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Abstract

The ability to simultaneouslylocalize a robot and ac-
curatelymapits surroundings is consideredby many to
beakey prerequisiteof truly autonomousrobots.How-
ever, few approaches to this problemscaleup to handle
the very largenumber of landmarks presentin realen-
vironments.Kalmanfilter-basedalgorithms,for exam-
ple, requiretime quadratic in thenumberof landmarks
to incorporateeachsensorobservation. This paperwill
presentFastSLAM, an algorithm that recursively esti-
matesthefull posteriordistributionover robotposeand
landmarklocations,yet scaleslogarithmicallywith the
numberof landmarksin the map. This algorithm is
basedon a novel, exact factorizationof the posterior
into aproductof conditionallandmarkdistributionsand
a distribution over robotpaths.Thealgorithmhasbeen
runsuccessfullyonasmany as50,000landmarks,envi-
ronmentsfar beyond thereachof previous approaches.
Experimentalresultsdemonstratethe advantages and
limitations of the FastSLAM algorithmon both simu-
latedandreal-world data.

Intr oduction

Theproblemof simultaneouslocalizationandmapping,also
known asSLAM, hasattractedimmenseattentionin themo-
bile robotics literature. SLAM addressesthe problem of
building a mapof anenvironment from a sequenceof land-
mark measurementsobtained from a moving robot. Since
robot motionis subjectto error, themapping problemneces-
sarilyinducesarobotlocalizationproblem—hencethename
SLAM. The ability to simultaneously localizea robot and
accuratelymapits environment is consideredby many to be
a key prerequisiteof truly autonomousrobots [3, 7, 15].

The dominant approachto the SLAM problemwas in-
troduced in a seminalpaper by Smith, Self, and Cheese-
man [14]. This paperproposedthe use of an extended
Kalmanfilter (EKF) for incrementally estimatingtheposte-
rior distribution over robot posealongwith thepositionsof
the landmarks. In the last decade,this approachhasfound
widespreadacceptancein field robotics, asa recenttutorial
paper[2] documents.Recentresearchhasfocusedon scal-
ing this approachto larger environments with more thana
few hundredlandmarks[9, 6, 8] andto algorithmsfor han-
dling dataassociationproblems[16].

A key limitationof EKF-basedapproachesis theircompu-
tational complexity. Sensorupdatesrequiretime quadratic
in thenumberof landmarks

�
to compute. This complex-

ity stemsfromthefactthatthecovariancematrixmaintained
by theKalmanfiltershas��� ����� elements,all of whichmust
beupdatedeven if just a singlelandmark is observed. The
quadratic complexity limits the number of landmarks that
canbe handled by this approachto only a few hundred—
whereasnatural environment modelsfrequentlycontainmil-
lions of features. This shortcoming haslong beenrecog-
nizedby theresearchcommunity [6, 8, 13].

In this paperwe approach the SLAM problem from a
Bayesianpoint of view. Figure 1 illustratesa generative
probabilisticmodel (dynamic Bayesnetwork) thatunderlies
therich corpus of SLAM literature. In particular, therobot
pose,denoted �
	��� � ������������ , evolve over time asa function
of therobot controls, denoted ��	�������������� . Eachof theland-
markmeasurements,denoted ��	�������������� , arefunctionsof the
position ��� of thelandmarksmeasured( � ), andof therobot
poseat thetime themeasurementwastaken.Fromthis dia-
gramit is evidentthattheSLAM problemexhibits important
conditional independences.In particular, knowledgeof the
robot’spath ������ 	 ������� renders theindividual landmarkmea-
surementsindependent. So for example, if an oracle pro-
vided us with the exact path of the robot, the problem of
determiningthelandmark locations could bedecoupledinto�

independentestimationproblems,onefor eachlandmark.

Basedonthisobservation,thispaperdescribesanefficient
SLAM algorithm calledFastSLAM. FastSLAMdecomposes
theSLAM problem into a robot localizationproblem,anda
collection of landmark estimationproblemsthat arecondi-
tionedon therobotposeestimate.This factoredrepresenta-
tion is exact, dueto thenatural conditional independencesin
theSLAM problem.FastSLAMusesamodified particlefil-
ter for estimatingaposteriorover robot paths.Eachparticle
possesses

�
Kalmanfilters that estimatethe

�
landmark

locations conditioned on the path estimate. The resulting
algorithm is an instanceof the Rao-Blackwellizedparticle
filter [12, 5]. A naiveimplementationof this idealeadsto an
algorithm thatrequires ���! �"� time,where is thenum-
berof particlesin theparticlefilter and

�
is thenumberof

landmarks. We develop a tree-baseddatastructure that re-
ducestherunning timeof FastSLAMto ���# %$'&
( �"� , mak-
ing it significantlyfasterthanexistingEKF-basedSLAM al-
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Figure 1: The SLAM problem: The robot moves from pose 3+4
througha sequenceof controls, 5648795;:�78<+<8< . As it moves, it mea-
suresnearbylandmarks. At time =?>A@ , it observeslandmarkB 4 out
of two landmarks,C+=ED6F8=EG 4 G�H;I�B�J�K . The measurement is denotedL 4 (rangeandbearing).At time =M>N@ , it observestheotherland-
mark, B : , andattime =?>�O , it observes B 4 again.TheSLAM prob-
lem is concerned with estimatingthe locationsof the landmarks
andthe robot’s pathfrom thecontrols 5 andthe measurements L .
Thegrayshadingillustratesa conditionalindependencerelation.

gorithms. We alsoextendtheFastSLAMalgorithm to situ-
ationswith unknown dataassociationandunknown number
of landmarks,showing thatourapproachcanbeextendedto
to full rangeof SLAM problemsdiscussedin theliterature.

Experimental resultsusinga physical robot anda robot
simulatorillustrate that the FastSLAM algorithm canhan-
dle ordersof magnitude more landmarks thanpresentday
approaches. We alsofind that in certainsituations,an in-
creasednumber of landmarks

�
leadsto a mild reduction

of the number of particles  neededto generate accurate
maps—whereasin othersthe number of particlesrequired
for accuratemapping maybeprohibitively large.

SLAM ProblemDefinition
The SLAM problem, asdefinedin the rich body of litera-
tureon SLAM, is bestdescribedasa probabilistic Markov
chain. The robot’s poseat time P will be denoted �;� . For
robots operating on theplane—which is thecasein all our
experiments—posesarecomprisedof a robot’s Q - R coordi-
natein theplaneandits heading direction.

Posesevolve according to a probabilistic law, often re-
ferredto asprobabilistic motion model:S �!���UT����8�8���EVW	 � (1)

Thus, ��� is a probabilistic function of the robot control �M�
andthepreviouspose���EVX	 . In mobilerobotics, themotion
model isusuallyatime-invariantprobabilisticgeneralization
of robot kinematics[1].

The robot’s environment possesses
�

immobile land-
marks. Eachlandmark is characterizedby its location in
space,denoted � � for ��Y[Z
��������� � . Without lossof gen-
erality, we will think of landmarks aspointsin theplane, so
thatlocationsarespecifiedby two numerical values.

To mapits environment, the robot cansenselandmarks.
For example, it maybeableto measurerangeandbearingto
a landmark, relative to its own local coordinateframe. The
measurementat time P will bedenoted�\� . While robots can
often sensemore thanone landmark at a time, we follow
commonplacenotationby assumingthat sensormeasure-
mentscorrespondto exactlyonelandmark[2]. Thisconven-

tion is adopted for mathematical convenience. It posesno
restriction, asmultiple landmark sightingsat a singletime
stepcaneasilybeprocessedsequentially.

Sensormeasurementsaregovernedby aprobabilisticlaw,
oftenreferredto asthemeasurement model:S �]� � T�� � �^���^_ � � (2)

Here �`Yba��
	����������^���\c is the set of all landmarks, and_X�edfa
Z
��������� � c is the index of the landmark perceived at
time P . For example, in Figure1, we have _g	hYiZ
�^_ � Ykj ,
and _?lmYnZ , since the robot first observes landmark ��	 ,
thenlandmark � � , andfinally landmark ��	 for asecondtime.
Many measurementmodels in theliteratureassumethatthe
robot can measurerangeand bearing to landmarks, con-
foundedby measurement noise. The variable _ � is often
referredto ascorrespondence. Most theoretical work in the
literature assumesknowledgeof thecorrespondenceor, put
differently, that landmarksareuniquely identifiable. Practi-
cal implementationsusemaximumlikelihoodestimatorsfor
estimatingthe correspondence on-the-fly, which work well
if landmarks arespacedsufficiently far apart. In largeparts
of thispaper wewill simplyassumethatlandmarksareiden-
tifiable,but we will alsodiscussanextensionthatestimates
thecorrespondencesfrom data.

We arenow readyto formulate theSLAM problem. The
SLAM problem,in its mostgeneral form, is theproblemof
determining thelocationof all landmarks � androbot poses� � from measurements � � Yo� 	 ���������� � andcontrols � � Y� 	 ���������^� � . In probabilistic terms,this is expressedby the
following posterior:S �!� � �^�pT�� � ��� � � (3)

Herewe usethe superscript � to refer to a set of variable
from time1 to time P . If thecorrespondencesareknown, the
SLAM problemis simpler:S �!� � �^�pT�� � ��� � �^_ � � (4)

As argued in the introductionto this article, all individual
landmarkestimationproblemsareindependentif oneknew
therobot’spath� � andthecorrespondencevariables _ � . This
conditional independenceis the basisof the FastSLAMal-
gorithm describedin thenext section.

FastSLAM with Known Corr espondences
We begin our considerationwith the important casewhere
thecorrespondences _ � Yi_ 	 ���������^_ � areknown, andso is
thenumberof landmarks

�
observedthusfar.

Factored Representation
Theconditional independencepropertyof theSLAM prob-
lemimpliesthattheposterior(4) canbefactoredasfollows:S �!� � �^�pT�� � ��� � �^_ � �Y S �!� � T�� � �^� � �^_ � ��q � S �]���rT�� � �� � �^� � �^_ � � (5)

Putverbally, theproblemcanbedecomposedinto
�ts Z esti-

mationproblems,oneproblemof estimatingaposterior over
robot paths� � , and

�
problemsof estimatingthe locations

of the
�

landmarks conditionedon thepathestimate.This
factorization is exact and always applicablein the SLAM



problem—but to our knowledgehasnever beenutilized be-
fore in thecontext of SLAM.

TheFastSLAMalgorithm implementsthepathestimatorS �#� � T�� � ��� � �^_ � � usinga modifiedparticlefilter [4]. As we
argue further below, this filter canefficiently samplefrom
this space,providing a good approximation of the poste-
rior even under non-linear motion kinematics. The land-
mark poseestimatorsS �u� � Tv� � ��� � �^� � ��_ � � are realizedby
Kalmanfilters,usingseparatefiltersfor differentlandmarks.
Becausethelandmarkestimatesareconditionedonthepath
estimate,eachparticlein the particlefilter hasits own, lo-
cal landmark estimates.Thus, for  particlesand

�
land-

marks,therewill bea total of
�  Kalmanfilters, eachof

dimension 2 (for thetwo landmark coordinates).This repre-
sentationwill now bediscussedin detail.

Particl e Filter Path Estimation
FastSLAM employs particlefilters for estimatingthe path
posterior S �#� � T�� � �^� � ��_ � � in (5), usingafilter thatis similar
(but not identical) to the Monte Carlo localization (MCL)
algorithm [1]. MCL is an application of particle filter to
theproblemof robotposeestimation(localization). At each
pointin time,bothalgorithmsmaintainasetof particlesrep-
resentingthe posterior S �#� � Tw� � ��� � �^_ � � , denoted x � . Each
particle � �Ey{z |M} d~xw� representsa “guess”of therobot’s path:xw��Y a�� �Ey{z |�} c�| Y a�� z |�}	 �� z |M}� ���������8� z |�}� c�| (6)

We usethesuperscriptnotation z |M} to referto the � -th par-
ticle in theset.

The particleset xW� is calculatedincrementally, from the
set xw�EVW	 at time P6��Z , arobot control ��� , andameasurement� � . First, eachparticle � �Ey{z |�} in x �EVW	 is usedto generatea
probabilistic guessof therobot’s poseat time P :� z |�}� � S �!���UT������8� z |�}�EVW	 � (7)

This guessis obtained by samplingfrom the probabilistic
motionmodel.Thisestimateis thenaddedtoatemporaryset
of particles,alongwith thepath � �EVW	8y{z |�} . Undertheassump-
tion thatthesetof particlesin x �EVX	 is distributedaccording
to S �!� �EVX	 Tv� �EVX	 ��� �EVW	 ��_ �EVX	 � (which is an asymptotically
correct approximation), the new particle is distributedac-
cording to:S �!� � T�� �EVW	 ��� � �^_ �EVW	 � (8)

Thisdistributionis commonly referredto asproposal distri-
bution of particlefiltering.

After generating  particlesin thisway, thenew set x � is
obtained by samplingfrom thetemporary particleset.Each
particle � �Ey{z |�} is drawn(with replacement)with aprobability
proportional to aso-calledimportance factor � z |�}� , which is
calculatedasfollows [10]:� z |�}� Y target distribution

proposaldistribution
Y S �!� �Ey{z |�} T�� � ��� � �^_ � �S �!� �Ey{z |�} T�� �EVX	 ��� � �^_ �EVW	 � (9)

Theexactcalculationof (9) will bediscussedfurtherbelow.
Theresultingsampleset x�� is distributedaccordingto anap-
proximation to thedesiredposeposteriorS �#� � T�� � �^� � �^_ � � ,
anapproximationwhichis correctasthenumberof particles goesto infinity. We alsonoticethatonly themostrecent

robot poseestimate� z |�}�EVW	 is usedwhengenerating theparti-
cle set x � . This will allows us to silently “forget” all other
poseestimates,rendering thesizeof eachparticleindepen-
dent of thetime index P .
Landmark Location Estimation
FastSLAM representsthe conditional landmark estimatesS �u� � T�� � ��� � ��� � ��_ � � in (5) by Kalman filters. Sincethis
estimateis conditionedontherobotpose,theKalmanfilters
areattachedto individualposeparticlesin x � . Morespecifi-
cally, thefull posterioroverpathsandlandmarkpositionsin
theFastSLAMalgorithmis representedby thesampleset� � Y a�� �Ey{z |�} ��� z |M}	 �8� z |�}	 ���������^� z |�}� �+� z |M}� c | (10)

Here � z |�}� and � z |�}� aremeanandcovarianceof the Gaus-
sianrepresenting the � -th landmark ��� , attachedto the � -th
particle. In theplanarrobotnavigation scenario, eachmean� z |�}� is a two-elementvector, and � z |�}� is a 2 by 2 matrix.

Theposterior over the � -th landmarkpose�w� is easilyob-
tained. Its computationdepends on whetheror not _��UYk� ,
thatis,whetherornot � � wasobservedattime P . For _ � Y�� ,
weobtainS �u� � T
� � �� � �^� � �^_ � � (11)�;���8���� S �]����T����\�8� � �� �EVW	 �^� � �^_ � � S �]���rT�� � �� �EVW	 �^� � �^_ � ��U���]�����Y S �]����T����\�8���8��_X� � S �u����T�� �EVX	 ��� �EVX	 ��� �EVW	 ��_ �EVX	 �
For _X���Y�� , we simply leave theGaussianunchanged:S �u����T
� � �� � �^� � �^_ � � Y S �u����T�� �EVX	 ��� �EVX	 ��� �EVW	 ��_ �EVX	 � (12)

The FastSLAM algorithm implements the updateequation
(11) using the extended Kalman filter (EKF). As in ex-
isting EKF approachesto SLAM, this filter usesa lin-
earizedversionof theperceptualmodelS �]����T
���8�^�;��_X� � [2].
Thus,FastSLAM’sEKF is similar to thetraditionalEKF for
SLAM [14] in that it approximatesthemeasurementmodel
usinga linearGaussianfunction. We notethat,with anac-
tual linearGaussianobservationmodel, theresultingdistri-
bution S �u�
��T�� � ��� � ��� � ��_ � � is exactly aGaussian,evenif the
motion modelis not linear. This is aconsequenceof theuse
of samplingto approximatethedistributionover therobot’s
pose.

Onesignificantdifferencebetweenthe FastSLAM algo-
rithm’s use of Kalman filters and that of the traditional
SLAM algorithm is thattheupdatesin theFastSLAMalgo-
rithm involveonly aGaussianof dimensiontwo (for thetwo
landmark locationparameters),whereasin the EKF-based
SLAM approachaGaussianof size j ��s�� hastobeupdated
(with

�
landmarks and3 robotposeparameters).This cal-

culation canbedonein constanttimein FastSLAM,whereas
it requirestimequadratic in

�
in standard SLAM.

Calculating the Importance Weights
Let us now returnto theproblem of calculating the impor-
tanceweights � z |�}� neededfor particlefilter resampling, as
defined in (9):� z |M}� � S �!� �Ey{z |�} T�� � ��� � ��_ � �S �!� �Ey{z |�} T�� �EVX	 ��� � ��_ �EVX	 �
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Figure 2: A treerepresenting ¡>�¢ landmarkestimateswithin a
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Here we assumethat the distribution S �u_¦�iT����� z |M}� �
is

uniform—acommon assumptionin SLAM. In thelast line,
“EKF” makesexplicit the useof a linearizedmodel asan
approximation to the observation model S �]���®TW� z |�}¬� �� z |M}� �

,
andthe resultingGaussianposteriorS �]� z |M}¬� � . The final in-
tegration is easily calculatedin closedform for the linear
Gaussianform.

Efficient Implementation
TheFastSLAMalgorithm,asdescribedthusfar, mayrequire
time linear in the number of landmarks

�
for eachupdate

iterationif implementednaively. This is becauseof there-
samplingstep:Every time a particleis addedto

� � , its has
to becopied.Sinceeachparticlescontains

�
landmark esti-

mates,thiscopying procedurerequires ���# �"� time. How-
ever, mostof this calculation canbeavoided.

Our approachmakesit possibleto executea FastSLAM
iterationin ���# %$'&
( �"� time. Thebasicideais thattheset
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Figure 3: Generatinga new particlefrom anold one,while modi-
fying only asingleGaussian.Thenew particlereceivesonly apar-
tial tree,consistingof a pathto the modifiedGaussian.All other
pointersarecopiedfrom the generatingtree. This canbe donein
time logarithmicin   .

of Gaussiansin eachparticleis representedbyabalancedbi-
narytree.Figure2 showssucha treefor asingleparticle,in
thecaseof

� Y°¯ landmarks. Noticethat theGaussianpa-
rameters � z |�}� and � z |�}� arelocatedat theleavesof thetree.
Clearly, accessingeachGaussianrequirestime logarithmic
in
�

.
SupposeFastSLAMincorporatesa new control � � anda

new measurement ��� . Eachnew particle in
� � will differ

from the corresponding onein
� �EVX	 in two ways: First, it

will possessa different pathestimateobtained via (7), and
second, the Gaussianwith index _¦� will be different in ac-
cordancewith (11). All otherGaussianswill beequivalent
to thegeneratingparticle.

Whencopying the particle, thus,only a singlepathhas
to be modified in the tree representing all Gaussians.An
exampleis shown in Figure3: Herewe assume_ � Y � , that
is, only theGaussianparameters � z |�}l and � z |�}l areupdated.
Insteadof generatinganentirenew tree,only a singlepath
is created, leadingto the Gaussian_¦��Y �

. This path is
an incomplete tree. To complete the tree, for all branches
that leave this path the corresponding pointers are copied
from thetreeof thegenerating particle.Thus,branchesthat
leave the pathwill point to the same(unmodified)subtree
as that of the generatingtree. Clearly, generatingsuchan
incompletetreetakesonly timelogarithmic in

�
. Moreover,

accessingaGaussianalsotakestimelogarithmic in
�

, since
thenumber of stepsrequiredto navigate to a leafof thetree
is equivalentto thelengthof thepath(whichis by definition
logarithmic). Thus,bothgeneratingandaccessinga partial
treecanbedone in time ���u$±&�( �"� . Sincein eachupdating
step  new particlesarecreated,anentireupdate requires
time in ���# ²$'&
( �"� .
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Figure4: (a)Physicalrobotmappingrocks,in a testbeddevelopedfor MarsRover research.(c) Raw rangeandpathdata.(c) Map generated
usingFastSLAM (dots),andlocationsof rocksdeterminedmanually (circles).

Data Association
In many real-world problems, landmarks are not identifi-
able,and the total number of landmarks

�
cannot be ob-

tainedtrivially—as wasthecaseabove. In suchsituations,
the robot hasto solve a dataassociationproblem between
momentary landmarks sightings � � andthesetof landmarks
in themap � . It alsohasto determine if a measurement cor-
responds to a new, previously unseenlandmark, in which
casethemapis augmentedaccordingly.

In mostexisting SLAM solutions basedon EKFs, these
problemsaresolvedvia maximum likelihood. More specif-
ically, theprobability of adataassociation_M� is givenbyS �u_X�UT�� � ��� � �Y £ S �]_X�vT�� � ��� � �^� � � S �!� � T�� � ��� � �¦¤ � �³©ª« ´ | S �u_X�UT�� �Ey{z |�} ��� � ��� � ��U��u����Y ´ | S �u_ � T�� z |�}� ��� � ���������� ´ | S �]���vT�� z |�}� ��_X� � (14)

Thesteplabeled“PF” usestheparticlefilter approximation
to theposteriorS �!� � T
� � �^� � � . Thefinal stepassumesa uni-
form prior S �u_ � TM� � � , which is commonly the casein the
literature[2]. The maximumlikelihooddataassociationis
simply the index _�� that maximizes(14). If the maximum
value of S �]_?��Tµ� � �^� � � —with careful considerationof all
constantsin (14)—is below a threshold ¶ , the landmark is
consideredpreviouslyunseenandthemapis augmentedac-
cordingly.

In FastSLAM,thedataassociationis estimatedon a per-
particlebasis:_ z |�}� Y ·�¸(�¹º·�»¬� S �]����T � z |�}� �^_X� � (15)

As a result,different particlesmay rely on different values
of _ z |�}� . They mightevenpossessdifferentnumbersof land-
marksin their respective maps. This constitutesa primary
differenceto EKF approaches,whichdetermine thedataas-
sociationonly oncefor eachsensormeasurement.It hasfre-
quently beenobservedthatfalsedataassociationwill make
conventional EKF approachfail catastrophically [2]. Fast-
SLAM is morelikely to recover, thanks to its ability to pur-

suemultipledataassociationssimultaneously. Particleswith
wrong dataassociationare (in expectation)more likely to
disappear in the resampling processthan thosewho guess
thedataassociationright.

Undermild assumptions(e.g., minimumspacingbetween
landmarksandboundedsensorerror), the dataassociation
searchcanbe implemented in time logarithmic in ¼ . One
possibility is the useof kd-treesasindexing schemein the
tree structuresabove, insteadof the landmark number, as
proposedin [11].

Experimental Results
TheFastSLAMalgorithm wastestedextensively undervari-
ousconditions. Real-worldexperimentswerecomplimented
by systematicsimulation experiments, to investigate the
scalingabilitiesof theapproach.Overall, theresultsindicate
favorably scalingto large number of landmarks andsmall
particlesets. A fixednumberof particles(e.g.,  ½Y[Z�¾
¾ )
appearsto work well acrossa largenumber of situations.

Figure 4a shows the physical robot testbed,which con-
sistsof a smallarenasetup under NASA funding for Mars
Rover research. A RWI Pioneerrobot equippedwith aSICK
laserrange finderwasdriven alonganapproximatestraight
line, generatingthe raw datashown in Figure4b. The re-
sulting map generatedwith  Y¿Z�¾ samplesis depicted
in Figure4c,with manuallydeterminedlandmark locations
marked by circles. The robot’s estimatesare indicatedby
dots, illustrating the high accuracy of the resultingmaps.
FastSLAMresultedin anaverageresidualmaperrorof 8.3
centimeters,whencomparedto themanually generatedmap.

Unfortunately, thephysicaltestbeddoesnotallow for sys-
tematicexperimentsregardingthe scalingpropertiesof the
approach. In extensive simulations,the number of land-
marks was increasedup to a total of 50,000, which Fast-
SLAM successfullymappedwith as few as 250 particles.
Here the number of parameters in FastSLAM is approxi-
mately0.1%of thatin theconventionalEKF. However maps
with asmany as50,000 landmarksareentirelyout of range
for conventional SLAM techniques,dueto their enormous
computational complexity. Figure5 shows examplemaps
with smallernumbersof landmarks,for different maximum
sensorrangesasindicated.Theellipsesin Figure5 visual-
izetheresidualuncertainty whenintegratedoverall particles
andGaussians.

In a setof experimentsspecificallyaimedto elucidatethe
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Figure 5: Mapsandestimatedrobotpath,generatedusingsensors
with (a) largeand(b) smallperceptualfields.Thecorrectlandmark
locationsareshown asdots,andtheestimatesellipses,whosesize
correspondsto theresidualuncertainty.

scalingpropertiesof theapproach,weevaluatedthemapand
robot poseerrorsasa function of thenumber of landmarks�

, andthenumberof particles , respectively. Theresults
aregraphically depictedin Figure6. Figure6a illustrates
that an increasein the number of landmarks

�
mildly re-

ducesthe error in the mapandthe robot pose. This is be-
causethe larger the number of landmarks, the smallerthe
robot poseerrorat any point in time. Increasingthenumber
of particles  alsobearsa positive effect on the mapand
poseerrors,asillustratedin Figure6b. In bothdiagrams,the
barscorrespondto 95%confidenceintervals.

Conclusion
We havepresentedanalgorithm calledFastSLAM,asanef-
ficientnew solutionto theconcurrentmappingandlocaliza-
tion problem. This algorithmutilizes a Rao-Blackwellized
representationof theposterior, integrating particlefilter and
Kalmanfilter representations. It is basedon a conditional
independenceproperty of theSLAM problem which previ-
ous algorithms failed to exploit. Landmark estimatesare
efficiently representedusing tree structures. Updating the
posterior requires ���# %$'&
( �"� time, where  is thenum-
berof particlesand

�
thenumberof landmarks.This is in

contrast to the ��� �À��� complexity of thecommon Kalman-
filter basedapproachto SLAM. Experimentalresultsillus-
tratethatFastSLAMcanbuild mapswith anorderof mag-
nitudemore landmarks thanprevious methods. They also
demonstratethatundercertainconditions,asmallnumberof
particlesworkswell regardlessof thenumber of landmarks.
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