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Abstract

The ability to simultaneouslyiocalize a robot and ac-
curatelymapits surrounding is consideed by mary to
be akey prerequsite of truly autonanousrobots.How-
ever, few approacheto this problemscaleup to hande
the very large numbe of landmarls presentn realen-
vironments.Kalmanfilter-basedalgorithms.for exam-
ple, requiretime quadatic in the numberof landmarks
to incorpaateeachsensombsenation. This paperwill
presentFastSLAM, an algorithmthat recursvely esti-
matesthefull posteriordistribution over robotposeand
landmarklocations,yet scaledogarithmicallywith the
numberof landmarksin the map. This algorithm is
basedon a novel, exact factorizationof the posterior
into aproductof conditionallandmarkdistributionsand
adistribution over robot paths.The algorithmhasbeen
run successfullyon asmary as50,000landmarksgervi-
ronmentsfar beyond the reachof previous approackes.
Experimentalresults demonstratehe advantags and
limitations of the FastSIAM algorithmon both simu-
latedandreal-world data.

Intr oduction

Theproblemof simultaneaslocalizationandmappiry, also
known asSLAM, hasattractedmmerseattentionin themo-
bile robotics literature. SLAM addessesthe problem of
building a mapof anenvironment from a sequencef land-
mark measuementsobtaired from a moving robot. Since
roba motionis subjectto erra, themappirg problemneces-
sarilyinduaesarobotlocalizationprodem—henethename
SLAM. The ability to simultaneasly localize a robot and
accuratelymapits ervironmer is consicredby mary to be
akey prereqisite of truly autonanousrobas|[3, 7, 15].

The domirant appoachto the SLAM problemwas in-
trodwced in a seminalpape by Smith, Self, and Cheese-
man [14]. This paper proposedthe use of an extended
Kalmanfilter (EKF) for incremetally estimatingthe poste-
rior distribution over robot posealongwith the positionsof
the landnmarks. In the lastdecadethis appra@chhasfound
widespreadcceptancén field robdics, asa recenttutorial
paper[2] dowments.Recentresearcthasfocusedon scal-
ing this apprachto larger environmerts with more thana
few hurdredlandmarks[9, 6, 8] andto algoiithms for han-
dling dataassociatiorprodems[16].
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A key limitation of EKF-basedappioachess theircompu
tationd comgexity. Sensompdatesrequiretime quadatic
in the number of landmarks K to compue. This compex-
ity stemsrom thefactthatthecovaiancematrixmaintainel
by theKalmanfiltershasO(K %) elementsall of whichmust
be updatedevenif justasinglelandnark is obseved. The
quaratic compleity limits the nunber of landnarks that
canbe hardled by this appoachto only a few hurdred—
wheleasnatura ervironmen mocelsfrequently containmil-
lions of features. This shortcaning haslong beenrecog
nizedby theresearcltommunity [6, 8, 13].

In this paperwe apprachthe SLAM prodem from a
Bayesianpoint of view. Figure 1 illustratesa gereratve
prababilisticmodel (dynamic Bayesnetwork) thatunderlies
therich corpws of SLAM literature In particdar, the robot
pose,dendedsy, ss, ..., ¢, evolve over time asa function
of theroba contrds, dended w1, ..., u;. Eachof theland-
markmeasuremas,dendedz, . .., z;, arefunctionsof the
positiondy, of thelandmarksmeasuredk), andof the robot
poseatthetime the measurerentwastaken. Fromthis dia-
gramit is evidentthatthe SLAM prodem exhibits important
corditional indepeidences.In particdar, knowledgeof the
robot’'s pathsy, s1, - . . rendestheindividual landmark mea-
surenentsindependent. So for example if an orade pro-
vided us with the exact path of the robot, the problem of
deteminingthelandnarklocatiors coud bedecoyledinto
K indegendentestimatiorproblems,onefor eachiandnark.

Basednthisobseration,this paperdescribesnefficient
SLAM algotithm calledFastSLAM. FastSLAMdecompses
the SLAM probem into aroba localizationprodem, anda
collectian of landnark estimationprodemsthat are cond-
tionedontherobotposeestimate.This factoredrepreseta-
tionis exad, dueto thenatual corditionalindepenlencesn
theSLAM prablem. FastSLAMusesa modfied particlefil-
terfor estimatinga posteriorover robot paths.Eachparticle
possesse& Kalmanfilters that estimatethe K landmak
locatins conditicned on the path estimate. The resulting
algaithm is aninstanceof the Rao-Blackwellizedbarticle
filter [12, 5]. A naiveimplemertationof thisidealeadsto an
algaithm thatrequresO(M K) time,whereM is thenum:
berof particlesin the particlefilter and K is the number of
landmarks. We develop a tree-basedlatastructue thatre-
duceestherumingtime of FastSLAMto O(M log K), mak-
ing it significantlyfasterthanexisting EKF-basedSLAM al-



Figure 1: The SLAM problem: The robot moves from poses;
througha sequencef controls,us, uz, .... As it moves,it mea-
suremearbylandmarls. At timet = 1, it obseneslandmarkd; out
of two landmarks {thetaiandd2}. The measuremens denoted
z1 (rangeandbearing).At timet = 1, it obseresthe otherland-
mark,f,, andattimet = 3, it obsenesé, again.TheSLAM prob-
lem is concerred with estimatingthe locationsof the landmarks
andtherobot’s pathfrom the controlsu andthe measuremds z.
Thegrayshadingillustratesa conditionalindependenceelation.

gorithms. We alsoextendthe FastSLAM algorittm to situ-
ationswith unknown dataassociatiorandunknown nurrber
of landmarks,shaving thatour appra@chcanbe exterdedto
to full rangeof SLAM probdemsdiscussedhn theliterature.

Expeimental resultsusing a physical roba and a roba
simulatorillustrate that the FastSLAM algotithm canhan-
dle ordersof magrtude more landmaks than presentday
appraches. We alsofind thatin certainsituations,an in-
creasechumter of landmaks K leadsto a mild reduction
of the nunber of particlesM neededo generge accurate
maps—whegasin othersthe nunber of particlesrequred
for accuatemappng may beprohibitively large.

SLAM Problem Definition

The SLAM prodem, as definedin the rich body of litera-
tureon SLAM, is bestdescribedasa probabilistic Markov
chain. The robot’s poseat time ¢ will be dended s;. For
robads operatig on the plane—witich is the casein all our
expeliments—posearecompisedof arobd’s z-y coodi-
natein the planeandits headimg directia.

Posesevolve accordimg to a prokabilistic law, often re-
ferredto asprokabilistic motion model:

p(st | ue, s¢-1) 1)
Thus, s; is a prababilistic function of the robot contiol u,
andthe previous poses;_;. In mobilerobdics, the motion
modé is usuallyatime-invariantprobabilisticgenerézation
of roba kinematics[1].

The robd’s environment possessed( immolile land-
marks. Eachlandnark is charaterizedby its locationin
spacedendedd; for k = 1,..., K. Without lossof gen-
erality, we will think of landmarls aspointsin the plane so
thatlocationsarespecifiedby two numeical values.

To mapits ervironment, the roba cansensdandnarks.
For examge, it maybeableto measue rangeandbearingto
alandmak, relative to its own local coordnateframe. The
measuremntattime ¢t will bedenotedz;. While robas can
often sensemore thanone landmak at a time, we follow
commaplacenotation by assumingthat sensormeasure-
mentscorrespndto exactly onelandmark[2]. Thiscorven-

tion is adopied for mathenatical corvenierte. It posesno
restriction as multiple landnark sightingsat a singletime
stepcaneasilybe processedequetially.
Sensomeasuementsaregovernedby a probabilisticlaw,
oftenreferedto asthe measurement model:

p(2t | 8¢,0,n4) )
Here§ = {61,...,0:} is the setof all landmaks, and
ng € {1,...,K} is theindex of thelandmark perceved at
timet. For examge, in Figurel, we haven; = 1,ny = 2,
andns = 1, sincethe robot first obseres landmark 6,
thenlandmak -, andfinally landmak 8, for asecondime.
Many measuremntmocklsin theliteratureassumehatthe
robot can measurerangeand bearirg to landnarks, con-
foundedby measurment noise. The variablen; is often
referedto ascorrespondence. Mosttheorgical work in the
literatute assumegnowledgeof the correspondene or, put
differently thatlandmarksareuniquely identifiabe. Practi-
calimplermentationsusemaximumlik elihoodestimatorgor
estimatingthe correspnderte on-thefly, which work well
if landmarls arespacedsuficiently far apat. In large parts
of this pape wewill simplyassuméhatlandmaksareiden-
tifiable, but we will alsodiscussanextensionthatestimates
thecorrespondecesfrom data.

We arenow readyto formuate the SLAM prodem. The
SLAM problem,in its mostgeneal form, is the problem of
detemining thelocationof all landmaks 6 androba poses

s; from measuremntsz? = z,...,2 andcortrols u* =
u1,--.,us. N probabilistic terms,this is expresseddy the
following posterior

p(s",0 ] 2, u') 3)

Here we usethe supescript ¢ to refer to a setof variatie
fromtime 1 totimet. If thecorresponéncesareknown, the
SLAM prodemis simpler:

p(st,0 | 28, ut,n?) 4)
As argued in the introductionto this article, all individual
landmark estimationprablemsareindependentif oneknew
therobot’spaths? andthecorrespadencevariadesn®. This

corditional indepewlenceis the basisof the FastSLAM al-
gorithm describedn the next section.

FastSLAM with Known Correspondeces

We begin our corsiderationwith the importan casewhere
the correspadence nt = n,,...,n; areknown, andsois
thenunberof landmaks K obseredthusfar.

Factored Representaton

The conditional independeree property of the SLAM prob-
lemimpliesthattheposterior(4) canbefactoredasfollows:

p(s',0 | 2, ul,n")

= p(s' | 2%, u',n") [[ p(6k | 5, 2", u’,n) ()
k
Putvemally, theprodem canbedeconposednto K +1 esti-
mationproblams,oneprobdem of estimatinga posteria over
robot pathsst, and K prablemsof estimatingthe locations
of the K landmaks conditiored on the pathestimate.This
factoization is exact and always applicablein the SLAM



prodem—hut to our knowvledgehasnever beenutilized be-
forein thecontext of SLAM.
The FastSLAM algorithm implementsthe pathestimator

p(st | 2%, ut, nt) usinga modifiedparticlefilter [4]. As we
argue further belaw, this filter can efficiently samplefrom
this space,providing a good apprximation of the poste-
rior even unde nondinear motion kinematics The land-
mark poseestimatorsp(fy, | s, z¢,u?,nt) arerealizedby
Kalmanfilters, usmgseparatéllters for dlfferentlandrrarks
Becausdhelandmark estimatesrecondtionedonthe path
estimate eachparticlein the particlefilter hasits own, lo-
cal landmark estimates.Thus, for M particlesand K land-
marks,therewill beatotal of K M Kalmanfilters, eachof
dimensim 2 (for thetwo landmak coordnates).Thisrepre-
sentatiorwill now be discussedh detail.

Particl e Filter Path Estimation

FastSLAM emplagys particlefilters for estimatingthe path
posterio p(st | zt,ut,nt) in (5), usingafilter thatis similar
(but not identicd) to the Monte Carlo localization (MCL)
algoritm [1]. MCL is an apgication of particle filter to
the problemof robotposeestimation(localizatian). At each
pointin time, bothalgoithmsmaintaina setof particlesrep-
resentinghe posterio p(st | 2¢,uf,nt), dended S;. Each
particlest[™ € S, representa“guess”of therobot's path:

S, = {shmh,, = {s{m Ls™ ()

We usethe supescriptnotation!™ to referto them-th par
ticle in the set.

The particle setS; is calculatedincrementally from the
setS;_; attimet —1, aroba cortrol u;, andameasurment
2. First, eachparticles[™ in S;_; is usedto geneatea
prokabilistic guessof therobd’s poseattime ¢:

sgm]

,32 ,..

~

plse | ue, i) (7
This guessis obtaired by samplingfrom the probailistic
motionmodel. Thisestimatds thenaddedo atempoary set
of particles, alongwith thepaths*~1:[™], Undertheassump-
tion thatthe setof particlesin S;_; is distributedaccordng
to p(st=1 | 271wt ntt) (which is an asympotically
corret¢ appoximatian), the new particleis distributed ac-
cordirg to:

p(s' [ 271wl 07 (8)
Thisdistributionis commanly referedto asproposal distri-
bution of particlefiltering.

After geneating M particlesin thisway, thenew setS, is
obtaina by samplingfrom thetempaary particleset. Each
particlest[™! is dravn (with repla@ment)with aprotability

proportiond to a so-called mportance factor wy”] , whichis
calculatedasfollows [10]:

(m] _ tage distribution p(sbml | 2t ut, nt)
wy = o =

t proposaldistribution — p(stlml | zt-1 4t pt-1)
Theexactcalculationof (9) will bediscussedurther below.
TheresultingsamplesetS; is distributedaccodingto anap-
proximationto the desiredposeposteriorp(s® | z¢,ut,nt),
anapprximationwhichis correctasthe nunberof particles
M goesto infinity. We alsonoticethatonly the mostrecert

9)

[M]

robot poseestimates;”; is usedwhengeneratig the parti-
cle setS;. Thiswill aIIows usto silently “forget” all other
poseestimatesrendeing the size of eachparticleindepen-
dert of thetime index ¢.

Landmark Location Estimation

FastSLAM representghe corditional landmak estimates
p(6r, | st 2t ut,n?) in (5) by Kalmanfilters. Sincethis
estimatds condtionedontherobotpose the Kalmanfilters
areattachedo individual posepatrticlesin S;. More specifi-
cally, thefull posteriorover pathsandlandmark positionsin
theFastSLAMalgorithmis represeted by the sampleset

S = A{sttml bl stml el sty (g)

A

Hereul™ andSl™ aremeanand covarianceof the Gaus-
sianrepresentig the k-th landmark 8, attachedo them-th
particle In the planarrobotnavigation scenaripeachmean
,LEC ™ is atwo-elenentvecta, andEEE’“] is a2 by 2 matrix.

Theposterio over the k-th landmarkposed, is easilyob-
tained Its conputationdepend on whetheror notn; = k,
thatis, whetherr notd; wasobsevedattimet. Forn; = k,
we obtain

(11)
"

p(By | 8% 2% ul,nt)
Bayes _
O)é (Zt | 9k78 Z t) p(ek | 8t7zt lautan

Mark _ _ _
= p(z | Ok, 81,10) (9k|5 At ptth

Forn; # k, we simply leave the Gaussiarunchanged:
p(9k | st,zt,ut,nt) — p(9k | St_l,zt_l,ut_l,nt_l) (12)

The FastSLAM algoithm implemens the updateequatio
(11) using the exterded Kalman filter (EKF). As in ex-
isting EKF appra@achesto SLAM, this filter usesa lin-
earizedversionof the pereptualmodelp(z; | s¢,8,n¢) [2].
Thus, FastSLAM's EKF is similarto thetraditional EKF for
SLAM [14] in thatit appoximatesthe measurmentmodel
usinga linear Gaussiarfunction. We notethat, with anac-
tual IinearGaussiarobser‘ation modd, theresultingdistri-
butionp(6y. | s, ¢, ut, nt) is exadly aGaussiangvenif the
motion modehs notllnear Thisis aconsequeceof theuse
of samplingto apprximatethedistribution over therobot’s
pose.

Onesignificantdifference betweenthe FastSLAM algo-
rithm’'s use of Kalman filters and that of the traditioral
SLAM algoithm is thatthe updatesn the FastSLAMalgo-
rithm involve only a Gaussiarof dimersiontwo (for thetwo
landmark location paraneters),whereasin the EKF-based
SLAM appoachaGaussiamnf size2 K +3 hasto beupdatel
(with K landmaks and3 robotposeparaneters). This cal-
culation canbedorein constantimein FastSLAM,whereas
it requiresime quadaticin K in standad SLAM.

Calculating the Importance Weights
Let us now returnto the prodem of calculatirg the impor-

tanceweightswtm] neededor particlefilter resampliig, as
defina in (9):
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p(stml | 2t=1 ut nt-1)

wE’"]




k37| lk<57] ks 72|

YA

ul Z[m] lllzn?z(é"] [m]z[m] lJ‘[m]z“ ug"]z u[é“]z m] u7 Z[m] [mlz(m]

Figure 2: A treerepresenting = 8 landmarkestimateswithin a
singleparticle.
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Here we assumethat the distribution p(n; | 9,3,[5'”]) is
uniform—acomma assumptiorin SLAM. In thelastline,
“EKF” malkesexplicit the useof a Iinearizedmodé asan

appraimation to the obsevation modelp(z; | gLlm ,s,[f”]),

andthe resultmgGau33|arposterlorp(0QZ1 ). Thefinal in-
tegratian is easily calculatedin closedform for the linear
Gaussiarform.

Efficient Implementation

TheFastSLAMalgorithm, asdescribedhusfar, mayrequire
time linearin the numbe of landmaks K for eachupdate
iterationif implemerted naively. Thisis becausef there-
samplingstep: Every time a particleis addedto Sy, its has
to becopied.Sinceeachparticlescortains K landmak esti-
matesthis copying procedurerequres O (M K) time. How-
ever, mostof this calculatian canbe avoided

Our appoachmakesit possibleto executea FastSLAM
iterationin O(M log K) time. The basicideais thatthe set

new particle

old particle

u:llr-r:]zr;] uz’ m] pf?r’r:]g“] u‘[‘rr:]gﬂl ug':]zm] u61 m] p.[;:]2"1] u[g:]z;]

Figure 3: Generatinga new particlefrom anold one,while modi-
fying only asingleGaussianThe new particlerecevesonly apar
tial tree, consistingof a pathto the modified Gaussian.All other
pointersare copiedfrom the generatingree. This canbe donein
time logarithmicin K.

of Gaussian eachpatrticleis representedy abalarcedbi-
narytree.Figure2 shavs suchatreefor asingleparticle,in
thecaseof K = 8 landmaks. Noticethatthe Gaussiarpa-

rameers ,uE:”] andEEcm] arelocatedat the leavesof thetree.
Clearly, accessingeachGaussiamrequiestime logaithmic
in K.

SupmseFastSLAM incorpaatesa new contrd u; anda
nev measuementz;. Eachnew particlein S; will differ
from the correspading onein S;_; in two ways: First, it
will possesa differert pathestimateobtaired via (7), and
secondthe Gaussiarwith index n; will be differentin ac-
cordancewith (11). All otherGaussiansvill be equivdlent
to thegeneatingparticle.

When copying the particle, thus, only a single path has
to be modfied in the tree representig all Gaussians.An
exampleis showvn in Figure3: Herewe assumen; = 3, that

is, only theGaussiarparam&ersu[g”] and2[3m] areupdated
Insteadof geneating anentirenew tree,only a singlepath
is created leadingto the Gaussiam; = 3. This pathis
aninconpletetree. To conplete the tree, for all brarches
that leave this path the correspondimy pointers are copied
from thetreeof thegeneréing particle. Thus,brarchesthat
leave the pathwill point to the same(unmodified) subtree
asthat of the gereratingtree. Clearly, gereratingsuchan
incompletetreetakesonly timelogaithmicin K. Moreover,
accessing Gaussiaralsotakestime logaithmicin K, since
thenumker of stepsrequiredto navigate to a leaf of thetree
is equvalentto thelengthof the path(whichis by definition
logaithmic). Thus,both gereratingandaccessing partial
treecanbedorein time O(log K). Sincein eachupdatirg
stepM new particlesare createdan entireupdde requres
timein O(M log K).
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Figure 4: (a) Physicalrobotmappingrocks,in atestbeddevelopedfor Mars Rover research(c) Rav rangeandpathdata.(c) Map generated
usingFastSIAM (dots),andlocationsof rocksdeterminednanudly (circles).

Data Associaion

In mary real-world problems, landmaks are not identifi-
able, andthe total numter of landmaks K canna be ob-
tainedtrivially—as wasthe caseabove. In suchsituations,
the robot hasto solve a dataassociatiorproblem between
momettary landmaks sightings z; andthe setof landrarks
in themapd. It alsohasto deternine if ameasuremercor-
respomls to a new, previously unseenlandmark, in which
casethemapis augnentedaccodingly.

In mostexisting SLAM solutiors basedon EKFs, these
prodemsaresolvedvia maximum likelihoad. More specif-
ically, the probability of a dataassociatiom is givenby

p(ne | 2*,uf)

[ ot sty plst | o) dt
Zp(nt | St,[m]’ Zt, ut)

m

Maékov Zp(nt | SEm],zt)

m
Bayes
5 3 pe | s )
m

Thesteplabeled“PF” usesthe particlefilter appraimation
to the posteriorp(s? | zt, ut). Thefinal stepassumes uni-
form prior p(n; | s:), whichis comnonly the casein the
literature[2]. The maximumlikelihooddataassociatioris
simply the index n; thatmaxmizes(14). If the maximum
value of p(n; | 2t,u?)—with careful consicrationof all
constantsn (14)—is below a threshdd «, the landmak is
consideed previously unseerandthe mapis augmetedac-
cordirgly.

In FastSLAM, the dataassociations estimatecbn a per
particlebasis:

PF

(14)

[m]

ny argmax p(z[s{™, ny) (15)

Nt

As aresult, different particlesmay rely on different values

of n,[sm]. They mightevenpossesslifferentnumbersof land-
marksin their respectie maps. This constitutesa primary
differenceto EKF appr@acheswhich deternine the dataas-
sociationonly onae for eachsensomeasuement.It hasfre-
guenly beenobsevedthatfalsedataassociatiorwill make
corventioral EKF apprachfail catastropically [2]. Fast-

SLAM is morelikely to recover, thanis to its ability to pur-

suemultiple dataassociationsimultaneasly. Particleswith
wrong dataassociatiorare (in expectation)morelikely to
disappearin the resamping processhanthosewho guess
thedataassociatiomight.

Under mild assumptias(e.g, minimumspacingoetween
landmarksand bourded sensorerror), the dataassociation
searchcanbeimplemente in time logaithmic in N. One
possibility is the useof kd-treesasindexing schemdn the
tree structuresabove, insteadof the landmark nurmber, as
proposedn [11].

Experimental Results

TheFastSLAMalgorithm wastestedextensively under vari-
ouscondtions. Real-world experimentswerecomgimented
by systematicsimulation experiments,to investigate the
scalingabilitiesof theapprach.Overall, theresultsindicate
favorably scalingto large numker of landmaks and small
particlesets. A fixed nunber of particles(e.g, M = 100)
appearsto work well acrossalargenumbe of situations.

Figure 4a shows the physical roba testbed which con-
sistsof a smallarenasetup under NASA fundng for Mars
Rover researchA RWI Pioneerroba equipedwith aSICK
laserrange finderwasdriven alongan appraimatestraight
line, gereratingthe raw datashowvn in Figure4b. There-
sulting map gereratedwith A/ = 10 sampless depictel
in Figure4c, with manuallydeterninedlandmak locations
marked by circles. The robot’s estimatesareindicatedby
dots, illustrating the high accurag of the resultingmaps.
FastSLAMresultedin anaverageresidualmaperrorof 8.3
centimeterswhencompaedto themanually genersedmap.

Unfortunately thephysicaltestbedloes notallow for sys-
tematicexpeiimentsregardingthe scalingpropertiesof the
appoach. In extersive simulations,the nunber of land-
marks was increasedup to a total of 50,0, which Fast-
SLAM successfullymappedwith asfew as 250 particles.
Here the numbe of parametes in FastSLAM is appoxi-
mately0.1%of thatin thecorventional EKF. However maps
with asmary as50,0® landmarksareentirely out of range
for conventioral SLAM techniqees, dueto their enamous
conmputationa comgexity. Figure5 shovs examplemaps
with smallernumkersof landmarks,for different maximum
sensorangesasindicated. The ellipsesin Figure5 visual-
izetheresidualncertaity whenintegratedoverall particles
andGaussians.

In a setof experimentsspecificallyaimedto elucidatethe



Figure 5: Mapsandestimatedobotpath,generatedisingsensors
with (a) largeand(b) smallperceptuafields. Thecorrectlandmark

locationsareshavn asdots,andthe estimate<llipseswhosesize

correspodsto theresidualuncertainty

scalingpropertiesof theappoach we evaluatedthemapand
roba poseerrorsasa function of the numker of landnarks
K, andthenunberof particlesM, respectiely. Theresults
are graphically depictedin Figure 6. Figure 6a illustrates
that anincreasein the numker of landmaks K mildly re-
ducesthe errorin the mapandthe roba pose. This is be-
causethe larger the numter of landmarks, the smallerthe
robd poseerroratary pointin time. Increasinghe nunber
of particlesM alsobearsa positive effect on the mapand
poseerros, asillustratedin Figure6b. In bothdiagams,the
barscorrespndto 95%confidenceintervals.

Conclusion

We have presente@nalgoithm calledFastSLAM,asanef-
ficientnew solutionto the conairrentmapping andlocaliza-
tion prodem. This algorithmutilizes a Rao-Blackwellized
represetation of the posterioyintegraing particlefilter and
Kalmanfilter represetations. It is basedon a condtional
independenceproperty of the SLAM problem which previ-
ous algoithms failed to exploit. Landmak estimatesare
efficiently repesentedusing tree structues. Updatirg the
posteria requiles O(M log K) time, whereM is the num-
ber of particlesand K the nunberof landmarks. Thisis in
contrast to the O(K2) compleity of the comnon Kalman-
filter basedappra@achto SLAM. Experinentalresultsillus-
tratethat FastSLAM canbuild mapswith anorderof mag-
nitude more landmarks than previous methals. They also
demamstratehatundercertaincondtions,asmallnunberof
particlesworkswell regardlessof the numter of landmarks.
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