
CSE 579-24AU: Reinforcement Learning

Homework 3 - Model Based RL

Due November 29th @ 11:59pm PST

The goal of this homework is to get a basic understanding of model-based RL (MBRL). In particular, you
will be implementing random MPC with shooting, model-predictive path integral (MPPI) and MPPI with
ensembles of models to factor in uncertainty. Please refer to the git link for the assignment https://github.
com/WEIRDLabUW/CSE579-hw3

Related Lectures: This homework largely involves knowledge from Lecture 11 and Lecture 12 on Model Based
RL.

Collaboration: Students can discuss questions, but each student MUST write up their own solution, and code
their own solution. We will be checking code/PDFs for plagiarism.

Late Policy: This assignment may be handed in up to 5 days late. If you have used up your 10 late days this
quarter, there will be a penalty of 10% of the maximum grade per day.

1 Code Overview

The starter code is written in Python and depends on NumPy and Matplotlib as well as Pytorch. If you are
new to Pytorch, please refer to the following tutorial [Link]. The README describes how to install packages
in a conda environment to solve this assignment. We also provide a link to a Google Colab notebook below
that can be used for cloud execution. We recommend either using a Linux machine or using the Colab, rather
than Windows. This section gives a brief overview

• main.py - overall launcher with environment creation and policy alternation [DO NOT MODIFY]

• environment.yml - Conda env file to install dependencies [DO NOT MODIFY]

• utils.py - functions for data collections and networks. [DO NOT MODIFY]

• rollouts.py - Code to rollout policies [DO NOT MODIFY]

• train mbrl Code to run the model based RL training. [DO NOT MODIFY]

• planning.py - implementation of single and ensemble mbrl [TODO]

• train model.py - training networks [TODO]

Environment Details This is NOT the same conda environment as in HW1. To get started, you must
install the correct dependencies for the code to run. There are several ways to do this - if you have a
Linux machine, install a conda environment (install Anaconda from here https://docs.anaconda.com/free/
anaconda/install/index.html) with the correct dependencies from the provided environment.yml file using
the following command

conda env create -f environment.yml

conda activate cse579a3

1

https://github.com/WEIRDLabUW/CSE579-hw3
https://github.com/WEIRDLabUW/CSE579-hw3
https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html
https://docs.anaconda.com/free/anaconda/install/index.html
https://docs.anaconda.com/free/anaconda/install/index.html

This should give you an environment with all the necessary dependencies, and you can run the code by running
main.py as described in each section below.

If you do not have a Linux machine, it is advisable for you to use Google Colab instead. This will pro-
vide you with a single GPU instance that should be sufficient to run this code. The Colab instance can
be found https://drive.google.com/file/d/12coaIFgAZLhzmqcCqMT_39D9QnzBVh3e/view?usp=sharing,
and all the installs are completed by just running the initial cells inline. Please come talk to the course staff
if you are having environment setup issues!

The gym reacher environment is the same as in homework 1, which is 2D environment where a double-jointed
arm aims to move its end effector to a target location. You may refer to this follow link for further details:
[Link].

2 Random MPC with Shooting [30 points]

$ python main.py --model_type single --plan_mode random_mpc

Model Predictive Control (MPC) is a method that iteratively optimizes for a sequence of actions that achieve
the best performance according to the reward function. It predicts the future states or observations of the
system using a learned model and adjusts its actions based on the prediction. In this part, you will implement
one technique in model-predictive control for model-based RL: random MPC with shooting. In particular,
instead of using a deterministic optimization method to find the best action, you sample N sequences of actions
randomly from the action space. Each sequence of actions is stepped forward through the learned model, and
the outcomes are evaluated by calculating the total rewards of the predicted future states from the learned
model. The trajectory that yields the highest total reward is selected and its first action will be your action.
This process is repeated at each step, with the first action of the best action sequence being executed. Please
refer to the pseudocode for further details. Note that we have provided model training code for you here, you
simply implement planning.

2.1 Random MPC with Shooting Pseudocode

def rollout_model(model, initial_states, actions, horizon, reward_fn):

all_states = []

all_rewards = []

for step_num in range(horizon):

run action at step_num through the model to get next state and next reward

add them to all_states and all_rewards

return all_states, all_rewards

def plan_model_random_shooting(env, state, ac_size, horizon, model, reward_fn, n_samples_mpc=100):

random_actions = sample_uniform_random_actions(n_samples_mpc, horizon, ac_size)

rewards = rollout the random trajectories from the initial states

best_ac = first action from best trajectory

return best_ac

2

https://drive.google.com/file/d/12coaIFgAZLhzmqcCqMT_39D9QnzBVh3e/view?usp=sharing
https://www.gymlibrary.dev/environments/mujoco/reacher/

2.2 Expected Results

We provide an example below which serves as a reference for the expected output; You are expected to get
around or higher than 0.25. please note that the success rate and reward may fluctuate:

$ python main.py --model_type single --plan_mode random_mpc

using device cuda

Episode: 0, reward: -44.39803820644873, max path length: 50

Episode: 1, reward: -17.73652850726456, max path length: 50

Episode: 2, reward: -16.54873229390969, max path length: 50

Episode: 3, reward: -17.09515906142727, max path length: 50

Episode: 4, reward: -13.370320994343928, max path length: 50

Episode: 5, reward: -16.10938280377134, max path length: 50

Episode: 6, reward: -15.057747536611572, max path length: 50

Episode: 7, reward: -15.66250521516793, max path length: 50

Episode: 8, reward: -16.894985734482116, max path length: 50

Episode: 9, reward: -16.185416048796206, max path length: 50

...

Success rate: 0.28

Average reward (success only): -13.936932248085684

Average reward (all): -15.29830527289742

2.3 Execution

1. Fill in the blanks in the code marked with TODO in the rollout model function in planning.py.

2. Fill in the blanks in the code marked with TODO in the plan and get ensemble rewards model random shooting

function in planning.py.

3. Plot the reward during the training with default hyperparameters. Report the success rate and average
reward using the evaluate function that is provided to you.

3 Model Predictive Path Integral (MPPI) [30 points]

$ python main.py --model_type single --plan_mode mppi

Random MPC with shooting provides a simple yet effective way to handle control problems by randomly
sampling action sequences and selecting the best one based on predicted rewards, but it may not be the best
planning method for more complex environments since it is simply doing random search.

Model Predictive Path Integral (MPPI) Control is a more efficient approach compared to MPC. Unlike random
MPC that samples actions uniformly from the action space, MPPI iteratively optimizes the sampled action
sequences using importance sampling, focusing on trajectories with higher rewards rather than sampling
uniformly. This method focuses the exploration of the action space, helping us to converge faster to optimal
actions. In particular, the idea of standard MPPI implementations is to refit the action mean to sample around
by computing a weighted sum according to weights computed by the exponential of returns. This helps to
focus on trajectories with higher expected rewards and is faster to find the optimal actions. Please refer to
the pseudocode below for details, and implement the single model version of MPPI in planning mbrl.py

3

3.1 MPPI Pseudocode

def plan_model_mppi(env, state, ac_size, horizon, model, reward_fn,

n_samples_mpc=100, n_iter_mppi=10,

gaussian_noise_scales):

#Initialize state and sample random_actions

state_repeats = repeat(state, n_samples_mpc)

random_actions = sample_uniform_random_actions(n_samples_mpc, horizon, ac_size)

Compute initial rollout using the model

all_returns = use model to rollout actions and calculate returns

Iterate through a few iterations of MPPI

for iter in range(n_iter_mppi):

Weight trajectories by exponential returns

weights. Make sure to normalize

compute_exponential_return(all_return)

Compute weighted sum of actions

weighted_sum = sum(random_actions * weights)

compute mean and std of the best trajectories

action_mean = weighted_sum.flatten()

action_std = ones(weighted_sum.shape) * gaussian_noise_scales[iter]

Sample new actions

random_actions = sample_actions(action_mean, action_std, n_samples_mpc)

Perform rollout with new actions using the model

all_returns = use model to rollout actions and calculate returns

use the first action from the best trajectory

best_ac = first action from best trajectory

3.2 Expected Results

We provide an example below which serves as a reference for the expected output; You are expected to get a
success rate higher than 0.25. please note that the success rate and reward may fluctuate:

$ python main.py --model_type single --plan_mode mppi

using device cuda

Episode: 0, reward: -45.0685292711599, max path length: 50

Episode: 1, reward: -8.028816349416811, max path length: 50

Episode: 2, reward: -11.181899229796787, max path length: 50

Episode: 3, reward: -10.187376193755673, max path length: 50

Episode: 4, reward: -7.974100628605427, max path length: 50

Episode: 5, reward: -12.418430370016777, max path length: 50

Episode: 6, reward: -9.837710231454908, max path length: 50

Episode: 7, reward: -8.775532875691537, max path length: 50

Episode: 8, reward: -10.247916344380988, max path length: 50

Episode: 9, reward: -9.131945952749149, max path length: 50

Episode: 10, reward: -5.747245489228223, max path length: 50

Episode: 11, reward: -8.331408758062988, max path length: 50

4

...

Success rate: 0.53

Average reward (success only): -5.447100768498477

Average reward (all): -7.627708552630046

3.3 Execution

1. Fill in the blanks in the TODOS in the plan model mppi function in planning.py.

2. Plot the reward during the training with default hyperparameters. Report the success rate and average
reward using the evaluate function that is provided to you.

4 Ensemble MPPI [30 points]

$ python main.py --model_type ensemble --plan_mode mppi

So far, you’ve implemented the standard single MPPI method where you train and use a single dynamics
model. We can further improve this by introducing model ensembles to incorporate uncertainty. As discussed
in lecture, ensemble MPPI is simply using an ensemble multiple networks instead of just one network so as to
incorporate uncertainty. By leveraging multiple network predictions, the ensemble captures model uncertainty.
In this setting, MPPI will not just take returns over a single rollout but rather will average the returns from
rollouts across multiple elements of the ensemble. In doing so we take the expected return over ensemble
elements rather than a single, potentially wrong model. Planning with ensemble MPPI is very similar to
single MPPI but we will just roll out K different models with the same actions and average rewards across
them for MPPI.

Now when training ensemble models, ensuring diversity is very important to prevent model collapse. To do
so, we can have different models optimized differently. For example, each model can have their separate
optimizer, batch size and learning rate, or use different architectures. The diversity helps the predictions are
not overly biased by the single network, leading to a more stable and accurate policy. In this part, you will
train an ensemble MPPI, with each model trained using a separate optimizer, learning rate, and batch size.
In particular, you want to instantiate K separate optimizers using Adam, with different learning rates in the
range from 1e-4 to 1e-3 to train the ensemble of models. During training, each model potentially takes various
batch sizes such as ranging from 250 to 500. Please refer to Execution for details.

4.1 Expected Results

When you execute the code, you may get similar outputs as below. You are expected to get a success rate
higher than 0.4. Please note that the success rate and reward may fluctuate.

$ python main.py --model_type ensemble --plan_mode mppi

Episode: 0, reward: -43.46004802481881, max path length: 50

Episode: 1, reward: -10.8674283885565, max path length: 50

Episode: 2, reward: -12.883924277131664, max path length: 50

Episode: 3, reward: -8.933863638550225, max path length: 50

Episode: 4, reward: -8.313068222586896, max path length: 50

Episode: 5, reward: -7.589171558519515, max path length: 50

5

Episode: 6, reward: -9.222474745213445, max path length: 50

Episode: 7, reward: -7.393583362317796, max path length: 50

Episode: 8, reward: -6.579779976928853, max path length: 50

Episode: 9, reward: -7.697173480373474, max path length: 50

Episode: 10, reward: -6.232915190180099, max path length: 50

Episode: 11, reward: -8.142131283083632, max path length: 50

...

Success rate: 0.62

Average reward (success only): -5.194262059586056

Average reward (all): -6.475862579254006

4.2 Execution

1. Implement the get ensemble rewards method in planning.py.

2. Add Ensemble MPPI in the plan model mppi function in planning.py. Your goal here is to iteratively
rollout each model and average returns over models.

3. Fill in banks in the code marked with TODO in train model function in train model.py. Your goal
here is to train each model with a different batch size.

4. Plot the return during the training with default hyperparameters. Report the success rate and average
reward using the evaluate function that is provided to you.

5 Discussion [10 points]

1. Compare RandomMPC with shooting, MPPI and Ensemble MPPI. Discuss the strengths and weaknesses
of each method.

2. Why is diversity important in an ensemble model? What techniques did you use in the homework to
improve diversity in the ensemble MPPI?

6 Submission

We will be using the Canvas for submission of the assignments. Please submit the written assignment answers
as a PDF. For the code, submit a zip file of the entire working directory.

6

	Code Overview
	Random MPC with Shooting [30 points]
	Random MPC with Shooting Pseudocode
	Expected Results
	Execution

	Model Predictive Path Integral (MPPI) [30 points]
	MPPI Pseudocode
	Expected Results
	Execution

	Ensemble MPPI [30 points]
	Expected Results
	Execution

	Discussion [10 points]
	Submission

