Reinforcement Learning
Autumn 2024

Abhishek Gupta
TA: Jacob Berg

Logistics

Homework 1 to be released on Wednesday 10/9
PyTorch tutorial on Wednesday 2-3:30pm Gates 287

Seeded idea groups and papers to be released today EOD on
EdStem

- Paper is for everyone to read, so you can participate in the discussion.

Sample project ideas to be released on Thursday 10/10

L ecture outline

Recap: Multimodal Imitation Learning + DAgger

|

Addressing the pitfalls of DAgger + Imitation wrap-up

l

Deriving the Policy Gradient

|

What makes the Policy Gradient Challenging? - Variance

Let's try and understand where the problem lies?

Behavior cloning has challenges in both theory and practice

ZE(Staat)pre(St,at) lc(se,a4)] <O 6H2)
¢

Underfitting Compounding error

ro(a # 7 (s1)]s0) < € < O(cH")

How does this reflect on imitation learning?

Let us consider a case with Gaussian policy

arg max E(s+.a%)~D [log mg(a™|s™)]

A combination of distributional expressivity and objective lead to mode averaging

Fffects of choice of f-divergence on behavior

Different divergences lead to different properties

By opr, () [DrL(T(|87)] |70 (-[57))] " Eoenp, () [Dr(me(]s7), mo(-]s"))]

Forward KL (behavior cloning) More general class of divergences

p()
f(qmﬂ

Forward KL (mode covering) f(af) = X log(aﬁ)
— — = = Reverse KL (mode seeking) f(:C) = — log(:c)

Df(p(CC), Q(:U)) — Eq(ac)

or Use aricher distribution class!

: Y,
So how do we fix BC: (Change my)

Let's try and understand where the problem lies?

Behavior cloning has challenges in both theory and practice

ZE(Staat)pre(St,at) lc(se,a4)] <O 6H2)
¢

1
1007
N .
50:‘\ N
\y
(é PN

Underfitting Compounding error

— tl“dilli]lg tre
— T eXI)ecte(
o 77“‘—7"‘7-‘-:;7‘_‘ 100

o a 70 =1

2 A\. B s En :u

\ s :
.‘.\ ->-<-——\->-‘- ‘ 20 30 :
o fme

ro(a # 7 (s1)]s0) < € < O(cH")

What is the general principle?

— training trajectory
— g expected trajectory

stability

100

Corrective labels that bring you
back to the data

Ta

x Z3 T f(.
= = 2 —'»' see -—».t_f_(_)'
¢ --.0\ @
0 T1 “
§32 o %f()
Tt
61\37.2_ L3 T
’__-...—-— = e m R
0 T ‘
.
T

Concrete Instantation: DAgger

can we make pqata(0t) = D, (04)7?

idea: instead of being clever about p;,(0:), be clever about pgata(0¢)!

DAgger: Dataset Aggregation

goal: collect training data from p;,(0;) instead of pgata(0¢)
how? just run mg(a;|o;)

but need labels a;!

1. train mg(a;|os) from human data D = {07,a1,...,0n,ayN}
2. run my(as|o;) to get dataset D, = {01,...,0p/}

3. Ask human to label D, with actions ay

4. Aggregate: D < DU D,

Ross et al. ‘11

What's the problem?

1. train my(as|os) from human data D = {o1,a1,...,0n,an}
2. run mg(az|oy) to get dataset D, = {01,...,05}
3. Ask human to label D, with actions a;

4. Aggregate: D < DU D,

L ecture outline

Recap: Multimodal Imitation Learning + DAgger

|

Addressing the pitfalls of DAgger + Imitation wrap-up

l

Deriving the Policy Gradient

|

What makes the Policy Gradient Challenging? - Variance

How might we fix this?

"Generate”
corrective labels ——

automatically

1. train my(as|os) from human data D = {o1,a1,...,0n,an}

2. run mg(az|os) to get dataset D = {01,...,05/} +
3. Ask human to label D, with actions a;
4. Aggregate: D < DU D,

Do at data
collection time

How might we fix this?

1. train my(as|os) from human data D = {o1,a1,...,0n,an}
2. run mg(az|os) to get dataset D = {01,...,05/} +

3. Ask human to label D, with actions a;
4. Aggregate: D < DU D,

Do at data
collection time

Noising the Data Collection Process

Key idea: force the human to correct for noise during training

Under noise during data collection

Maximize likelihood

. Supervisor - l
A Robot Yusa = argmin By,) — 3 log [my (mg (xe) xt,)
t=0

V'S
.

Noise Injection

DART: Noise Injection for Robust Imitation Learning, Laskey et al CoRL ‘17

Why might this not be enough?

Key idea: force the human to correct for noise during training

Supervisor

Robot

®

Noise Injection

Assumes that the expert can actually perform behaviors under noise
- Not always possible!

DART: Noise Injection for Robust Imitation Learning, Laskey et al CoRL ‘17

How might we fix this?

1. train my(as|os) from human data D = {o1,a1,...,0n,an}

"Generate” 2. run mg(az|oy) to get dataset D, = {01,...,05}

corrective labels —— 3. Ask human to label D, with actions a;
automatically 4. Aggregate: D «+ DUD,

Ross et al. ‘11

Can we avoid expensive online data collection/labeling?

—
-
—>
—> D={s,a,s’}
—>
SN— -

Generate corrective labels
to dataset for imitation

AbHa&
Deshpande

How can we find corrective labels without an expensive human in the loop
and online data collection?

Yunchu]JWnﬂng
Zhang Ke

Generating Corrective Labels From True Dynamics

Find states (s,), actions (a,) that lead back
to optimal states under true dynamics

NO--- min [lsg,; — f(s0, a0)|| < e

Easy with known dynamics

Intuition: find labels to bring OOD states back in distribution

But models are unknown! ®

CCIL: Continuity-based Data Augmentation for Corrective Imitation Learning, Ke et al ‘24
Data Efficient Behavior Cloning for Fine Manipulation via Continuity-based Corrective Labels, Deshpande et al ‘24

Generating Corrective Labels with Learned Dynamics

Ok models are unknown,
let’s learn them!

(s) [(50000) = st 2]

]
s

-

O ’
| 4

. * L
But learned dynamics f,; are not globally accurate? Isip1 — fo(se, ae)|| < e
1 Find states (s,), actions (a,) that lead back to
Under approximately Lipschitz smooth optimal states under tr4e learned dynamics,
models, trust models around training data where learned dynamics can be trusted
min ||s;, 1 — fe(st,ar)] < € - Corrective label

St, At
s.t||sy — st|| < e, ||lay — at]| < eg «—— Close to data

CCIL: Continuity-based Data Augmentation for Corrective Imitation Learning, Ke et al ‘24
Data Efficient Behavior Cloning for Fine Manipulation via Continuity-based Corrective Labels, Deshpande et al ‘24

How well does generating corrective labels work?

With corrective labels Without corrective labels

Altonomous (1x)

CCIL: Continuity-based Data Augmentation for Corrective Imitation Learning, Ke et al 24
Data Efficient Behavior Cloning for Fine Manipulation via Continuity-based Corrective Labels, Deshpande et al ‘24

How well does generating corrective labels work?

With corrective labels

Without corrective labels

So does this solve all the issues in imitation?

Frontiers in Imitation Learning

Non-Markovian Demonstrators Characterizing generalization

Humanoid Transformer }

Action-Free Data

N

-

=, el 2 'y (&
;) ! | gy — P L ¢
pltiscoteh €gg o
5 A -
SS9 putidewn SRONges 5
i y LY i
<
2 B { b -

placeipacketioficumin seeds,on shelf

Frontiers in Imitation Learning

Human

Data Curation and Quality Embodiment Shift

State Action
Coverage ‘ consistency

Teleoperation Interfaces

Frontiers in Imitation Learning

Learning how to retry and improve

Task Plan Generation
Sub-goal 1: Sub-goal 2: Sub-goal 3: . Collected
C@ "Open the top drawer ') Grasp the top drawer handle Pull out the drawer handle Check for drawer open Successful task trajectory demonstrations
Trajectory 9
Filtering -

Action Sub-goal
& =P Generation - Verification
2 .. ° Module A Module
Verification condition: E Temporary Goal State
'Did the robot gripper grasp Generated action code
the top drawer handle?'

Error Recovery

Duan et al

Some cool imitation videos

1x and tesla humanoid robots

® 1X END-TO-END AUTONOMY
UPDATE, JAN 2024

ALOHA and CherryBot Fine Manipulation

Cook Shrimp

(autonomous)

6x speed

TRI Diffusion Policies

Perspectives on Imitation

supervised We(at |0t>
learning

m Pros:

= Easyto use, no additional infra

= Can sometimes be unreasonably effective

m Cons:

= Challenges of compounding error, multimodality

= Doesn’t really generalize

= Very expensive in terms of data collection!

L ecture outline

Recap: Multimodal Imitation Learning + DAgger

|

Addressing the pitfalls of DAgger + Imitation wrap-up

l

Deriving the Policy Gradient

l

What makes the Policy Gradient Challenging? - Variance

Class Structure

14

/—[Imitation Learning]\
/

4 Model-free Reinforcement Learning

~

Policy Gradient ADP Model-based Reinforcement Learning
J
\—[Unifying Perspectives on RL and IRL]—/
Frontiers A
Exploration Learning from Prior Data Learning across tasks
J

Objective of Reinforcement Learning

* Rules for choosing actions

——————————————————————— A
f

:[AgentJ— - “

state | | reward action Policy
X R A, 9

< 1 g .

| . _S.. | Environment -~ _ : J
| :
& i

T
max K-, E r(s¢, ar)
0
T | t=0

Needs to be learned
Trajectory sampled using policy

Finite horizon vs infinite horizon objective

’_l Agent l
T state | | reward action
max Erer, Z’r St, Q) S| R A,
i R (
t=0 §< S.. | Environment]4—
Finite horizon Infinite horizon discounted
Ewg T(Sh at) Eﬂ‘@ Z /ytr(sh CLt)
T | t=0 Time-dependent policy t=0

(not stationary)

A
1 Time-independent (stationary) policy
t
e Z vr(st, at)} - Need discount to prevent blow up

Lemma: there always exists a stationary optimal policy

Objective of Reinforcement Learning

state reward
S, R,

i

:[AgentJ—
4 R (
S | Environment]4

max K-,

T

Trajectory sampled using policy

&

T
E T Staat

| =0

Assumptions:
action 1. Rewards are additive
A, 2. Dynamics can be sampled from,
but functional form is unknown
3. Rewards are provided as every
state is visited, functional form
is unknown

Connection to Optimal Control

Closely related: typically problem of finding control given a plant

X
min/ L(t,z(t),u(t)).dx
€Ir,u

w.r.t

Main difference: model known vs unknown
Minor differences: Cost vs reward, discrete vs continuous time

How should we optimize this objective?

’,l Agent Jl

state reward

action

7

Gradient Ascent

\.

Environment]4

Dynamic Programming

Each method has it’s own +/-

Model-Based Optimization

L ecture outline

Deriving the Policy Gradient

What makes the Policy Gradient Challenging? - Variance

What makes the Policy Gradient Challenging? — Covariant Parameterization

Gradient Ascent

p(samples|d)

argmax

p(samples|d)

argmax

Simple view — move the parameters in the
direction of the gradient of the objective

0ii1 =0, + aVgJ(0)|g—o,

More later: can be derived as steepest ascent in Euclidean norm

Gradient Ascent for Supervised Learning

Recall our imitation learning objective arg m@ax E(S* a*)~D [lOg To (CL* \S*)]

Let’s apply gradient ascent

VGE(s*,a*)ND log mg(a™|s™)]
Vo /p(s* ,a™) log mg(a™|s™)ds™ da*

/p(s*, a*)Vologme(a™|s™)ds* da™

IEj’(s* ,a*)~D [VQ 10g . (CL* ’S*)]

Compute gradient and average

Ok let's do gradient ascent for the RL objective

A
max Err, Z r(se, az) REINFORCE gradient descent (RL)
| t=0 R
) " VQE:UNZDQ () [f(aj)]
/pe (T)R(T)dT (Cannot simply compute average of expectation)

Standard gradient descent (supervised learning)

Gradient wrt expectation variable, not of integrand! VeEa;Ng(a:) [fe (x)]

(Whiteboard) (Gradient passes inside the expectation -

compute gradient and average)

14

Taking the gradient of sum of rewards

A
max]ETNM T(St, at) Let’s take the gradient of this objective
¢ | t=0
J(@) — /pg (T)R(T)d(T) Let’s think about this from the trajectory view
We need to express this in a way that we can
Vo J(@) / (T)R(T)d(T) evaluapte with expectat)i/ons
Po(T)
V = / Vopo(T)R(7)d(T
= [Vamsn) @) = [EEEopo(r)R(r)(r)
/ T)Vologpy(7)R(T)d(1) = Ep(r) [V logpe(7)R(7)]

dlog(z) dlog(z)dr 1dx REINFORCE trick

d0 — de d0 xdf

Use chain rule

15

Taking the gradient of return

Initial State

Dynamics Policy @ @ @ @

pe(T) = P(SO)HtTop(3t+1‘3taat)”(at|8t) @ @ @ @

log po(T)

(Ancestral sampling)

T—1

= log p(s0) + Z log p(st+1]st, at) + log m(at|st)

t=0

-1
Vg logpg(T) = Vg 1>g{(so) +) Vs 10%%4&% at) + Vo log m(az|s:)

tOTl

Vo logpe(T Z Vg log m(ay] St)\

t—0 Model Freel!

Taking the gradient of return

T
VoJ(0) = Erp,r) | Vologpa(r Zr St, Q)

| t=0 _
- . _
VoJ(0) =E 5 ~p(so) Z Vo logmg(as|st) Z r(se, at)
st+1~D(St+1]5¢,a4) | t=0 t’'=0 _
CLtN7T(a,t|St)
| N7 T o
~ Z Z Vo log mo(aj|s}) Z r(sy,ay) (approximating using samples)
1=0 t=0 t’=0

(Monte-Carlo approximation)

What does this mean?

17

VoJ(0) :/ 0(7)Vglogpg(T

T
S‘ S‘ Vo log mg(al|s?) Z r(st,al)

zOtO

Increase the likelihood of actions in high return trajectories

R =30
R =100
R=-10

Density

0.5 A

0.4 1

0.3 A

0.2 A1

0.1 A

0.0 A

t'=0

0 1

Action

Resulting Algorithm (REINFORCE)

18

]

V-l i
VoJ(0) = / po(T)Vologpg(T)dr {COIIeCtData J [Takesci;d‘e”t
—— ——

0ii1=0; + aVeJ(0)|g=s,

REINFORCE algorithm:
On-policy —==> 1. sample {7?} from my(a¢|s;) (run it on the robot)

2. VoJ(0) = Y, (X, Ve log me(ailsh)) (3, r(si, al))
3. 0« 0+aVeJ(6)

19

How is this related to supervised learning?

Reinforcement Learning Supervised Learning

VoJ(0) = /pg(T)Vg log pg(T)dT mQaX]E(a:,y)ND log pe(y|z)]

T
. 1 g
_ YYVQ logﬂ'@ a’t‘st) Z r(si,,afg,) ~ N Zve lnge(y'L’(I;z)

zOtO t’'=0

PG = select good data + increase likelihood of selected data

How do we implement this?

19

REINFORCE algorithm:

= 1. sample {7'} from mg(as|s;) (run it on the robot)

| 2. VoJ(0) = >, (Zt Vo log 7r9(a§'|s§)) (Zt r(st, ai))

1 3. 0« 0+aVeJ(0)

Vo (0) = / po () Vg log po(r)dr ~

1

N

N T T
>) Velogm(ajlsy) Y r(sh,al)
1=0 t=0 t’'=0

Compute gradients with autodiff ~ Sum up rewards in a trajectory

How do we implement this?

19

Maximum likelihood:

Given:

actions - (N*T) x Da tensor of actions

states - (N*T) x Ds tensor of states

Build the graph:

logits = policy.predictions(states) # This should return (N*T) x Da tensor of action logits
negative likelihoods = tf.nn.softmax_cross_entropy with logits(labels=actions, logits=logits)
loss = tf.reduce_mean(negative likelihoods)

gradients = loss.gradients(loss, variables)

AStandard maximum likelihood training

How do we implement this?

19

REINFORCE algorithm:

@ 1. sample {7'} from my(a;|s;) (run it on the robot)

2. Vo (6) ~ X (5, Vologmo(ails)) (5, 7(sihad)
- 3 0«0+ aVyJ(0)

Policy gradient:

Given:

actions - (N*T) x Da tensor of actions

states - (N*T) x Ds tensor of states

q_values - (N*T) x 1 tensor of estimated state-action values —2 Sum of rewards

Build the graph:

logits = policy.predictions(states) # This should return (N*T) x Da tensor of action logits
negative_likelihoods = tf.nn.softmax_cross_entropy with logits(labels=actions, logits=logits)
weighted negative likelihoods = tf.multiply(negative likelihoods, q_values)

loss = tf.reduce_mean(weighted negative likelihoods)

gradients = loss.gradients(loss, variables)

Formalizes the notion of trial and error

19

How do we implement this?

Vo log mg(at|st)
Let’s try it for a Gaussian
m(a| s)

=m(a| pne(s),Xe(s))

! ! ! s) H(x — S
= (a | Ho(s): B0(9)) = s (06— o) Boa) o))

4) s)
_ : HS Easier for distributions
Similar for categorical or N ANAY .
o S SR R where likelihood can be
other distributions AV exp expressed symbolicall
CNENE log2(s) — X(s) P y y

21

Does this work?

HalfCheetah-v1

2000

Comparison of 1500 P e
RL algorithms 1000 g
iIn Humanoid-v2 500
using CleanRL 0

-500

0 1000000

Kind of?

L ecture outline

Recap: Multimodal Imitation Learning + DAgger

|

Addressing the pitfalls of DAgger + Imitation wrap-up

l

Deriving the Policy Gradient

l

What makes the Policy Gradient Challenging? - Variance

What makes policy gradient challenging?

21

Hard to tell what matters without many samples

What we do
Vo (0) = / po(7)V o log po (7)dr
1 o . . . ‘/’*\‘k~/'//./’4k_./ﬂ
~ N Z Z Vo log m(az|s;) Z r(si;ap) | Single sample estimate

1=0 t=0 t'=0

For every (s, a) pair, weight by only the sum of rewards in the current trajectory

Couples together all actions Susceptible to scale variations Susceptible to lucky samples

Makes policy gradient unstable, requires huge numbers of samples and huge batch size

What makes policy gradient challenging?

What we do
1 N T T | Single sample estimatle
b Z Z Vo log mg(ay|si) Z r(sy,ay)
i=0 t=0 t'=0 What we actually want

High variance estimator!!

Hard to tell what matters without many samples

L J

Averaged return estimate

¢ = e e e =

What makes policy gradient challenging?

21

Hard to tell what matters without many samples

What we do
Vo (0) = / po(7)V o log po (7)dr
1 o . . . ‘/’*\‘k~/‘//./’4k_./ﬂ
~ N Z Z Vo logmg(ay|s;) Z (51, 0y) | Single sample estimate

1=0 t=0 t'=0

For every (s, a) pair, weight by only the sum of rewards in the current trajectory

Couples together all actions

Variance Reduction with Causality

ldea: Trajectory returns depend on past and future, but we only care about the
future, since actions cannot affect the past. Instead, consider “return-to-go”

—vielogﬂe at|3t)z (Si/,ai,) /\/\/
1=0 t=0 =0

{ J

(J
|

Includest’ < t
Ignore past terms

Full trajectory return

—

. N T T /—\\,i/./—‘\/
=D Velogm(ailsi) Y r(si,ai)
1=0t O ' '

— t/ =t
Return to go

What makes policy gradient challenging?

21

Hard to tell what matters without many samples

What we do
Vo (0) = / po(7)V o log po (7)dr
1 o . . . ‘/’*\‘k~/‘//./’4k_./ﬂ
~ N Z Z Vo logmg(ay|s;) Z (51, 0y) | Single sample estimate

1=0 t=0 t'=0

For every (s, a) pair, weight by only the sum of rewards in the current trajectory

Susceptible to scale variations

Policy gradient is susceptible to scale variations

high variance

Arbitrarily uncentered, scaled returns can lead to huge variance:
-=> Imagine all rewards were positive, every action would be pushed up, some more than others
- What if instead, we pushed down some actions and pushed up some others (even if rewards are positive)

Credit: Sergey Levine

Variance Reduction with a Baseline

ldea: We can reduce variance by subtracting a current state dependent function
from the policy gradient return

T
Vo log mg(alls?) Z r(stal) — b(s;)

t'=t

Baseline: Centers the returns, reduces variance

But does this increase bias??

Variance Reduction with a Baseline

T
//p(St,a,t)VQ log g (a|st) {Z r(sy,ap) b(st)} dsy day
sJa Py

//p(st,at)ve log g (a¢|st)b(st) dsy day
SJA

T
//p(St at)Velogﬂe at\St {ZT } ds; day —
SJA

t'=t

———————~

-—— e = = mm =

Let us show this is O!

Variance Reduction with a Baseline

//p(st,at)Vg log mg(as|s;) [b(sy)] dsyday ://p(st)m(at]st)VQ log g (a¢|s¢) [b(s¢)] dsiday

_ / p(s)b(s1) / ro(as]50) Vo log mo(ar|s,)dagds,
_ / p(s0)b(s,) / Vormo(as|s)dasds,

:/p(st)b(St)VQ/779(@t|3t)daftd3t — /p(St)b(St)VG(l)dSt — (

Unbiased!

Learning Baselines

Baselines are typically learned as deep neural nets from Rs - R’
Fully-

_ connected
Convolution layer
layer 1 Convolution
layer 2
y 4"\” ~~~~ =
12 . at-- 12
6 PPN L '.:‘ :.,‘ "'”
........ sat 11 ig 6{. 28
=6 2 " o S PN
12 3 2
3 - W e £
9 Max pooling "@-
Max pooling ayers
layer 1 Output
layers

VoJ(0) =E,

Z Vo log mg(at|s:) (Z r(s¢r, ap) — V(&t))]

t=0 t'=t

j=1 t=1

Minimize with Monte-Carlo regression at every iteration, club with policy gradient

Why do baselines really reduce variance?

Let's define variance: Var[z| = E[z*] — E[z]? VoJ(0) = Errpy(r)[Vologpe(T)(r(T) —b)]

Whiteboard

L ecture outline

Recap: Multimodal Imitation Learning + DAgger

l

Addressing the pitfalls of DAgger + Imitation wrap-up

l

Deriving the Policy Gradient

l

What makes the Policy Gradient Challenging? - Variance

Take a deeper look at REINFORCE

T

Vo J(0) = /pg(T)Vg log pg(7)dT ~ ZZVQ log 7 (at|s?) Z r(st,at)

1=0 t=0 '—=()

Gradient ascent is steepest ascent on linear approximation under the Euclidean metric!

Take a deeper look at REINFORCE

Vo J(0) = /pg(T)Vg log pg(T)dT = ZZVQ log 7 (at|s?) Z r(st,at)

1=0 t=0
Gradient ascent is steepest ascent on linear approximation under the Euclidean metric!

max J(0;) + VoJ(0)|p=p,(60 — 0;) Linear approximation
(0 —0,)1(0—-6;) <e Quadratic Constraint

|

0=0,+ &V@J(@)’gzgi

When might this fail?

Large step sizes may cause collapse Sensitive to Policy Parameterization

—

Very different!

\ 4

Must use very small step sizes, slow! Can struggle for a deep neural network!

Parameterization dependence of PG

Sensitive to Policy Parameterization

L(0) = 6, + 6, L(¢) = ¢1° + ¢5
¢ = 07
P2 = 92_1
Vo, L = Vs, L =0.5¢7°° =0.507"

V@QL — Not covariant! VQSQL — _%—2 — _‘93

Modified Constraint on Policy Gradient

max J(9)+V9J()|9 6, (0 0;) max J(0;) + VoJ(0)|o=s,(0 — 6;)

(0 —6,)"G(0—0;) <e
(ﬁ =

Oiv1 = 0; + aG~'VyJ(0)]g=s,

_

Adaptive choice of G can avoid sensitivity to policy parameterization!

Rescales according to G

Covariant Policy Gradient Updates

max J(0;) + VoJ(0)|o=g, (0 — 0;)

T What should G be?

max J(6;) + Ve J(0)|g=g, (0 — 0;) Let us use the constraint as
KL divergence on the policy

Dxkr. (779 ‘ ‘79@') S € (29 order Taylor expansion)

Measures functional distance, not parameter distance

Resulting “Natural” Policy Gradient

4 max J(60;) + VeJ(0)|g=e, (0 — ;) A
Dxr,(mo||me,) < €
2nd order approximation of KL = Fisher Information Metric
L F =E., |[(Vologm)(Vglog W@)T]/
e max J(0) + VoJ (6)]o—s, (0 0, A

(0 —0,) ' F(0—0;) <e

Resulting update (9@'_|_1 — 92 -+ CMF_1VQ J((g) ’9:91. Covariant to parameterization

- /

Natural Policy Gradient in A

ction

0

>
-t

w
Expected Return

Trials [linear]

0 100 200
(a) Performance.

300

400

(b) Imitation learning.

(c) Initial reproduction.

(d) After reinforcement
learning.

-10!

§ - -

g

o ' N /
1102 g |/

w “/’

r Rollouts [log-scale]
-10°

10° 10' 10° 10° 10*

(b) Minimum motor command with mo-
tor primitives

.10!
£
3
° B e e)
o ——
B T R
4102 g-
w /
o8 Rollouts [log-scale]
-1

10° 10 10®2 10° 10* 10° 108

(c) Passing through a point with splines

-10' —

Expected Return

-102

Rollouts [log-scale]
10° 10! 102 103 104

(d) Passing through a point with motor
primitives

—— Finite Difference Gradient
Vanilla Policy with i
Vanilla Policy Gradient with time-variant baseline
Episodic Natural Actor-Critic with single offset basis functions

—— Episodic Natural Actor-Critic with time-variant offset basis functions

Peters, Schaal ‘08

L ecture outline

Deriving the Policy Gradient

What makes the Policy Gradient Challenging? - Variance

What makes the Policy Gradient Challenging? — Covariant Parameterization

Fin.

