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A Brief Diversion

Leslie Lamport: “How to Write a Proof”: DEC tech report, Feb 14, 1993

Abstract:  A method of writing proofs is proposed that makes it much harder 

to prove things that are not true.  The method, based on hierarchical 

structuring, is simple and practical.

“Anecdotal evidence suggests that as many as a third of all papers 

published in mathematical journals contain mistakes – not just minor errors, 

but incorrect theorems and proofs.”



Lagrange Multipliers:

An Overview, and Some Examples



Lagrange the Mathematician

• Born 1736 in Turin, one of two of 11 to survive infancy

• “Responsible for much fine mathematics published under the names

of other mathematicians”

• Believed that a mathematician has not thoroughly understood his 

own work till he has made it so clear that he can go out and explain

it to the first person he meets on the street

• Worked on mechanics, calculus, the calculus of variations

astronomy, probability, group theory, and number theory

• At least partly responsible for the choice of base 10 for the metric

system, rather than 12

• Supported by Euler and d’Alembert, financed by Frederick and Louis

XIV, close to Lavoisier, Marie Antoinette



An indirect approach can be easier
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example, polynomial constraints in several variables)



One equality constraint
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One equality constraint, cont.
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Multiple equality constraints

( ) 0, 1, , .

( ) ( ).

,

 constraints:    

Define gradients:    
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Puzzle: why not multiple Lagrangians?



One inequality constraint
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Multiple inequality constraints

( ) 0, 0i i i
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Suppose that at the solution  

Then removing      makes no difference, and we must drop   

from the sum in 

Equivalently we can set 

Hence, always impose 



A simple example
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Another simple example

c

Given a parallelogram whose sidelengths you can choose but

whose perimeter  is fixed - what shape has the largest area?
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Maximize  subject to 

Again,  not explicitly needed: hence “method of

undetermined multipliers”



Simple exercises
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Puzzle: what coefficients maximize a convex sum of fixed numbers?

Puzzle: minimize  subject to 

Puzzle: maximize  subject to  and  (hint: use )
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Resource Allocation

Distortion

Rate

inNumber of widgets 

( )

Cost

i ic n

Fiber has       bit errors per second, and sends              bits total, per second.  We 
wish to maximize the bit rate at a fixed distortion rate:

Puzzle: Does this work for economics, too?



A variational problem

An isoperimetric problem: find the curve of fixed length  and

fixed endpoints {a,b} that encloses maximum area above [a,b].
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…straight line, or arc of circle.



Which univariate distribution has max entropy?

( ) log ( )f x f x dx
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      Impose  integrate w.r.t  

→ f must be Gaussian!



Which univariate distribution has max 

entropy?

Puzzle: I thought the uniform distribution has max entropy.

What’s going on?

Puzzle: What distribution do you get if you fix the mean,

but not the variance?

Puzzle: What distribution do you get if you fix only the 

function’s support?



Max Entropy for Discrete Distribn + Linear 

Constraints

: 1, 0

 

Have discrete distribution 

Suppose you also have known linear constraints:  

but you are maximally uncertain about everything else.  So want max 

entropy distribution subject to
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→ logistic regression!



Are Lagrange Multipliers Really That Common?

Yes.

• Most flavors of Support Vector Machines

• Principal Component Analysis

• Canonical Correlation Analysis

• Locally Linear Embedding

• Laplacian Eigenmaps

• … 

For example:



Basic Concepts in

Functional Analysis:

A Brief Tour

of Hilbert spaces, Norms,

and All That



What is a Field?

{ , , }: , { , } F F   a set operations

{ , } is an Abelian group with identity denoted by 0F 

{ 0, }F  is an Abelian group with identity denoted by 1

( ) { , , }x y z x y x z x y z F       

A field generalizes the notion of arithmetic on reals.



Field : Examples
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How Many Fields Are There?

p

2

Actually infinitely many - e.g. ,  prime.

However, can define an 'ordering;' for fields (like <, =, > for ).

,  can be ordered;  and  cannot; in fact all finite fields

cannot be ordered.
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red fields, 'supremum' and 'infimum' can be defined.

An ordered field is 'complete' iff every nonempty subset of  

that has an upper bound in  also has a supremum in 

 is not complete, but  is.  In
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Q R  fact: every complete, ordered

field is isomorphic to  !R

However, can define an ordering for some fields.



What is a Vector Space?
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A vector space is a nonempty set  a field  and operations 'addition'
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nA vector space generalizes the notion of vectors in nR



Vector Spaces: Field Matters!
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Vector Spaces: More Examples
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(2)  (complex  by  matrices), over the field ;mnM m n

(1) Functions, whose range is a vector space, also
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What is an Inner Product?
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The inner product generalizes the notion of dot product



Inner Product: Examples
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Inner Product: Trace
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Inner Product is General



What is a Norm?
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Seminorm splits the space
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Norm Generalizes Length



What is convexity?
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When is a sphere a square?
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Interesting... each ball looks convex



When is a sphere a cross?
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In this context, never.  The "  norm" (count the number of

nonzero elements) is not a norm (for  over  or ).
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All norms are convex functions
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Open, Closed, Compact
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Making your own norm

In fact, in real finite dimensional spaces, any symmetric,

compact, convex region centered on the origin defines

a norm (as the unit ball for that norm):



0Rescuing : the Hamming norml
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Hamming norm, cont.
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Puzzle:  (  - how can this be correct?

Puzzle: What is the subtraction operation, in ?

Puzzle: What is the Hamming distance ?
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When does a norm come from an inner product?
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Every inner product defines a norm: 

Does every norm define an inner product?  If so, for real vector spaces,

No!  A necessary and sufficient condition for a norm to correspond t
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(Jordan and von Neumann, 1935)
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Lp norms, inner products
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Lp norms, inner products cont.
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Maybe we could find some other inner product that works for 

all ?

No: if a norm is derivable from an inner product (over , then 
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Lp norms, inner products cont.

We’d like:
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1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

p



norm on Rn has no inner product 
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What is a Cauchy Sequence?
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Key idea: the Cauchy sequence 

allows us to define notions of 

convergence without ever 

leaving the space



Cauchy sequences, cont.

Every convergent sequence is a Cauchy sequence.

Not every Cauchy sequence is a convergent sequence.

Note Cauchy sequence requires choice of norm!
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The notion of completeness

1 .

A normed vector space  is called  if every Cauchy

sequence in  converges to an element of .
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tains all its limit points."

It is always possible to 'complete' a non-complete space.



Hilbert and Banach spaces

A Hilbert space is a complete inner product space.

Normed Inner Product

Banach Hilbert

[ , ] : ,C a b x y xy   

[0,1]Polynomials on  with max norm



Hilbert and Banach spaces, cont.
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How many kinds of Hilbert spaces are there?

1 2 1,2
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How many kinds of Hilbert spaces are there?

2 2[ , ]E.g. ,  are separable Hilbert spaces.l L a b
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Let  be separable:

          If  is infinite dimensional, then it is isomorphic to 

          If  has dimension  then it is is
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A Hilbert space H is called separable if and only if it admits a 

countable orthonormal basis.   (So, all finite dimensional 

Hilbert spaces are separable).



The Riesz Representation Theorem
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The Riesz Representation Theorem
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Riesz Representation Theorem, cont.
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1 1

1: ,1 ( ).1 ( ) ( )

?

1

sup | ( ) | sup | ( ) | sup | ( ) | : ( ) 1

1/ ,

Can we find ?    Try   

Check:   

The sup is found by choosing 

b b

a a

b

a

b b b

x x

a a a

x x x x t dt x t dt f x

f x

x b a

f f x x t dt

x b a

x t dt x t dt

a

 

    



  

  
    

  

  

 



  

, 0  otherwise.

f

x

b a

t b

 









A Brief Look Ahead

The Riesz representation theorem can be used to show that any Hilbert 

space for which the evaluation functional is continuous, is a Reproducing 

Kernel Hilbert Space: there exists K such that

In particular:

Representer Theorem (Kimeldorf and Wahba, 1971; Schölkopf and 

Smola, 2002): Let                     be a strictly monotonic increasing function 

and let    be an arbitrary loss function.  Then each minimizer              of 

the “regularized risk”   

admits a representation of the form



What is a metric space?

( , )

( , ) ,

( , ) ( , ) ;

For any set , let  be a function (with range in ) defined on

the set  of all ordered pairs  of members of  satisfying:

(i)  is a finite real number for every pair  of 

(i

E x y

E E x y E

x y x y E E









( , ) 0 ;

( , ) ( , ) ( , ), { , , } .

:

i) 

(iii) 

Such a function  is called a  on ; a set  with

metric  is called a .  Different choices of m

metric

metric sp etric on 

give different me

ace

t

x y x y

y z x y x z x y z E

E E E E

E



  





  

  

 

ric spaces.

( , ) 0?Puzzle: What about x y 

( , ) ( , )?Puzzle: How about x y y x 

( , ) ( , ) ( , )?Puzzle: Where's the triangle inequality: x y x z z y   



Metric versus norm

( , )Every normed vector space is a metric space: define 

But metric spaces are much more general:

x y x y 

Normed spaces

Metric spaces

2.2 1.0

3.4

4.5 3.1

6.0

1.1 0.5

5.9

1.1 6.4

2.3

9.6

19.5d 

( ( )) ( )Metrics extend "continuity":  f B x B f x 



Some metrics on function spaces

  
1
2

[ , ]

1

2

2

:[ , ]

, , ( , ) sup ( ) ( )

[ , ] : ( , ) ( ) ( ) ,

( , ) ( ) ( ( , ) ?) ,

Let  be the set of all bounded functions .  For two 

points       is a metric.

Let  be   

Sup

x a b

b

a
p

a

b

A f a b

f g A f g f x g x

A C a b f g f x g x dx

f g f x g x dx f g







 



 



 





R.

 ( ) ( )
, [ , ]

[ , ] :

( , ) sup ( ) ( ) , '( ) '( ) , , ( ) ( )

pose instead   thenr

r r
r x a b

A C a b

f g f x g x f x g x f x g x 



   



Topological Spaces

 , :

,

,

A    is a non-empty set, a fixed collection

of subsets of  satisfying

(1)  ,

(2)  Intersection of any two sets in is in ,

(3)  Unio

topological space

n of any collection of sets in  is

T A A

A

A





S S a

S

S i S

S

 1 1

,

.

,

 in .

 is called a topology for  and the members of  are called the 

 of 

Topological spaces are more general than metric spaces!

Topological spaces extend "continuity":  Given  an

open

sets

A

T

T A 1

S.

S S

S  2 2

1
1 2 2 1

,

: , ( )

d  and a

map   is "continuous" if 

T A

A A U A U A   



   

2S

..

Continuity, convergence, connectedness… without distance!



Putting Spaces in their Places…

Hilbert spaces

Banach spaces

Normed vector spaces

Metric spaces

Topological spaces

 , :   the "indiscrete" topology on A A S



~ The Middle ~

Thanks!


