.

actions available are represented by cluster paths through that tree.
We compute a score for each cluster pathm based on the most prob-
able motionsm as follows. First, the center of mass of the character
is projected onto the surfaces of environment objects for each frame
in sm. Second, the distance between the resulting center of mass
path and the sketched path is computed using dynamic time warp-
ing (described in [Bruderlin and Williams 1995]). This distance is
the score assigned to cluster pathm, and the cluster path with the
lowest score is selected as the best match to the user sketch.

Our second approach allows us to track longer paths and to use a
sketch-based interface in an environment where clustering has not
been performed. In either case, the sketched path is considered as
a sequence of goal positions to be traversed, and our tracking al-
gorithm is based on best-first search through the lower layer graph.
The following simple objective function is used:

E(p) = ‖pg − p‖ − c((pg − p) · u), (8)

wherepg andp are the goal position and the actual position of the
avatar respectively, andu is a vector of the avatar’s facing direction.
The first term of the objective function rewards motion toward the
goal. The second term rewards facing directions that point toward
the goal. At each time instance, our algorithm traverses a fixed
number of frames to maintain a constant rate of motion. Note that
this approach could result in local minima, where the avatar can no
longer make progress toward the goal. The possibility of local min-
ima is not a practical problem, however, because the user is doing
the high-level planning and has already identified an appropriate
path.

5.3 Vision

In our vision-based interface, the user acts out the desired motion in
front of a camera. Visual features are extracted from video and used
to determine avatar motion (figure 8, middle and bottom). The cost
of an avatar’s action is measured based on the difference between
visual features present in rendered versions of that action and visual
features present in the video.

Visual features for a single video image are obtained from a sil-
houette of the human body, which is extracted from the image us-
ing foreground segmentation. We use nine different features drawn
from this silhouette. The first seven features are the Hu moments
[Hu 1962], which are used because they yield reasonable shape dis-
crimination in a scale and rotation invariant manner. The remaining
two features are the coordinates of the central location of the sil-
houette region in the image plane. When measured over time, these
coordinates provide information about translational motion of the
user.

Visual features for a motion frame are obtained during prepro-
cessing of the motion database. Because we do not know in advance
the orientation of the user with respect to the camera, each motion
frame in the database is rendered from a number of different camera
viewpoints. In our examples, 18 different camera viewpoints were
used. Visual features are then extracted from the rendered images
just as for real camera images and stored with each motion frame.

For avatar control, we maintain a buffer of video frames as the
user performs. For every time step of avatar motion, the video
buffer is compared to the motions available to the avatar. If the
avatar is currently at framei, a cost is computed for each cluster
pathm associated with framei and for each camera viewpoint using
dynamic timewarping. The cost of cluster pathm is the minimum
cost over all camera viewpoints. The cluster path with minimum
cost determines the avatar’s next motion, and the process repeats.
In our examples, the system selects an action for the avatar based
on the current video buffer every 0.1 seconds as the avatar moves
through the environment.

Vision-based action selection can be done in real-time, but se-
lecting an action for the avatar requires matching avatar actions in
the future to user actions in the past, which means that there will
always be some lag between user motion and avatar motion. In our
examples, this lag is currently three seconds.

6 Results

All of the motion data used in our experiments was collected
at the rate of 120 frames/second and then down-sampled to 15
frames/second for real-time display. In the maze and terrain exam-
ples, motion data are represented in a relative coordinate system. In
the other two examples, a fixed coordinate system is employed.

Maze. The maze example in figure 5 (top) shows a path sketched
by a user and an avatar being controlled to follow the path and avoid
obstacles. The avatar is animated with a motion database of 9 min-
utes (4.5 minutes duplicated by mirror reflection) in which our mo-
tion capture subject walked in a straight line, stopped and turned,
side-stepped, and walked backwards. This example demonstrates
that the avatar can select an appropriate motion at any time depend-
ing on user input and the environment. For example, side steps are
selected when it passes through a narrow passage.

To assess the results, we recorded a subject moving in an en-
vironment with physical obstacles and then compared her motion
to the motion of the avatar moving in a similar environment (fig-
ure 9). The database for the avatar’s motion was recorded from a
different subject in an environment without obstacles. The avatar’s
motion lacks context-dependent details of the recorded motion (for
example, in the recorded motion the subject looked front and back
to see if she would clear the obstacles, but the motion database did



Figure 9: Comparison to directly recorded motion data. (Left) A
subject passing through obstacles in an environment laid out to
match the virtual world. (Middle) Recorded human motion. (Right)
Avatar’s motion created from the database.

not include this head movement), but is still acceptable as a natural
human motion.

Terrain. For the rough terrain example, we recorded motions of
about 15 minutes duration on small sections of rough terrain con-
structed from ten wooden blocks (24 by 24 by 7.5 inches) with three
height levels: the ground level, one block height, and two block
height (figure 5, middle). Those motions are sufficient to allow an
avatar to navigate in an extended rough terrain environment with
much more height variation. The user can either sketch a path or
mark a target position to direct the avatar.

Playground. For the playground example (figure 5, bottom), 7
minutes of motion were collected, and the motion data was grouped
into 25 clusters. The playground example demonstrates that the
avatar can be controlled in a complex environment in which dy-
namic, full-body interaction is required. Although the sketch in-
terface is flexible and intuitive, drawing a path was not appropriate
for avatar control in a playground environment because many dis-
tinct actions can be mapped to the same projected path. Instead,
a choice-based interface was used, with key poses providing suffi-
cient information for the user to select the desired action.

Step stool. In the step stool example, a 5-minute sequence of
motion was captured in which our motion capture subject walked
around, stepped on, sat on, and jumped over the step stool. This
data was grouped into 14 clusters. All three interfaces were tested
for the step stool example (figure 8). The advantage of the choice-
based interface is that users are informed about the options available
at any time. The sketch-based interface is very easy to use and re-
sponds instantly to the user input by finding a matching action and
updating the display while the path is being drawn. Sometimes, the
sketch-based interface was not able to distinguish different styles;
jumping over and stepping over the step stool result in similar cen-
ter of mass paths when they are projected on the ground. For the
vision-based interface, the user performs desired motions in front
of a high speed video camera that can capture 60 images per sec-
ond. The silhouettes of the captured images are extracted from the
video and compared to the preprocessed silhouettes of the avatar
to select a matching action. The silhouette comparison usually can
discriminate different styles. If the user acts out a motion that is
not available in the database, the system selects motion that looks
similar. For example, if the user jumps down from the step stool,
no exact matching motion is available, and the system generates
motion where the avatar simply steps down.

7 Discussion

We have presented a two layer structure that allows a database of
unsegmented, extended motion sequences to be used effectively to
control an avatar with three quite different interfaces. Although we
have not yet attempted to assess the effectiveness of the interfaces
through user studies, our intuition is that each interface plays a use-
ful role and that the best interface may well be determined by the
application. The choice-based interface does a good job of show-
ing the user what the options are and therefore may be most useful

in applications such as a complicated but slow moving video game
where the user might not be aware of all possibilities. However
this interface is only effective for relatively slow moving behaviors
as the user must have the time to make a decision before the op-
tion is no longer valid. Sketching a path is a natural way to guide
the avatar around the space but does not generalize to much more
complicated environments where the two-dimensional mouse path
projected to three dimensions does not adequately specify what the
avatar should do.

The vision-based interface allows the most complete control over
the motion but an interface that requires whole body motions will
certainly not be appropriate for all applications. The latency of the
current system would be a factor in many applications and may
be necessary if a precise match among many similar actions is re-
quired. However, in applications such as ours with fairly small
numbers of similar actions or where precise matches are not re-
quired, we believe that additional video cameras and the compu-
tation of more sophisticated visual cues such as motion and edge
detection should allow us to reduce latency substantially.

Although the motion databases used here are relatively large
from a research perspective, they are much smaller than motion
databases used in video games. Because our databases are of lim-
ited size, we need to be careful to retain generality wherever possi-
ble by using a local coordinate frame to express the motion of the
character root, for example. A larger database for any of our ex-
amples would result in more variety and flexibility in the avatar’s
motions. As database size grows, the ability to rapidly search for
an appropriate action will become more and more critical. The two-
layer structure proposed here—where the cluster tree at each frame
provides a generalization of the set of actions available to the avatar
at that frame—should scale well to larger databases, because the
data structure stored at each frame contains only clusters immedi-
ately relevant to the avatar and grows in size only with the branch-
ing factor in transitions between those clusters. Keeping database
size manageable is a concern, however, and determining when a
database has sufficient variety for a given space of motions is an
open and interesting research problem.

The Markov process on the lower level of the data representation
has proven to be very effective for databases of the sizes we have
explored. Smaller databases might not span the space of possible
motions sufficiently to provide the necessary transitions. A much
larger database might require more aggressive pruning of transi-
tions to prevent the computation time of the preprocessing step from
scaling as the square of the number of frames.

We made somewhat arbitrary decisions in deciding when to use
cluster trees as part of the search process. The maze and rough
terrain examples do not use clustering at all. This decision was
partially motivated by the fact that clustering in a relative coordinate
system is more difficult than clustering in a fixed coordinate system,
and we found that clustering was not in fact necessary when the
sketch-based interface was used. We assume, however, that as the
size of the database increases further, clustering will become more
important.

The effectiveness of clustering for avatar control is influenced
by the distribution of motion capture data collected. If we captured
action A 100 times and action B once, it would be difficult to expect
the EM algorithm to identify two separate actions. We found that
it was important to ensure that actions were captured several times;
our subjects were always asked to repeat their actions at least three
times.

We picked the initial member of each cluster by hand. Although
this was not a burdensome chore, it does require that the application
designer know the motion database sufficiently well to select widely
dispersed poses as cluster seeds. It should be possible to automate
this process. The quality of clustering without hand seeding did
improve with computation time spent, but estimation of reliably



good clusters required several hours even for the small datasets.
The three interfaces and four behavior domains shown clearly

demonstrate the power of a large database of unsegmented motion
recorded in extended sequences. We anticipate that as the size of
publically available motion databases grows, we will see very com-
pelling examples developed that build on statistical techniques for
preprocessing the data such as those presented here.
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WITKIN , A. P., AND POPOVIĆ, Z. 1995. Motion warping. InProceedings of SIG-
GRAPH 95, 105–108.

WOOTEN, W. L., AND HODGINS, J. K. 1996. Animation of human diving.Computer
Graphics Forum 15, 1, 3–14.


