Chapter 1

Examples and
Numerical Experiments

This chapter introduces some interesting differential equations and illustrates the different
qualitative behaviour of numerical methods. We deliberately consider only very simple
numerical methods of orders 1 and 2 in order to emphasize the qualitative aspects of
the experiments. The same effects (on a different scale) could be observed with more
sophisticated higher order integration schemes. The presented experiments should serve
as a motivation for the theoretical and practical investigations of later chapters. Every
reader is encouraged to repeat the experiments or to invent similar ones.

I.1 Two-Dimensional Problems

Volterra-Lotka Problem Consider the problem
u' = u(v—2), v =0l —u), (1.1)

which constitutes an autonomous system of two differential equations. It is a simple model
for the development of two populations, where u represents the predator and v the prey.
If we divide the two equations of (1.1) by each other and if we consider u as a function of
v (or reversed), we get after separation of variables

1—u v—2
du —

u v

dv = 0.

Integration then leads to
I(u,v) =Ilnu—u+2Inv —v = Const. (1.2)

This means that solutions of (1.1) lie on level curves of (1.2) or, equivalently, I(u,v) is a
first integral of (1.1). Some of the level curves are drawn in the pictures of Fig. 1.1. Since
these level curves are closed, all solutions of (1.1) are periodic. Can we have the same
property for the numerical solution?

Simple Numerical Methods The most simple numerical method for the solution of
the initial value problem

v =f),  ylto) =wo (1.3)
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F1a. 1.1: Solutions of the Volterra-Lotka equations (1.1)

is Euler’s method
Yn+1l = Yn + hf(yn) (1'4)

It is also called explicit Euler method, because the approximation ¥, can be computed
in an explicit straight-forward way from g, and from the step size h. Here, y, is an
approximation to y(t,) where y(¢) is the exact solution of (1.3), and ¢, = ty + nh.

The implicit Fuler method

Yn+1 = Yn + hf(yn—l-l)a (1'5)

which has its name from its similarity to (1.4), is known from its excellent stability
properties. In contrast to (1.4), the approximation y,, . is defined implicitly by (1.5), and
the implementation needs the resolution of nonlinear systems.

Taking the mean of y, and y,,; in the argument of f, we get the implicit midpoint

rule
Un + Z/n—H) (1 6)

Yn+1 = Yn + hf ( 9
It is a symmetric method, which means that the formula remains the same if we exchange
Yn <> Yns1 and h < —h.
For partitioned systems

!

u' = a(u,v), v' = b(u,v), (1.7)
such as the problem (1.1), we also consider the method
Upi1 = Uy + ha(Uyy1,vp), Upt1 = Up + h0(Upi1, vp), (1.8)

which treats the u-variable by the implicit and the v-variable by the explicit Euler method.
It is called symplectic Euler method (in Sect.IV it will be shown that it represents a
symplectic transformation).

Numerical Experiment The result of our first numerical experiment is shown in
Fig.1.1. We have applied different numerical methods to (1.1), all with constant step
size h = 0.12. As initial values (the enlarged symbols in the pictures) we have chosen
(up,v9) = (2,2) for the explicit Euler method, (ug,vy) = (4,8) for the implicit Euler
method, and (ug,vy) = (4,2) respectively (6,2) for the symplectic Euler method. The
figure shows the numerical approximations of the first 125 steps. We observe that the



explicit and implicit Euler methods behave qualitatively wrong. The numerical solution
either spirals outwards or it spirals inwards. The symplectic Euler method, however, gives
a numerical solution that lies on a closed curve as does the exact solution. It is important
to remark that the curves of the numerical and exact solution do not coincide, but they
will be closer for smaller h. The implicit midpoint rule also shows the correct qualitative

behaviour (we did not include it in the figure).
7
Pendulum Our next problem is the mathematical pendulum with
a massless rod of length / = 1 and mass m = 1. Its movement is
described by the equation o’ 4 sina = 0. With the coordinates ¢ = «

and p = o this becomes the two-dimensional system

q =, p = —sing. (1.9)
As in the example above we can find a first integral, so that all solutions satisfy

1
H(p,q) = §p2 — cosq = Const. (1.10)

Since the vector field (1.9) is 2w-perdiodic in ¢, it is natural to consider ¢ as a variable
on the circle S'. Hence, the phase space of elements (p, q) becomes the cylinder IR x S*.
In Fig. 1.2 level curves of H(p,q) are drawn. They correspond to solution curves of the
problem (1.9).

explicit Euler symplectic Euler implicit midpoint
F1a. 1.2: Solutions of the pendulum problem (1.9)

Again we apply our numerical methods: the explicit Euler method with step size
h = 0.2 and initial value (pg, go) = (0,0.5); the symplectic Euler method and the implicit
midpoint rule with & = 0.3 and three different initial values ¢o = 0 and p, € {0.7,1.4,2.1}.
Similar to the computations for the Volterra-Lotka equations we observe that only the
symplectic Euler method and the implicit midpoint rule exhibit the correct qualitative
behaviour. The numerical solution of the midpoint rule is closer to the exact solution,
because it is a method of order 2, whereas the other methods are only of order 1.

Conclusion We have considered two-dimensional problems with the property that all
solutions are periodic. In general, a discretization of the differential equation destroys
this property. Surprisingly, there exist methods for which the numerical flow shows the
same qualitative behaviour as the exact flow of the problem.



I.2 Kepler’s Problem and the Outer Solar System

The evolution of the entire planetary system has been numerically
integrated for a time span of nearly 100 million years. This calculation
confirms that the evolution of the solar system as a whole is chaotic,

(G.J. Sussman and J. Wisdom 1992)

The Kepler problem (also called the two-body problem) describes the motion of two bodies
which attract each other. If we choose one of the bodies as the center of our coordinate
system, the motion will stay in a plane (Exercise 2). Denoting the position of the second
body by ¢ = (q1,¢2)", Newton’s law yields a second order differential equation which,
with a suitable normalization, is given by

.o el .o 42 (2.1)
M@ BT @@ '

One can check that this is equivalent to a Hamiltonian system

¢=Hy(p,q),  p=—Hypq) (2:2)
(H, and H, are the vectors of partial derivatives) with total energy
1

(p} +p3) — e
VA + 4

Exact Integration Kepler’s problem can be solved analytically, i.e., it can be reduced
to the computation of integrals. This is possible, because the system has not only the
total energy H (p,q) as invariant, but also the angular momentum

(2.3)

N | —

H(p17p27 qi1, q?) =

L(p1,p2, q1,42) = @12 — q2p1- (2.4)

This can be checked by differentiation. Hence, every solution of (2.1) satisfies the two

relations .

1
— (i + @) — ———= = H,, 0192 — q2¢1 = Lo,
2 N

where the constants Hy and Ly are determined by the initial values. Using polar coordi-
nates q; = rcos ¢, gz = rsin ¢, this system becomes

1. ) 1 i
3 (7* +1r*9?) — =1, r’p = L. (2.5)

For its solution we consider r as a function of ¢ (assuming that Ly # 0 so that ¢ is a
monotonic function). Hence, we have 7 = j—; - ¢ and the elimination of ¢ in (2.5) yields

1/sdry2 N\ L 1
(@) ) -

With the abbreviations
d=1L1% e =1+2H,L3 (2.6)
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FiaG. 2.1: Exact and numerical solutions of Kepler’s problem

and the substitution u(y) = 1/r(p) we get

du~2 €’ 152
(e -ty
This differential equation can be solved by separation of variables and yields

B d
~ 14ecos(p— p*)’

r(g) (2.7)

where ¢* is determined by the initial values ry and ¢qy. In the original coordinates this

relation becomes
V@ + 3 + e(qy cos p* + qosin¢*) = d.

Eliminating the square root, this gives a quadratic relation for (¢i, g2) which represents
an ellipse with eccentricity e for Hy < 0 (see Fig.2.1), a parabola for Hy = 0, and a
hyperbola for Hy > 0. With the relation (2.7), the second equation of (2.5) gives

d2
(14 ecos(p — ¢*))

which, after integration, gives an implicit equation for o(t).

s do = Lodt (2.8)

Numerical Integration We consider the problem (2.1) and we choose

@(0)=1—e, @0)=0, ¢(0)=0, ¢(0)=y 11_27 (2.9)
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F1G. 2.2: Energy conservation and global error for Kepler’s problem

with 0 < e < 1 as initial values. This implies that Hy = —1/2, Ly = v1 —¢%, d =1 — ¢?
and ¢* = 0. The period of the solution is 27 (Exercise 4). Fig. 2.1 shows the exact solution
with eccentricity e = 0.6 and some numerical solutions. After our previous experience, it is
no longer a surprise that the explicit Euler method spirals outwards and gives a completely
wrong answer. For the symplectic Euler method and the implicit midpoint rule we take
a step size 100 times larger in order to better observe their qualitative behaviour. We see
that the numerical solution lies close to an ellipse which turns slowly around its focus,
clockwise for the symplectic Euler method and anticlockwise for the implicit midpoint
rule. The same behaviour can be observed for the exact solution of perturbed Kepler
problems (Exercise 6).

Our next experiment (Fig.2.2) studies the conservation of invariants and the global
error. The main observation is that the error in the energy grows linearly for the explicit
Euler method, and it remains bounded and small (no secular terms) for the symplectic
Euler method. The global error, measured in the Euclidean norm, shows a quadratic
growth (explicit Euler) compared to a linear growth (symplectic Euler and implicit mid-
point rule). The findings of this experiment are collected in Table 2.1. We remark that the
angular momentum L(p, ¢) is exactly conserved for the symplectic Euler and the implicit
midpoint rule.

TABLE 2.1: Qualitative long-time behaviour for Kepler’s problem

method H error in H ‘ error in L | global error
explicit Euler O(th) O(th) O(t?h)
symplectic Euler O(h) 0 O(th)
implicit midpoint O(h?) 0 O(th?)




TABLE 2.2: Data for the outer solar system

planet mass initial position | initial velocity
—3.5023653 0.00565429

Jupiter my = 0.000954786104043 —3.8169847 | —0.00412490
—1.5507963 | —0.00190589

9.0755314 0.00168318

Saturn mo = 0.000285583733151 —3.0458353 0.00483525
—1.6483708 0.00192462

8.3101420 0.00354178

Uranus ms = 0.0000437273164546 | —16.2901086 0.00137102
—7.2521278 0.00055029

11.4707666 0.00288930

Neptune || m4 = 0.0000517759138449 | —25.7294829 0.00114527
—10.8169456 0.00039677

—15.5387357 0.00276725

Pluto ms = 1/(1.3-108) —25.2225594 | —0.00170702
—3.1902382 | —0.00136504

Outer Solar System

We next apply our methods to the system which describes the

motion of the five outer planets relative to the sun. This system has been studied exten-
sively by astronomers, who integrated it for a time span of nearly 100 million years and
concluded the chaotic evolution of the solar system [SW92]. The problem is a Hamiltonian
system (2.2) with

5 i—1

G D

i=1j= OHq’

1 mimy

ol (210)

5
Z pszz
=0

l\D

Here p and ¢ are the supervectors composed by the vectors p;,q; € IR? (momenta and
positions), respectively. The chosen units are: masses relative to the sun, so that the sun
has mass 1. We have taken

mgy = 1.00000597682

in order to take account of the inner planets. Distances are in astronomical units (1 [A.U.] =
149597870 [km]), times in earth days, and the gravitational constant is

G = 2.95912208286 - 10,

The initial values for the sun are taken as ¢o(0) = (0,0,0)7 and ¢o(0) = (0,0,0)T. All
other data (masses of the planets and the initial positions and initial velocities) are given
in Table 2.2. The initial data are taken from “Ahnerts Kalender fiir Sternfreunde 1994”,
Johann Ambrosius Barth Verlag 1993, and they correspond to September 5, 1994 at 0h00.!

To this system we applied our four methods, all with step size h = 10 (days) and over
a time period of 200000 days. The numerical solution (see Fig. 2.3) behaves similarly to

'We thank Alexander Ostermann, who provided us with all these data.
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F1G. 2.3: Solutions of the outer solar system

that for the Kepler problem. With the explicit Euler method the planets increase their
energy, they spiral outwards, Jupiter approaches Saturn which leaves the plane of the
two-body motion. With the implicit Euler method the planets (first Jupiter and then
Saturn) fall into the sun and are thrown far away. Both the symplectic Euler method and
the implicit midpoint rule show the correct behaviour. An integration over a much longer
time of say several million of years does not deteriorate this behaviour. Let us remark that
Sussman & Wisdom [SW92] have integrated the outer solar system with special methods
which will be discussed in Chap.IV.

I.3 Molecular Dynamics

We do not need exact classical trajectories to do this, but must lay
great emphasis on energy conservation as being of primary impor-
tance for this reason. (M.P. Allen and D.J. Tildesley 1987)

Molecular dynamics requires the solution of Hamiltonian systems (2.2), where the total
energy is given by

1 N N 1—1
Hp,q) ==Y my "ol + 3.3 Vi (llai — g5l), (3.1)
9
i=1 i=2 j=1

and V;;(r) are given potential functions. Here, ¢; and p; denote the positions and momenta
of atoms and m; is the atomic mass of the ith atom. We remark that the outer solar system
(2.10) is such an N-body system with V;;(r) = —Gm;m;/r. In molecular dynamics the
Lennard-Jones potential

Vij(r) = 45ij<(%)12 - (%)6>, (3.2)

r r



is very popular (g;; and o;; are suitable constants
depending on the atoms). This potential has an
absolute minimum at distance r = aijw. The
force due to this potential strongly repulses the
atoms when they are closer than this value, and
they attract each other when they are farther.

Lennard - Jones

Stormer-Verlet Scheme The Hamiltonian of (3.1) is of the form H(p,q) = T(p)+V (q),
where T'(p) is a quadratic function. Hence, the Hamiltonian system is of the form

g=M"'p, p=-V'(q),

where M = diag(mqI,...,myI) and I is the 3-dimensional identity matrix. This system
is equivalent to the special second order differential equation

q= f(Q)a (33)

where the right-hand side f(¢) = M~'V’(q) does not depend on ¢. The most natural
discretization of (3.3) is?

dn+1 — 2Q71 + Qn—1 = th(Qn) (34)

This formula is either called Stérmer’s method (C. Stormer in 1907 used higher order
variants for the numerical computation concerning the aurora borealis) or Verlet method.
L. Verlet [Ver67] proposed this method for computations in molecular dynamics. An
approximation to the derivative v = ¢ is simply obtained by

_ Gn+1 Q—hC_ln—l_ (3_5)

Un

For the second order problem (3.3) one usually has given initial values ¢(0) = ¢ and
¢(0) = vg. However, one also needs ¢; in order to be able to start the integration with the
3-term recursion (3.4). Putting n = 0 in (3.4) and (3.5), an elimination of ¢_; gives

2

h
Ch:%—i-hvo*'?f(%)

for the missing starting value.

The Stormer-Verlet method admits an interesting one-step formulation which is useful
for numerical computations. Introducing the velocity approximation at the midpoint
Unt1/2 i= Un + 2 f(gn), an elimination of ¢,_; (as above) yields

h
Upt1/2 = Up+ 5 f(an)
Gnt1 = Gn+ hopg)s (3.6)

h
Upt1 = Upg12 + 5 f(@ni1)

2 Attention. In (3.4) and in the subsequent formulas g, denotes an approximation to ¢(nh), whereas
g; in (3.1) denotes the ith subvector of g.



which is an explicit one-step method W) : (g, vn) + (¢ni1, Unr1) for the first order system
G =v,0 = f(q). If one is not interested in the values v, of the derivative, the first and
third equations in (3.6) can be replaced with

Un+1/2 = Un—l/? +h f(Qn)

Finally, let us mention an interesting connection between the Stormer-Verlet method
and the symplectic Euler method (1.8). If the variable ¢ is discretized by the explicit
Euler and v by the implicit Euler method, we denote it by ¥¢; if ¢ is discretized by
the implicit Euler and v by the explicit Euler method, we denote it by Wi. Introducing
Int1/2 '= Gn + %Un+1 /2 as an approximation at the midpoint, one recognizes the mapping
(Gn, vn) = (Qn+1/2, Un+1/2) as an application of ‘I’/ii/m and (Qn+1/27 Un+1/2) = (Gnt1, Unt1) @S
an application of \1126/2. Hence, the Stormer-Verlet method satisfies

\Ijl‘zf = 26/2 © ‘I’ZZ/2 (3.7)
Numerical Experiment with a Frozen Argon Crystal ©)
As in [BS93] we consider the interaction of seven argon atoms Q) ®
in a plane, where six of them are arranged symmetrically o
around a center atom. As mathematical model we take the
Hamiltonian (3.1) with N =7, m; = m = 66.34 - 107%" [kg], © o) ©

where kp = 1.380658-10~2* [J/K] is Boltzmann’s constant (see [AT87, page 21]). As units
for our calculations we take masses in [kg], distances in nanometers (1 [nm] = 10~ [m]),
and times in nanoseconds (1[nsec] = 107% [sec]). Initial positions (in [nm]) and initial
velocities (in [nm/nsec|) are given in Table 3.1. They are chosen such that neighbouring
atoms have a distance that is close to the one with lowest potential energy, and such that
the total momentum is zero and therefore the centre of gravity does not move. The energy
at the initial position is H (pg, qo) &~ —1260.2 kg [J].

For computations in molecular dynamics one is usually not interested in the trajecto-
ries of the atoms, but one aims at macroscopic quantities such as temperature, pressure,
internal energy, etc. We are interested in the total energy, given by the Hamiltonian, and
in the temperature which can be calculated from the formula [AT87, page 46|

1 N
T=——
2Nkp =

We apply the explicit and symplectic Euler methods and also the Verlet method to this
problem. Observe that for a Hamiltonian such as (3.1) all three methods are explicit, and

ml|dll*. (3.8)

TABLE 3.1: Initial values for the simulation of a frozen Argon crystal

atom | 1 | 2 | 3 | 4 5 6 7
. 000 | 002 | 034 | 036 | —0.02 | —035 | —031
posttion | o 00 | 039 | 017 | —021 | —040 | —0.16 | 0.21
velocite | 30 | 30 [ =70 [ 00 80 —10 | —80
20 | =90 | —60 | 40 90 100 | —60
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Fia. 3.1: Computed total energy and temperature of the Argon crystal

all of them need only one force evaluation per integration step. In Fig.3.1 we present
the numerical results of our experiments. The integrations are done over an interval of
length 0.2 [nsec]. The step sizes are indicated in femtoseconds (1 [fsec] = 107° [nsec]).

The two upper pictures show the values (H(pn,qn) — H(po,qo))/kp as a function of
time t, = nh. For the exact solution, this value is precisely zero for all times. Similar
to earlier experiments we see that the symplectic Euler method is qualitatively correct,
whereas the numerical solution of the explicit Euler method, although computed with a
much smaller step size, is completely useless (see the citation of the beginning of this
section). The Verlet method is qualitatively correct and gives much more accurate results
than the symplectic Euler method (we shall see later that the Verlet method is of order 2).
The two computations with the Verlet method show that the energy error decreases by a
factor of 4, if the step size is reduced by a factor of 2 (second order convergence).

The two lower pictures of Fig. 3.1 show the numerical values of the temperature differ-
ence T'— Ty with T given by (3.8) and Ty ~ 22.72 [K] (initial temperature). In contrast to
the total energy, this is not an exact invariant, but for our problem it fluctuates around
a fixed value. The explicit method gives wrong results, but the symplectic Euler and the
Verlet methods show the desired behaviour. This time a reduction of the step size does
not reduce the amplitude of the oscillations.

I.4 Highly Oscillatory Problems

Fermi-Pasta-Ulam . ..



1.5 Exercises

1.

Apply the symplectic Euler method (or the implicit midpoint rule) to problems such as

u\' (v —2)/v uw\' [ uPv(v—2)
) = (amom) () =i =a)
which both have the same first integral (1.2) as the Volterra-Lotka problem and therefore
also periodic solutions. Do the numerical solutions also show this behaviour?

. A general two-body problem (sun and planet) is given by the Hamiltonian

1 1 GmM
H(p,ps,q,95) = 577 Ps§Ps + 5—p' p— ——,
2M 2m llg — asl|
where ¢g,q € IR? are the positions of sun (mass M) and the planet (mass m), pg,p € IR?
are their momenta, and G is the gravitational constant.

a) Prove that, in heliocentric coordinates @) := g — ¢g, the equations of motion are

Q G(M +m) o
b) Prove that %(Q(t) x Q(t)) = 0, so that Q(t) stays for all times ¢ in the plane E =
{q; d'q =0}, where d = Q(0) x Q(0).
Conclusion. The coordinates corresponding to a basis in F satisfy the two-dimensional
equations (2.1).

Tp_

. In polar coordinates, the two-body problem (2.1) becomes

) ) . Ly 1
P=-=V'(r) with Vir)= 22 7
which is independent of ¢. The angle ¢(t) can be obtained by simple integration from
p(t) = Lo/r*(t).
Compute the period of the solution of Kepler’s problem (2.1).
Result. T = 2m(2|Hy|)~%/2, see e.g. [Ar78, page 40].

. Whatever the initial values for the Kepler problem are, 1 + 2HyL2 > 0 holds. Hence, the

value e is well defined by (2.6).
Hint. Ly is the area of the parallelogram spanned by the vectors ¢(0) and ¢(0).

Study numerically the solution of the perturbed Kepler problem with Hamiltonian
€

VE+ad 2@ +a)
where ¢ is a positive or negative small number, e.g., ¢ = £0.01 (see [SC94, page 8]). A
closely related problem is the “main problem of artificial satellite theory” [Ki88].

1
H(p1,p2,q1,42) = 5 (? +p3) —

Consider the harmonic oscillator § + w?>q = 0. Prove that the exact solution and the
numerical solution can be written as
wq(t)\ [ coswt sinwt) [wq(0) Went1\ W,
< () ) = (—sinwt coswt ) L a(0) )0 Ugunn ) MMy, )
Compute M (wh) for all numerical methods considered in this chapter, and investigate for
which methods det M (wh) = 1.

Show that not only the symplectic Euler and the implicit midpoint rule preserve exactly
the angular momentum for Kepler’s problem (see Table 2.1), but also the Stérmer-Verlet
scheme preserves it.

Implementation of the Stormer-Verlet scheme. Explain why the use of the one-step for-
mulation (3.6) is numerically more stable than that of the two-term recursion (3.4).



