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ABSTRACT
There is increasing interest in relation extraction, methods that con-
vert natural language text into structured knowledge. The most
successful techniques use supervised machine learning to generate
extractors from sentences which have been labeled with the argu-
ments of the relations of interest. Unfortunately, these methods
require hundreds or thousands of training examples, which are ex-
pensive and time-consuming to produce.

This paper presents ontological smoothing, a semi-supervised
technique that exploits knowledge of a background ontology in or-
der to learn extractors for a set of minimally-labeled relations. On-
tological smoothing has three phases. The first step generates a
mapping between the target relations and the background ontology.
The second step uses knowledge-based weak supervision to heuris-
tically generate new training examples for the target relations. The
third step learns an extractor from a combination of the original and
newly generated examples. Experiments on 61 relations across two
target domains with Freebase as the background ontology show on-
tological smoothing can dramatically improve precision and recall.

General Terms
Relation Extraction

1. INTRODUCTION
Vast quantities of information are encoded on the Web in natural

language. In order to render this information into structured form
for easy analysis, researchers have developed methods for relation
extraction, also known as information extraction. The most suc-
cessful techniques use supervised machine learning to generate ex-
tractors from a training corpus comprised of sentences which have
been labeled with the arguments of the relations of interest. For
example, the sentence “ ‘Our captain, Jelani Jenkins, is a phenom-
enal athlete’ said the Gator’s head coach, Urban Meyer.” might
have “Jelani Jenkis” and “Urban Meyer” annotated as arguments
for the isCoachedBy relation. Unfortunately, these supervised
methods require hundreds or thousands of training examples per
relation, and thus have proven too expensive for use in constructing
Web-scale knowledge bases.
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Figure 1: VELVET operates in three phases. First, it generates a
global mapping from view on the background ontology onto the
target relations. Second, it uses the mapping to create silver la-
beled training data for the target relations. Finally, it trains relation
extractors for the targets.

In the absence of copious training data, effective learning is thought
to require some form of additional constraint or knowledge on the
part of the learner. But only a few methods have been proposed for
leveraging background knowledge in order to improve learning.

This paper presents VELVET, a new, semi-supervised technique,
called ontological smoothing, that learns extractors from a set of
minimally-labeled relations by exploiting knowledge encoded in a
background ontology and a large, unlabeled textual corpus. VELVET
works in three phases as Figure 1 shows: the first step generates a
mapping between the relations in the target ontology and the back-
ground ontology. The second step uses knowledge-based weak su-
pervision to heuristically generate new, silver training examples for
the target relations1. Finally, the third step learns an extractor from
a combination of the original and newly-generated, candidate ex-
amples.

Mapping between ontologies is more complex than simply choos-
ing a background relation which seems most similar to the target
relation. In order to be able to find a quality mapping for a large
number of target relations, one must consider the much larger space
of mappings formed by unions of conjunctive queries on the back-
ground ontologies. In the related problem of database schema in-
tegration, these correspond to views defined using SQL operations
select, project, join and union. Even if one limits the search to ex-
pressions using no more than two joins over three background rela-

1We use the term ‘silver’ to denote heuristically generated training
data, which likely contains noise and is not as valuable as gold-
standard, labeled data.
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Figure 2: In order to map a target relation to the background on-
tology, one must consider a large space of possible views. In
this example, the target isCoachedBy relation maps the fol-
lowing expression over Freebase relations: πPName,NamePlayers 1

Plays4Team 1 fbCoach. In fact, the best mapping is a union of this
expression with similar expressions for Freebase football, baseball
and basketball relations.

tions, the search space may be huge, comprising billions of possible
views.

1.1 A Simple Example
For example, suppose that we wish to learn extractors for the

target relations defined by the Nell ontology as described in [5]
and suppose that we use Freebase [4] as the background ontology.
Consider target relation isCoachedBy whose instances are en-
tity pairs of athletes and their coaches (Figure 2). While Free-
base has considerable background information about athletics, it
is broken down into separate relations for individual sports and
has been normalized in a manner that precludes simple mapping to
isCoachedBy. In order to find an accurate mapping, one needs
to consider multi-join views, defined using database queries, and
furthermore one must choose the best possible view from the myr-
iad available. The mapping in our VELVET implementation uses
Markov Logic and blocked Gibbs sampling to perform fast, ap-
proximate, probabilistic inference during the mapping process, and
returns the following expression as the best map for this example2:

Example 1

π1.name,2.name(baseballPlayer1 1 baseballCurrentTeam

1 baseballRosterPosTeam 1 baseballManager 1 coach2)

∪ π3.name,4.name(footballPlayer3 1 footballTeam 1 footballRosterPosTeam

1 footballTeamHeadCoach 1 footballCoach4)

∪ π5.name,6.name(basketballPlayer5 1 drafted 1 draftedTeam

1 basketballTeamCoach 1 coach6)

1.2 Smoothing with KB Weak Supervision
Once the system has found a mapping from the background on-

tology, VELVET can generate new candidate tuples for the target
relations. Continuing the example, suppose that when the view is
executed on Freebase it returns the fact that “Will Muschamp” is
the coach of “Jeff Demps.” VELVET searches an unlabeled corpus
of text, such as New York Times articles, for sentences containing
synonyms for both entities. Knowledge-based weak supervision

2We abbreviated the names of the original Freebase relations for
better readability, e.g. we use basketballPlayer instead of /basket-
ball/basketballPlayer. We use superscript indices to provide a short-
hand for relation names in projections. For example 1.name is
shorthand for basketballPlayer.name as indicated by the superscript
on the basketballPlayer relation in the join.

treats each such heuristically-labeled sentence as a positive exam-
ple of the isCoachedBy relation [18, 16], and VELVET learns
a CRF extractor with a combination of the original and newly-
generated training data.

Compared to prior KB weak supervision works [30, 17, 16] fo-
cusing on atomic relations defined already in a large ontology (e.g.
Freebase, Wikipedia), this paper is the first work to extend weak
supervision to any relation defined in few training examples.

1.3 Contributions
The rest of this paper details the process of ontological smooth-

ing, but the most attention is given to VELVET’s method for gener-
ating the ontological mappings. Section 2 formulates the mapping
problem as finding the highest probability global mapping between
all target entities, types and relations and the background ontology.
Next, section 3 explains how we compute the best mapping using
Markov Logic and blocked Gibbs sampling to perform fast, approx-
imate probabilistic inference. Section 4 summarizes how we use
the mapping to generate new examples and perform knowledge-
based weak supervision. In section 5 and 6 we describe the exper-
imental setup and results. Section 7 discusses related work, and
section 8 concludes. Overall, this paper makes the following con-
tributions.

1. We introduce ontological smoothing, a novel approach for
learning relation extractions with minimal supervision.

2. Our approach is based on a new ontology-mapping algo-
rithm, which uses probabilistic joint inference on schema-
and instance-level features to explore the space of complex
mappings defined using SQL selection, projection, join and
union operators.

3. We present experiments on two target ontologies, using Free-
base as background knowledge, that demonstrate that on-
tological smoothing can produce dramatic improvements to
both the precision and recall of extraction.

2. MAPPING BETWEEN ONTOLOGIES
The most important step in ontological smoothing is the con-

struction of a mapping between the target and background ontolo-
gies. This subject has been studied extensively by several different
communities, often using different terminology, e.g., schema map-
ping [28] in data management and ontology mapping in the seman-
tic web [25]. While the literature is too vast for a comprehensive
survey, the next subsection provides the context for our work. Then,
the remaining subsections describe our approach. Section 2.2 de-
fines the class of mappings considered. Section 2.3 describes a
heuristic filter used to reduce the size of the search space, and Sec-
tion 2.4 introduces a probabilistic model which allows us to choose
the best mapping.

2.1 Context and Previous Work
Dhamankar et al.[12] define schema matching to be the first step

in the process of constructing a mapping, i.e. a function converting
descriptions of objects in one ontology into corresponding descrip-
tions in another. We consider ontologies comprised of types (unary
relations, also known as concepts, organized in a taxonomy) and
binary relations. Relations may connect two types (e.g., Parent)
or may link a type to a primitive value, such as numbers, dates
and strings (e.g., BirthDate), which are often called attributes or
properties. Each type is associated with a set of instances, called
entities.
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Figure 3: Classification of selected ontology matching systems,
based on [15].

A mapping from a background ontology BO onto a target TO is
a set of partial functions whose ranges are entities, types and rela-
tions in TO . Ullman [34] noted that these mappings can be thought
of as view definitions, e.g. defined using SQL operations such as
selection, projection, join and union. We adopt this perspective as
shown in Example 1.

Euzenat & Shvaiko [15] and Rahm & Bernstein [28] carve the set
of approaches for ontology matching into several dimensions. The
input of the matching algorithm can be schema-based, instance-
based or mixed. The output can be an alignment (i.e., a one-to-
one function between objects in the two ontologies) or a complex
mapping (e.g., defined as a view). Figure 3 plots some previous
methods along these dimensions.

The majority of existing systems focus on the alignment prob-
lem. Doan et al. [13] present GLUE, which casts alignment of two
taxonomies into classification and uses learning techniques. The
more recent system by Wick & McCallum [36] applies a learning
approach to a single probabilistic model that considers all matching
decisions jointly. While these system operate on instances, others
align schemas: Cupid [20] matches tree-structures in three phases,
that include linguistic matching, structural matching, and aggrega-
tion. COMA++[2] enables parallel composition of matching algo-
rithms. Niepert et al. [27] propose a joint probabilistic model based
on Markov logic. QOM [14] matches both, instances and schemas,
and is able to trade off between efficiency and quality.

Far less work has looked at finding complex mappings between
ontologies. Artemis [8] creates global views using hierarchical
clustering of database schema elements. MapOnto [1] produces
mapping rules between two schemas expressed as Horn clauses.
Miller et al.’s tool Clio [22][23] generates complex SQL queries
as mappings, and ranks these by heuristics. Carman [7] can learn
semantic descriptions of web information sources, it involves some
complicated calculations for weather forecasts and travel deals.

For ontological smoothing to work, it is essential that one can
find complex mappings involving selections, projections, joins, and
unions. While MapOnto and Clio handle complex mappings, they
are semi-automatic tools that depend on user guidance. In contrast,
we designed VELVET to be fully autonomous. Unlike the other
two, VELVET uses a propabilistic representation and performs joint
inference to find the best mapping.

2.2 Ontologies and Views
We assume that an ontology is defined in terms of unary types,

t, and binary relations, r. We denote the selectional preference
(type constraint) of a relation by writing r(t1, t2). For example,
isCoachedBy(athlete,coach) is a relation in the Nell on-
tology [5]. We assume that each target relation comes with a set of
seed instances {. . . (e1, e2) . . .}, where (e1, e2) is an entity pair.

Typically the background ontology is comprised of many types

and relations and is populated with numerous entities. There are
also many relations defined on the entities. As we mentioned in
the introduction, in order to be able to find a quality mapping for
the target relation, one must consider the large space of mappings
formed by the set of database views defined using the relational
operations of select, project, join, and union. When mapping into a
unary type of the target ontology we consider views comprised of
unions over the background types.

When constructing a mapping to a target relation, it is often use-
ful to select a subset of a background relation or view. One way
that VELVET performs selection is by adding types into the join.
Consider the following views:

Example 2

π1.name,2.name location1 1containedBy 1 location2

πcity.name,country.name city 1 containedBy 1 country

πsportsFacility.name,city.name sportsFacility 1 containedBy 1 city

Note that the second and the third views are a subset of the first
and denote very different relations. It is not correct to use the in-
stances of the first view to train the relation extractor for target
relation cityLocateInCountry.

Formally, we represent an ontology mapping between target re-
lation r̂(t̂1, t̂2), and the background view defined as ∪r(t1, t2),
where r is created by joining the binary relations in the background
ontology (e.g. basketballPlayer 1 basketballRosterPosition 1 bas-
ketballTeam 1coach headCoach). t1 and t2 are selection operations
defined by corresponding entity types. Without explicit explana-
tion, we will from now on use r̂, t̂, ê to denote target relations etc,
and r, t, e to denote ones in the background ontology.

Since a database view is equivalent to a query, we may apply
it to the ground instances of the background ontology to return a
new table (denoted “the instances of the ontology view"); assuming
the mapping is good, these new entity pairs will be good training
instances for the target relation.

2.3 Filtering the Set of Candidates
Large ontologies may contain millions entities belonging to thou-

sands of types and participating in hundreds of relations. Even if
we bound the number of joins allowed in view definitions, there
are still too many potential mappings for VELVET to consider them
all. Therefore, some filtering is required to narrow down the search
space.

An obvious criterion is that the candidate joined relation must
contain at least one ground instance present in the corresponding
target relation. For the moment, assume we have already solved
the entity mapping problem (i.e., we know that entity ê in the target
ontology corresponds to e in the background ontology). We can
think of the background ontology as a graph, where entities are
nodes and binary relations are edges. If background entity pair
(e1, e2) maps (ê1, ê2) of the target relation, we can return all paths
between e1 and e2.3 Suppose joined relation r = r1 1 r2 1 . . . 1
rk is one path, then r is a potential mapping to r̂.

However, the entity mapping problem itself is hard. For example,
suppose that (Kobe Bryant, Phil Jackson) is an instance of the target
relation isCoachedBy, and let Freebase be the background on-
tology. There are more than 10 people named Phil Jackson in Free-
base, including a football player, an author and a film crewmember.

Human beings can easily pick up the basketball coach among
these 10 people because the environment (e.g. Kobe Bryant, coach)

3These paths may be easily generated using breadth first search.



disambiguates him. We can encode this intuition into our auto-
mated mapping algorithm by solving the entity mapping problem
jointly with relation mapping.

For training instance (ê1, ê2) of the target relation r̂(t̂1, t̂2), we
create

• Entity Mapping Candidates: we return two sets of entities
E1 = {. . . , e1,i, . . .} and E2 = {. . . , e2,j , . . .} found in
background ontology by using IR search techniques on the
names of ê1 and ê2.4.

• Type Mapping Candidates: the background types of elements
of E1 and E2 are type mapping candidates for t̂1 and t̂2, re-
spectively.

• Relation Mapping Candidates: r is the candidate for r̂ if
(e∗1, e

∗
2) ∈ r where e∗1 ∈ E1 and e∗2 ∈ E2.

2.4 Constructing Mappings Jointly
In order to define a probability distribution over the space of

possible joint mappings, we use Markov logic, a formalism which
combines the expressiveness of first-order logic with the semantics
of Markov networks [29]. Our model generates a set of rules with
predicates and their negation. Each rule has some weight. VELVET
encodes our interested mapping candidates into following predi-
cates:

r̂ ∼= r, ê ∼= e, t̂ ∼= t

r̂ ∼= r is true if the joined relation r maps to the target relation r̂.
The same definition applies for ê ∼= e and t̂ ∼= t.

An assignment to all predicates r̂ ∼= r, t̂ ∼= t and ê ∼= e repre-
sents a possible ontology mapping result. By finding the best as-
signment that maximizes the weighted sum of all satisfied rules, we
can create views for r̂(t̂1, t̂2) (i.e., the target relation and its type
constraints) as the union query:

∪r,t1,t2πt1 .name,t2 .name r (1)

where t̂1 ∼= t1, t̂2 ∼= t2 and r̂ ∼= r are true in the assignment.
Formally, let variables X represent truth assignments to all grounded

predicates. We then model the joint probability distribution as

P (X = x) =
1

Z
exp

 X
i

wini(x)

!
(2)

where i ranges over our set of rules, wi denotes the weight of rule
i, and ni(x) the number of true groundings of i under assignment
x, Z is the partition function Z =

P
x

`P
i wini(x)

´
. Our goal is

to find the MAP solution arg maxx P (X = x).
We introduce our Markov logic rules below, and in Section 3 we

present an inference algorithm to compute arg maxx P (X = x).

2.4.1 Rules in Markov Logic
Name similarity: Related relations in target and background on-

tologies may have similar names. We compare r̂ and r by first
tokenizing the relation names (splitting on camel-case transitions
and punctuation), and then checking if they have some words w in
common. Formally, we encode this as a rule

hasWord(r̂, w) ∧ hasWord(r, w)

∧candidate(r̂, r)⇒ r̂ ∼= r (3)

4For Freebase, one can find these entities with its search API
http://api.freebase.com/api/service/search?query=string

hasWord(r̂, w), hasWord(r, w) are variables being true when
word w appears in the surface string of r̂ or r respectively. For
example, word w =“coach” appears in both r̂ :isCoachedBy
and r : BasketballTeamHeadCoach, it suggests the later might be a
good mapping.

For simplicity, we will from now on assume that the predicate
candidate(r̂, r) is implicitly added as a pre-condition to every
rule.

The name similarity rule can be applied to type and entity in the
same way. Formally, they are

hasWord(ê, w) ∧ hasWord(e, w)⇒ ê ∼= e (4)

hasWord(t̂, w) ∧ hasWord(t, w)⇒ t̂ ∼= t (5)

Relation instance constraints: The goal of VELVET is to cre-
ate queries in the target ontology that contains entity pairs as good
training instances to train the target relation’s extractor. So it is na-
ture to expect the training instances of the target relation r̂ are also
the instances of the background joined relation r.

We write the above intuition as

(ê1, ê2) ∈ r̂ ∧ (e1, e2) ∈ r ∧ ê1 ∼= e1 ∧ ê2 ∼= e2

⇒r̂ ∼= r (6)

where (ê1, ê2) ∈ r̂ is true when (ê1, ê2) is an instances of the tar-
get relation r̂. Same notation is used in (e1, e2) ∈ r. By adding
ê1 ∼= e1 and ê2 ∼= e2, we ensure r̂ and r are dealing with the same
entity pair.

Sometimes the above intuitive rule suffers from a problems. Sup-
pose (ê1, ê2) ∈ r̂ and (e1, e2) ∈ r is true, the conjunctive normal
form of the Equation 6 is

ê1 6∼= e1 ∨ ê2 6∼= e2 ∨ r̂ ∼= r (7)

which means when r̂ ∼= r is false, the system tend to set at least
one of ê1 ∼= e1 and ê2 ∼= e2 to be false. This is problematic. For
example, when r̂ is stateHasCapital and r is locationContains; ê1
and e1 are Massachusetts in the target and background ontology; ê2
and e2 are Boston. (i.e. entity mapping is correct). Then, although
r̂ ∼= r is false, it is not correct to suggest ê1 6∼= e1 or ê2 6∼= e2

Another weakness of the intuitive rule is that it does not handle
overlapping relations. Suppose two joined relations r1, r2 contains
one training instance of r̂, the rule will lead to 2 formulas suggest-
ing us to map r into them both. Overlapped mapping results will
not help relation extraction, and moreover, these formulas overem-
phasize one instance against other instances covered by fewer back-
ground relations.

With the above observations, we refine the intuitive rule into the
following one:

ê1 ∼= e1 ∧ ê2 ∼= e2 ∧ (ê1, ê2) ∈ r̂
∧(e1, e2) ∈ r1 ∧ (e1, e2) ∈ r2 . . . ∧ (e1, e2) ∈ rk

∧ (r̂ ∼= r1 ∨ r̂ ∼= r2 . . . ∨ r̂ ∼= rk) (8)

We replace ⇒ with ∧ to avoid negative evidence on relation
mapping force entity mapping. We use disjunction∨ among r̂ ∼= ri

to avoid overlapping or overemphasizing the instance (ê1, ê2).
One may wonder why Equation 8 is not symmetric between r̂

and r. It is because usually the target ontology is small and its
relations will not overlap, i.e. (ê1, ê2) will not be an instance of r̂
and r̂′ that r̂ 6= r̂′.

Length of join: While joining binary relations over the back-
ground ontology greatly extends the representational ability of the
views, it may also add noise. The following rule encodes a prefer-



ence for views with fewer joins.

short(r)⇒ r̂ ∼= r (9)

Negative instances: While many relations only contain positive
examples, some ontologies embody the closed-world assumption
or otherwise present negative examples and these can be powerful.

If such a negative target example is actully present in a back-
ground view r, then it is unlikely that r̂ ∼= r corresponds to the
target.

(ê1, ê2) 6∈ r̂ ∧ (e1, e2) ∈ r ∧ ê1 ∼= e1 ∧ ê2 ∼= e2

⇒r̂ 6∼= r (10)

Unlike the Equation 8, we use⇒ because when r̂ ∼= r, (e1, e2) ∈ r
but (ê1, ê2) 6∈ r̂, it is very suspicious that the entity mapping is
good, i.e. one of ê1 ∼= e1 and ê2 ∼= e2 could be false.

Rank in search: If the background ontology provides an entity
search engine, the higher ranked returned entities are more likely
to be good mappings. The rule can be written as

topSearch(ê, e)⇒ ê ∼= e (11)

topSearch(ê, e) means e is the top returned entities by querying ê
on the search engine.

Type constraints: Suppose we already know the type of Phil
Jackson (e.g. coach) maps to basketballCoach in the background
ontology, we have more confidence to map Phil Jackson to an bas-
ketballCoach entity, rather than an author entity, even if two enti-
ties have the same name. Formally, the rule could be:

ê ∈ t̂ ∧ e ∈ t ∧ ê ∼= e ∧ t̂ ∼= t (12)

We use ê ∈ t̂ to denote the type of ê is t̂, and e ∈ t to denote the
type of e is t. The above rule says we gain the weight when entity
mapping ê ∼= e and type mapping t̂ ∼= t is consistent.

When the type of e and ê are unique in the ontologies, Equation
12 is good enough. But suppose the background entity e has several
type signatures, we should refine the rule into

ê ∼= e ∧ ê ∈ t̂ ∧ e ∈ t1 ∧ e ∈ t2 . . . ∧ e ∈ tk
∧
`
t̂ ∼= t1 ∨ t̂ ∼= t2 . . . ∨ t̂ ∼= tk

´
(13)

Mutual exclusion: For entity mapping, one can assume an entity
in the target ontology maps to only one entity in the background
ontology. We encode this as

ê ∼= e ∧ e 6= e′ ⇒ ê 6∼= e′ (14)

For type mapping and relation mapping, there is no explicit mu-
tual exclusion because VELVET may map these into a union of
background types and relations. But one must notice there are al-
ready implicit mutual exclusions in Equation 8 and Equation 13.
They help VELVET to avoid heavily overlapped mappings.

Ockham Razor: In practice, we prefer the assignment making
the fewest number of predictions. We try to avoid predictions be-
ing true only with very weak evidence. For this purpose, VELVET
adds rules with one negation predicate r̂ 6∼= r for relation candidate,
ê 6∼= e, t̂ 6∼= t for entity and type candidate.

3. MAP INFERENCE
We note that computing arg maxx P (X = x) is challenging:

1. There exist thousands of grounded predicates, making exact
inference intractable.

2. The dependencies represented by our rules break the joint
distribution into islands of high-probability states with no
paths between them.

For tractability we turn to approximate inference, and in partic-
ular to Gibbs sampling. In its basic version, Gibbs sampling gen-
erates a value for each variable in turn, conditioned on the other
variables. In general, the samples then approximate the joint distri-
bution.

In our scenario, however, the basic approach fails due to strong
dependencies between variables. For example, ê ∼= e ∧ ê 6∼= e′ and
ê ∼= e′ ∧ ê 6∼= e may both be possible states, but due to Rule 14
(mutual exclusion) Gibbs sampling cannot reach one state from the
other.

We thus apply Blocked Gibbs sampling, where we directly sam-
ple from the true joint distribution of a subset of interdependent
variables. For each entity ê in the target ontology, we create a block
that contains predicates ê ∼= e′ for all entity mapping candidates e′

of ê. We create similar blocks for each type t̂ and each relation r̂.
Since we are only interested in determining the MAP assignment

to X, but not its probability, we ignore partition function Z and
score samples by the unnormalized objective, keeping track of the
best sample found so far. For details see Algorithm 1.

Algorithm 1
Input: X: variables for all predicates r̂ ∼= r, ê ∼= e and t̂ ∼= t,
wi: weight for rule i,
ni(x): number of true groundings of rule i under assignment x,
x(0): initial assignment,
T : number of samples

Output: xbest ≈ arg maxP (X = x)

xbest ← x(0)

for j = 1 . . . T do
x(j) ← x(j−1)

for all objects ô in target ontology do
Xo ← {. . . , ô ∼= oi, . . .} where oi all candidates for ô
X−o ← X \Xo

x−o ← assignment to variables X−o under x(j)

for all assignments xo to Xo do
p(xo|x−o)← exp(

P
i wini(xo,x−o))P

x′o
exp(

P
i wini(x′o,x−o))

end for
x∗o ← sample from distribution p(Xo|x−o);
x(j) ← (x∗o,x−o)

if
P

i wini(xbest) <
P

i wini(x
(j)) then

xbest ← x(j);
end if

end for
end for
return xbest

The initial sample x(0) is obtained greedily by considering only
rules having one predicate, only considering atomic background
relations (no views), and mapping a target object to only a single
object in the background ontology.

4. RELATION EXTRACTION
After mapping the target ontology into the background knowl-

edge, VELVET applies knowledge-based weak supervision [16] to
heuristically match both the seed instances and the larger number
of instances of the mapped relations, to corresponding text. For
example, suppose that r(e1, e2) = Founded(Jobs,Apple) is
a ground tuple and s =“Steve Jobs founded Apple, Inc.” is a
sentence containing synonyms for both e1 = Jobs and e2 =
Apple, then s may be a natural language expression of the fact
that (e1, e2) ∈ r holds and could be a useful training example.



Unfortunately, this heuristic can often lead to noisy data and poor
extraction performance. To fix this problem, Riedel et al. [30] cast
weak supervision as a form of multi-instance learning, assuming
only that at least one of the sentences containing e1 and e2 are
expressing (e1, e2) ∈ r.

In our work, we use the publicly-available MultiR system [16]
which generalizes Riedel et al.’s method with a faster model that
also allows relations to overlap. For example, MultiR can consis-
tently handle the fact that Founded(Jobs, Apple) and
CEO-of(Jobs, Apple) are both true. MultiR uses a proba-
bilistic, graphical model that combines a sentence-level extraction
component with a simple, corpus-level component for aggregating
the individual facts.

MultiR’s extraction decisions are almost entirely driven by sentence-
level reasoning. However, by defining random aggregate-level vari-
ables Y for individual facts and tying them to the sentence-level
variables Z for extractions, a direct method for modeling weak su-
pervision is provided. The model is trained, so that the aggregate
variables Y match the facts in the database, treating the sentence-
level variables Z as hidden variables that can take any value, as
long as they produce the correct aggregate predictions.

During learning, MultiR uses a Perceptron-style additive param-
eter update scheme which has been modified to reason about hidden
variables, similar in style to the approaches of [41, 19]. To support
learning, MultiR performs a greedy approximation to a weighted,
edge-cover problem for inference.

5. EXPERIMENTAL SETUP
In our experiments, we would like to show that ontological smooth-

ing substantially improves the performance of an extractor. We
would like to show that this is true across many target relations,
each of which is only described by a small set of seed examples.
Furthermore, we would like to separately investigate the perfor-
mance of VELVET’s crucial ontology mapping component.

5.1 Target Ontologies
We test VELVET on two different target ontologies, each of which

makes extraction particularly challenging.
Nell Ontology: The Nell ontology [5], contains a total of 53

binary relations, each with a small number of positive seed exam-
ples. In addition, there also exist negative seed examples for many
of the relations. Relations are unary or binary, and the arguments
for binary relations are typed. In total, the seed instances cover 829
unique entities. There are 40 different entity types. The ontology
contains some inconsistencies. For example, “Yankee", “Yankees"
and “New York Yankees" appear as separate entities in different
relations, although they point to the same real-world entity.

IC Ontology: The IC ontology is derived from the IC dataset
which contains annotations of news articles that are relevant to
the intelligence domain. For example, the dataset includes articles
about terrorists and attacks. It is provided by the Linguistic Data
Consortium 5. In total, it covers annotations for 33 relations, but
due to limitations of MultiR, we are currently only able to handle
binary relations. We test VELVET for the 9 binary relations of the
corpus: attendedSchool, employs, hasBirthPlace, hasChild, hasC-
itizenship, hasSibling, hasSpouse, hasSubOrganization, isLedBy.
We collected instances for these relations from the annotated arti-
cles. We assumed gold coreference annotations, and replaced ar-
guments that consisted of pronouns or nominals with their named
entities. We allowed a maximum of 100 seed instances per rela-
tion. In total, the obtained IC ontology contains 388 positive seed

5LDC2010E07, the Machine Reading P1 IC Training Data V3.1

examples, but no negative examples. This ontology too contains
some inconsistencies, since the same named entities are sometimes
referred to by different names. Furthermore, many of the annotated
entities are less common ones.

5.2 Background Ontology
As our background ontology, we use Freebase [4] in its version 6

of May 2011. Freebase is ideally suited as a background ontology
for various reasons:

• Freebase contains more than 3 million entities and tens of
thousands of relations across a large number of domains.
This makes it likely that there exists relevant information for
virtually any target ontology.

• Freebase is organized as a database of triples of the form
<arg1, relation, arg2>. This reduces the amount
of ambiguity and enables easy processing.

• Freebase often contains synonyms for entities. Synonyms
enable greater recall when heuristically matching instances
to text.

• Freebase ranks candidate entities in its keyword search API.
We use this ranking for identifying initial candidate map-
pings of entities in our target ontologies (our algorithm re-
duces the mapping error by a further 30%).

Despite its advantages, Freebase also poses important challenges:
It makes heavy use of n:m helper relations in order to accurately
represent its vast amount of knowledge. Even simple facts, such
as a player’s coach, are often not directly available, but can only be
obtained by following a long chain of links, and merging the results
of several relations. Furthermore, there exist redundant relations, a
large number of irrelevant entities, while many important facts are
missing.

5.3 Text Corpora
We evaluate VELVET on two text corpora, the New York Times

and Wikipedia. The New York Times corpus [31] contains over
1.8 million news articles published between January 1987 and June
2007. The Wikipedia corpus covers more than 3.6 million encyclo-
pedic articles in English language from May 2011.

5.4 Parameter Settings
The weights for VELVET’s set of rules are currently set as fol-

lows: All weights are set to 1, except the weight for rule 10 and 14
which is set to 100. We use a high weight for that rule since we
would not like to let it be violated. In future work, we would like
to automatically learn weights for VELVET’s set of rules.

To improve efficiency, we also limit the size of join compu-
tations 7 For example, the result set of personBornInCountry 1

countryHasCity lists for each person all cities in her home country.

5.5 Overall Performance Metrics
To evaluate overall system performance, we run the full system

which includes mapping the target ontology to the background on-
tology, generating training data using weak supervision, and learn-
ing an extractor.

Evaluating the quality of the learned extractor is challenging,
however, since less than 1% of sentences in our large text corpora
6http://download.freebase.com/datadumps/latest/freebase-
datadump-quadruples.tsv.bz2
7In particular, we remove candidate joins, if there exists a setting
of the join attributes that yields more than 100× 100 join tuples.



contain relations relevant to our target ontologies. We therefore
compute two approximate metrics:

Mpre-rec: For each relation in our target ontologies we manually
create a view in our background ontology using the select, project,
join, and union operators. We create that relation such that it most
accurately matches the meaning of the corresponding relation in the
target ontology. We then collect all instances of the newly created
relation in the background ontology. Let this set be B. We next
filter this set, keeping only those instances for which there exists a
sentence in our text corpus c that contains both arguments. Let us
denote this filtered set by G̃c ⊆ B. We use G̃c as an approximation
to Gc, the set of facts contained in one of our text corpora c. To es-
timate precision and recall of our extractor, we simply compare its
set of extractions Ec on corpus c to G̃c. In practice, this approach
provides a very conservative estimate of the quality of our extrac-
tor, since many facts in G̃c are not contained in our text corpora.
We compute precision and recall curves by varying the confidence
threshold of our extractor.

Mtop-K: To evaluate relation-specific performance of VELVET,
we manually check the top-K extractions, for which our extractor
is most confident. In our experiments, we set K = 10. To verify
an extraction, we manually check all sentences which contain both
arguments.

To ensure that we are testing the quality of the learned extractor
independently of the entity pairs used during training, we further
require that not only the sentences, but also none of the entity pairs
at test time has been seen at training time.

As a baseline, we train the MultiR extractor using only the seed
examples obtained from the target ontology, but without leveraging
the mapping to our background ontology.

5.6 Ontology Mapping Metric
The ontology mapping component is VELVET’s most important

one, so we are also interested in evaluating its performance inde-
pendently from relation extraction.

Monto: We investigate precision and recall for entity mapping,
type mapping, and relation mapping by manually validating the in-
dividual decisions. Note that our algorithm does not always return a
mapping element in the background ontology for an element in the
target ontology. This often makes sense, since Freebase, although
large, does not cover all entities, types, or relations.

As a baseline, we use a naive ontology mapper which does not
perform joint inference, but merely uses Freebase’s internal search
API to map objects in the target ontology to objects in Freebase.

6. EXPERIMENTS
We first report on overall relation extraction performance, and

then investigate relation-specific results. Finally, we report detailed
results of VELVET’s ontology mapping component.

6.1 Overall Performance

6.1.1 Overall Extraction Quality
Figure 4 shows precision and recall curves for our two target on-

tologies, Nell and IC, as well as our two text corpora, the New York
Times and Wikipedia. Note that the graphs have been generated us-
ing our conservative Mpre-rec metric, so actual precision and recall
may be higher. VELVET reaches substantially higher precision and
recall than our baseline, which uses the extraction algorithm but
without leveraging the mapping to our background ontology. This
is consistently true for all tested combinations of target ontologies
and text corpora.

Relation Precision at top 10
NYT Wikipedia

acquired 80% 80%
actorStarredInMovie 70% 90%
athletePlaysForTeam 100% 100%

bookWriter 30% 60%
cityLocatedInCountry 100% 80%

competesWith 90% 100%
hasOfficeInCountry 80% 90%

headquarteredIn 70% 100%
teamPlaysInLeague 60% 100%

teamWonTrophy 60% 100%

Table 1: Precision of the ten most confident predictions by VELVET
for ten Nell relations. VELVET reaches good performance across
relations.

The poor performance of our baseline may seem surprising, but
can easily be explained: There are only few seed instances for each
relation in the target ontology making it difficult to learn an extrac-
tor. Furthermore, not every seed instance in the target ontologies
matches to a sentence in the text corpus, so that the available num-
ber of training sentences may be even smaller, for some relations
less than 10. In contrast, ontological smoothing generates thou-
sands of new training instances for our relation extractors.

Comparing the two target ontologies, we observe that our base-
line is higher for the IC relations than the Nell relations. This is
likely due to the fact that on average the IC ontology has more
seed instances (about 43) than Nell relations (about 14) per rela-
tion. Comparing the two text corpora, we notice that VELVETś
performance on Wikipedia is substantially higher than on the New
York Times. One reason is that Wikipedia contains more factual
knowledge, and more stylized and simpler language which simpli-
fies the extraction task.

Perhaps surprising are the dips in precision in the low recall
range, for example in the case of IC and Wikipedia. We manu-
ally checked the ten most confident extractions and found that they
were all marked as incorrect by our approximate Mpre-rec metric, but
actually all represented correct extractions of facts which were sim-
ply not present in Freebase. We therefore believe that if we were
able to compare to the true facts contained in our text corpus this
dip would be removed.

6.1.2 Relation-specific Extraction Quality
To investigate relation-specific performance, we randomly picked

ten relations of the Nell ontology and manually checked the top ten
most confident extractions returned by our system (Mtop-K).

Table 1 presents the precision for each Nell relation and each text
corpus. The majority of relations reach high precision at top-10:
for the New York Times corpus the median is 80%, for Wikipedia
it is 90%; the means are 74% and 91%, respectively. The results
show that ontological smoothing makes it possible to learn accurate
extractors from only a small number of seed examples, across many
relations.

6.2 Ontology Mapping
Finally, we analyze the performance of our ontology mapping

component in more detail. In particular, we are interested in know-
ing if our approach, which jointly maps entities, types, and rela-
tions, outperforms a baseline which relies on Freebase’s internal
search API and makes each mapping decision separately.
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Figure 4: Approximate precision and recall of VELVET and a baseline that uses only the seed examples of the target ontology for knowledge-
based weak supervision. VELVET consistently improves performance for two different target ontologies, Nell and IC, and two different text
corpora, New York Times and Wikipedia.

We note that solving the mapping problem required finding a
joint assignment to a considerable number of variables: For Nell,
we computed truth values for 3055 entity mapping candidates, 252
type mapping candidates, and 729 relation mapping candidates.
For IC, these are 1552, 130, and 256, respectively.

We then manually labeled 707 mappings of entities in Nell to en-
tities in Freebase (Monto). VELVET reaches a precision of 92.79%,
compared to 88.5% for our baseline. This corresponds to a reduc-
tion of 30% of mapping errors. Reducing mapping errors is impor-
tant, since it leads to higher quality data for our weakly supervised
extractors.

Table 2 shows the results of mapping five Nell relations to Free-
base. VELVET is able to accurately recover relations composed by
multiple select, project, join, and union operations.

For the IC target ontology, VELVET correctly maps 8 out of 9 re-
lations. The results for the remaining relation hasSubOrganization
are partially correct. The results show that our ontology mapping
algorithm returns few incorrect mappings, thus ensuring the robust-
ness of the overall system.

7. RELATED WORK
While Section 2.1 discussed previous approaches to ontology

mapping, we now review work on using background knowledge
to improve extractor learning and the exploiting ontologies for re-
lation extraction.

7.1 Extraction with Background Knowledge
It has long been recognized that background knowledge can com-

pensate for scare training data in machine learning. One such method
is the use of constraints. Chang et al. [9] propose a technique for in-
jecting prior knowledge into a semi-supervised learning algorithm
as soft constraints. Constraints on two extraction tasks include the
feature labels, i.e., the relevance of words to particular labels, and
also the number of times a label may appear.

More recent techniques incorporate background knowledge as
expectations on the posterior distributions of an extractor model.
Bellare & McCallum [3] obtain a 35% error reduction on a citation
extraction task by adding expectations over how citation texts may
align to a citation database and how a few features are highly in-
dicative of a particular label. Chen et al. [10] propose a technique



Target Relation Mapped Relation
acquired π1.name,2.name(businessOperation1 1 organizationChild 1 organizationRelationshipChild 1 businessOperation2)

∪ π3.name,4.name(businessOperation3 1 organizationCompaniesAcquired 1 businessAcquisitionCompanyAcquired 1 businessOperation4)

athleteCoach π1.name,2.name(baseballPlayer1 1 baseballCurrentTeam 1 baseballRosterPosTeam 1 baseballManager 1 coach2)
∪ π3.name,4.name(footballPlayer3 1 footballTeam 1 footballRosterPosTeam 1 footballTeamHeadCoach 1 footballCoach4)
∪ π5.name,6.name(basketballPlayer5 1 drafted 1 draftedTeam 1 basketballTeamCoach 1 coach6)

bookWriter π1.name,2.name(book1 1 bookWrittenWorkAuthor 1 author2)
∪ π3.name,4.name(book3 1 winAward 1 awardWinner 1 author4)

headquarteredIn π1.name,2.name(businessOperation1 1 organizationHeadquarters 1 locationMailingAddressCitytown 1 citytown2)

stadiumLocInCity π1.name,2.name(sportsFacility1 1 locationContainedby 1 cityTown2)
∪ π3.name,4.name(olympicVenue3 1 locationContainedby 1 cityTown4)

Table 2: VELVET Ontology mapping result on 5 Nell relations, with project, join, and union operators.

for relation discovery which uses expectations over the proportion
of relation mentions matching certain syntactic patterns, the num-
ber of times a relation is instantiated, and the number of relation
instances a single word can indicate.

While these approaches typically assume a small amounts of
background knowledge supplied by a user, other approaches have
tried to leverage existing resources as background knowledge. Steven-
son & Greenwood [32] use WordNet to retrieve semantic relation-
ships between lexical items in order to learn more general infor-
mation extraction patterns. Cohen and Sarawagi [11] describe a
technique for incorporating external dictionaries in discriminative
sequence taggers. Other works by Wang et al. [35] and Hoffmann
et al. [17] propose techniques to leverage the vast amount of struc-
tured lists on Web pages, in order to learn extractors with enhanced
generalization ability. Both approaches apply a semi-supervised
algorithm to learn extractor-specific lexicons.

VELVET is different from these approaches because it automat-
ically generates the mapping to its background ontology, before
applying semi-supervised techniques.

7.2 Using Ontologies for Extraction
A great deal of research has looked at automatically populating

ontologies through extraction. A popular approach is by distant su-
pervision, where existing objects in an ontology are heuristically
aligned to a large text corpus, in order to create training data for an
extractor. For example, Wu & Weld [39] and Hoffmann et al. [17]
use Wikipedia‘s infobox ontology for distant supervision; Mintz
et al. [24], Riedel et al. [30], and Hoffmann et al. [16] use Free-
base.

Some work has proposed to leverage the hierarchical structure of
an ontology for smoothing parameter estimates of a learned model.
McCallum et al. [21] call this method shrinkage and demonstrate
a 29% error reduction in a text classification task. Wu et al. [38]
apply shrinkage to relation extraction for Wikipedia’s infobox on-
tology, again showing large improvements. In this case, the hierar-
chical structure was not directly available, first necessitating onto-
logical refinement [40].

Another direction applies reasoning over existing and new knowl-
edge in order to disambiguate words and learn extraction patterns.
Sofie [33] and Prospera [26] jointly perform pattern matching, word
sense disambiguation and ontological reasoning in a unified model
using weighted MaxSAT for inference. Similarly, Nell [6] couples
the semi-supervised training of many extractors for different cate-
gories and relations through a variety of constraints.

Wimalasuriya & Dou [37] propose using multiple ontologies for
extraction. Their system takes a mapping between the ontologies
as input, and combines the output from extractors which have been

learned separately learned on the ontologies.
VELVET differs from these approaches: The relations VELVET

is able to extract are not limited to those in its background ontology.
Instead, it automatically creates new relations by composing select,
project, join, and union operations.

8. CONCLUSION
Relation extraction has the potential to enable improved search

and question-answering applications by transforming information
encoded in natural language on the Web into structured form. Un-
fortunately, the most successful techniques for relation extraction
are based on supervised learning and require hundreds or thousands
of training examples; these are expensive and time-consuming to
produce. This paper presents ontological smoothing, a novel method
for learning relational extractors, which requires only minimal su-
pervision. Our approach is based on a new ontology-mapping al-
gorithm, which uses probabilistic joint inference over schema- and
instance-based features to search the space of views defined using
SQL selection, projection, join and union operators. Experiments
demonstrate the method’s promise, improving both precision and
recall. Our VELVET system learned significantly better extractors
for 61 relations in two target ontologies, by exploiting Freebase as
a background knowledge source.
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