

Reinforcement Learning Autumn 2024

Abhishek Gupta

TA: Jacob Berg

Lecture outline

Recap: Imitation Learning + Why it is hard

Multimodality and Underfitting in Imitation

Compounding Error in Imitation

Frontiers in Imitation

Framework for RL - Markov Decision Process

Augment Markov chain with rewards and actions

States: \mathcal{S} Initial state dist: $ho_0(s)$

Actions: \mathcal{A} Discount: γ

Rewards: \mathcal{R}

Transition Dynamics - $p(s_{t+1}|s_t, a_t)$

Markov property $p(s_0, s_1, s_2, a_0, a_1, a_2) = p(s_0)p(a_0|s_0)p(s_1|s_0, a_0)p(a_1|s_1)p(s_2|s_1, a_1)p(a_2|s_2)$

Trajectory
$$au = (s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_T, a_T, r_T)$$

Reinforcement Learning Formalism

Idea 1: Imitation Learning via Supervised Learning

Given: Demonstrations of optimal behavior

 $\arg \max_{\theta} \mathbb{E}_{(s^*, a^*) \sim \mathcal{D}} \left[\log \pi_{\theta}(a^* | s^*) \right]$

Behavior Cloning

Goal: Train a policy to mimic the demonstrator

Idea: Treat imitation learning as a supervised learning problem!

 $\mathbf{o}_{t} \qquad \mathbf{a}_{t} \qquad \mathbf{a}_{t}$

Idea 1: Imitation Learning via Supervised Learning

Given: Demonstrations of optimal behavior

Goal: Train a policy to mimic the demonstrator

 $\arg \max_{\theta} \mathbb{E}_{(s^*, a^*) \sim \mathcal{D}} \left[\log \pi_{\theta}(a^* | s^*) \right]$

Discrete vs continuous

Maximum likelihood

```
if isinstance(env.action_space, gym.spaces.Box):
    criterion = nn.MSELoss()
else:
    criterion = nn.CrossEntropyLoss()
# Extract initial policy
model = student.policy.to(device)
def train(model, device, train_loader, optimizer):
  model.train()
  for batch idx, (data, target) in enumerate(train loader):
      data, target = data.to(device), target.to(device)
      optimizer.zero_grad()
     if isinstance(env.action_space, gym.spaces.Box):
         if isinstance(student, (A2C, PPO)):
            action, _, _ = model(data)
         else:
            action = model(data)
         action_prediction = action.double()
      else:
         dist = model.get_distribution(data)
         action_prediction = dist.distribution.logits
         target = target.long()
      loss = criterion(action_prediction, target)
      loss.backward()
      optimizer.step()
```

So does behavior cloning really work?

Imitation Learning ≠ Supervised Learning

Compounding error!

$$\arg\max_{\theta} \mathbb{E}_{(s^*,a^*)\sim\mathcal{D}} \left[\log \pi_{\theta}(a^*|s^*)\right] \qquad \qquad \mathbb{E}_{(s,a)\sim\rho(\pi)} \left[1(a=a^*)\right]$$
Not the same!

How well does BC do?: Intuition

Behavior cloning has quadratically compounding error

$$\pi_{\theta}(a \neq \pi^*(s_t)|s_t) \leq \epsilon$$
Horizon H

If you fall off, assume the worst

$$\mathbb{E}\left[\sum_{t} c(s_{t}, a_{t})\right] \leq \epsilon H + \dots + \dots$$

$$O(\epsilon H^{2})$$
 Union bound

Let's try and understand where the problem lies?

Behavior cloning has challenges in both theory and practice

Lecture outline

Recap: Imitation Learning + Why it is hard

Multimodality and Underfitting in Imitation

Compounding Error in Imitation

Frontiers in Imitation

Let's try and understand where the problem lies?

Behavior cloning has challenges in both theory and practice

But won't a bigger neural net just solve this?

Behavior cloning can underfit the data

$$\sum_{t} \mathbb{E}_{(s_t, a_t) \sim p_{\pi_{\theta}}(s_t, a_t)} \left[c(s_t, a_t) \right] \le O(\epsilon H^2)$$

$$\pi_{\theta}(a \neq \pi^*(s_t)|s_t) \leq \epsilon$$
for $s_t \sim p_{\text{train}}(s_t)$

May not be able to satisfy this

Q: won't a bigger model just solve the problem?

Kind of, but there's a fundamental problem!

Distributional Expressivity

 Policy expressivity is a combination of expressivity of the function approximator and of the distribution family

Tradeoff between expressivity and tractability

How does this reflect on imitation learning?

Let us consider a case with Gaussian policy

$$\arg \max_{\theta} \mathbb{E}_{(s^*, a^*) \sim \mathcal{D}} \left[\log \pi_{\theta}(a^* | s^*) \right]$$

A combination of distributional expressivity and objective lead to mode averaging

Let's take a closer look at the objective

One instance of a broader class of divergences – f divergences $D_f(p(x),q(x)) = \mathbb{E}_{q(x)}\left[f\left(\frac{p(x)}{q(x)}\right)\right]$

Effects of choice of f-divergence on behavior

Different divergences lead to different properties

$$\mathbb{E}_{s^* \sim p_{\pi_e}(.)} \left[D_{\text{KL}}(\pi_e(.|s^*) || \pi_{\theta}(.|s^*)) \right] \longrightarrow \mathbb{E}_{s^* \sim p_{\pi_e}(.)} \left[D_f(\pi_e(.|s^*), \pi_{\theta}(.|s^*)) \right]$$

Forward KL (behavior cloning)

More general class of divergences

$$D_f(p(x), q(x)) = \mathbb{E}_{q(x)} \left[f\left(\frac{p(x)}{q(x)}\right) \right]$$

– – – Forward KL (mode covering)
$$f(x) = x \log(x)$$

$$f(x) = -1$$
 Reverse KL (mode seeking) $f(x) = -\log(x)$

So how do we fix BC?

Use a different f-divergence! (Change f)

or Use a richer distribution class! (Change π_{θ})

Using alternative f-divergences: Reverse KL

- Reverse KL helps, is mode seeking $D_{\mathrm{RKL}}(\pi_e(.|s^*),\pi^{\theta}(.|s^*)) = \mathbb{E}_{\pi^{\theta}(.|s^*)} \left[\log \left(\frac{\pi^{\theta}(.|s^*)}{\pi_e(.|s^*)} \right) \right]$
- Challenge requires known expert likelihood
- We need a sample based estimate!

Imitation Learning as f-Divergence Minimization

Liyiming Ke¹, Sanjiban Choudhury¹, Matt Barnes¹, Wen Sun², Gilwoo Lee¹, and Siddhartha Srinivasa¹

Go read this!

$$\min_{\theta} \mathbb{E}_{\pi^{\theta}(.|s^{*})} \left[\log \left(\frac{\pi^{\theta}(.|s^{*})}{\pi_{e}(.|s^{*})} \right) \right] \qquad \qquad \min_{\theta} \max_{\phi} \mathbb{E}_{a \sim \pi^{\theta}(.|s^{*})} \left[\phi(a) \right] - \mathbb{E}_{a \sim \pi_{e}(.|s^{*})} \left[f^{*}(\phi(a)) \right]$$
(Intractable) (Tractable – GAN style optimization)

Effects of choice of f-divergence on behavior

Different divergences lead to different properties

$$\mathbb{E}_{s^* \sim p_{\pi_e}(.)} \left[D_{\text{KL}}(\pi_e(.|s^*) || \pi_{\theta}(.|s^*)) \right] \longrightarrow \mathbb{E}_{s^* \sim p_{\pi_e}(.)} \left[D_f(\pi_e(.|s^*), \pi_{\theta}(.|s^*)) \right]$$

Forward KL (behavior cloning)

More general class of divergences

$$D_f(p(x), q(x)) = \mathbb{E}_{q(x)} \left[f\left(\frac{p(x)}{q(x)}\right) \right]$$

- - - Forward KL (mode covering)
$$f(x) = x \log(x)$$

– – - Reverse KL (mode seeking)
$$f(x) = -\log(x)$$

So how do we fix BC?

Use a different f-divergence! (Change f)

<u>or</u>

Use a richer distribution class! (Change π_{θ})

Using Richer Policy Distribution Classes

Multimodal behavior \rightarrow use more <u>expressive</u> probability distributions, no mode averaging issues

- 1. Output mixture of Gaussians
- Latent variable models
- 3. Autoregressive discretization
- 4. Diffusion models
- 5. ...

Why might we fail to fit the expert?

- 1. Output mixture of Gaussians
- 2. Latent variable models
- 3. Autoregressive discretization
- 4. Diffusion models
- 5. ...

Why might we fail to fit the expert?

- 1. Output mixture of Gaussians
- Latent variable models

- 3. Autoregressive discretization
- 4. Diffusion models
- 5. ...

Why does this work?

first step:
$$p(a_{t,0}|\mathbf{s}_t)$$

second step: $p(a_{t,1}|\mathbf{s}_t, a_{t,0})$
third step: $p(a_{t,2}|\mathbf{s}_t, a_{t,0}, a_{t,1})$

$$p(a_{t,2}|\mathbf{s}_t, a_{t,0}, a_{t,1})p(a_{t,1}|\mathbf{s}_t, a_{t,0})p(a_{t,0}|\mathbf{s}_t)$$

$$= p(a_{t,0}, a_{t,1}, a_{t,2}|\mathbf{s}_t)$$

$$= p(\mathbf{a}_t|\mathbf{s}_t)$$

Why might we fail to fit the expert?

- 1. Output mixture of Gaussians
- 2. Latent variable models
- 3. Autoregressive discretization

- 4. Diffusion models
- 5. ...

Let's try and understand where the problem lies?

Behavior cloning has challenges in both theory and practice

Lecture outline

Recap: Imitation Learning + Why it is hard

Multimodality and Underfitting in Imitation

Compounding Error in Imitation

Frontiers in Imitation

Let's try and understand where the problem lies?

Behavior cloning has challenges in both theory and practice

 $\pi_{\theta}(a \neq \pi^*(s_t)|s_t) \leq \epsilon$

Compounding error

$$\leq O(\epsilon H^2)$$

Can we avoid compounding error in special cases?

Video: Bojarski et al. '16, NVIDIA

Why did that work?

What is the general principle?

Corrective labels that bring you back to the data

What might this mean mathematically?

Concrete Instantation: DAgger

```
can we make p_{\text{data}}(\mathbf{o}_t) = p_{\pi_{\theta}}(\mathbf{o}_t)?
idea: instead of being clever about p_{\pi_{\theta}}(\mathbf{o}_t), be clever about p_{\text{data}}(\mathbf{o}_t)!
```

DAgger: Dataset Aggregation

goal: collect training data from $p_{\pi_{\theta}}(\mathbf{o}_t)$ instead of $p_{\text{data}}(\mathbf{o}_t)$

how? just run $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$

but need labels \mathbf{a}_t !

- 1. train $\pi_{\theta}(\mathbf{a}_{t}|\mathbf{o}_{t})$ from human data $\mathcal{D} = \{\mathbf{o}_{1}, \mathbf{a}_{1}, \dots, \mathbf{o}_{N}, \mathbf{a}_{N}\}$ 2. run $\pi_{\theta}(\mathbf{a}_{t}|\mathbf{o}_{t})$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_{1}, \dots, \mathbf{o}_{M}\}$ 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_{t}

 - 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

DAgger Example

Ross et al. '13

What's the problem?

- 1. train $\pi_{\theta}(\mathbf{a}_{t}|\mathbf{o}_{t})$ from human data $\mathcal{D} = \{\mathbf{o}_{1}, \mathbf{a}_{1}, \dots, \mathbf{o}_{N}, \mathbf{a}_{N}\}$ 2. run $\pi_{\theta}(\mathbf{a}_{t}|\mathbf{o}_{t})$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_{1}, \dots, \mathbf{o}_{M}\}$ 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_{t} 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

$$\pi_{ heta}(\mathbf{a}_t|\mathbf{o}_t)$$
 \mathbf{o}_t \mathbf{a}_t

How might we fix this?

"Generate"
$$\begin{array}{c} \text{"Generate"} \\ \text{corrective labels} \\ \text{automatically} \end{array} \begin{array}{c} 1. \ \text{train} \ \pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t) \ \text{from human data} \ \mathcal{D} = \{\mathbf{o}_1, \mathbf{a}_1, \ldots, \mathbf{o}_N, \mathbf{a}_N\} \\ 2. \ \text{run} \ \pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t) \ \text{to get dataset} \ \mathcal{D}_{\pi} = \{\mathbf{o}_1, \ldots, \mathbf{o}_M\} \\ \hline 3. \ \text{Ask human to label} \ \mathcal{D}_{\pi} \ \text{with actions} \ \mathbf{a}_t \\ 4. \ \text{Aggregate:} \ \mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi} \end{array} \end{array}$$

$$\pi_{ heta}(\mathbf{a}_t|\mathbf{o}_t)$$
 \mathbf{o}_t
 \mathbf{a}_t

How might we fix this?

1. train $\pi_{\theta}(\mathbf{a}_{t}|\mathbf{o}_{t})$ from human data $\mathcal{D} = \{\mathbf{o}_{1}, \mathbf{a}_{1}, \dots, \mathbf{o}_{N}, \mathbf{a}_{N}\}$ 2. run $\pi_{\theta}(\mathbf{a}_{t}|\mathbf{o}_{t})$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_{1}, \dots, \mathbf{o}_{M}\}$ 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_{t} 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

$$\pi_{ heta}(\mathbf{a}_t|\mathbf{o}_t)$$
 \mathbf{o}_t
 \mathbf{a}_t

Noising the Data Collection Process

Key idea: force the human to correct for noise during training

Under noise during data collection

Noise Injection

Why might this not be enough?

Key idea: force the human to correct for noise **during** training

Assumes that the expert <u>can</u> actually perform behaviors under noise \rightarrow Not always possible!

How might we fix this?

"Generate"

1. train
$$\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$$
 from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{a}_1, \dots, \mathbf{o}_N, \mathbf{a}_N\}$

2. run $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$

3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t

4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

Can we avoid expensive online data collection/labeling?

Abhay Deshpande

Yunchu Zhang

Liyiming Ke

Generate corrective labels to dataset for imitation

How can we find corrective labels without an expensive human in the loop and online data collection?

Generating Corrective Labels From True Dynamics

Intuition: find labels to bring OOD states back in distribution

But models are unknown!

Easy with known dynamics

Generating Corrective Labels with **Learned** Dynamics

Ok models are unknown, let's learn them!

$$\min_{\hat{f}} \mathbb{E}_{(s_t, a_t, s_{t+1}) \sim \mathcal{D}} \left[\|\hat{f}(s_t, a_t) - s_{t+1}\|_2 \right]$$
 $\|s_{t+1}^* - \hat{f}_{\phi}(s_t, a_t)\| \leq \epsilon$

But learned dynamics \hat{f}_ϕ are not globally accurate?

Under approximately Lipschitz smooth models, trust models around training data

Find states (s_t), actions (a_t) that lead back to optimal states under true learned dynamics, where learned dynamics can be trusted

$$\min_{s_t, a_t} \|s_{t+1}^* - \hat{f}_{\phi}(s_t, a_t)\| \le \epsilon \longleftarrow \text{Corrective label}$$

s.t
$$||s_t^* - s_t|| \le \epsilon_1, ||a_t^* - a_t|| \le \epsilon_2$$
 Close to data

How well does generating corrective labels work?

With corrective labels

Without corrective labels

How well does generating corrective labels work?

With corrective labels

Lecture outline

Recap: Imitation Learning + Why it is hard

Multimodality and Underfitting in Imitation

Compounding Error in Imitation

Frontiers in Imitation

Frontiers in Imitation Learning

Non-Markovian Demonstrators

Humanoid Transformer •• •• •• •• ••

Characterizing generalization

Action-Free Data

Frontiers in Imitation Learning

Data Curation and Quality

Teleoperation Interfaces

Embodiment Shift

Frontiers in Imitation Learning

Learning how to retry and improve

Let's dive into a few

Accounting for Suboptimal Data

How can we use this suboptimal data, despite not reaching the target?

Hindsight relabeling for Imitation Learning

Key insight: maybe the data is not bad, it's just been labeled for the wrong problem!

Relabel the right goal in "hindsight"

Learn a multi-goal policy $\pi_{\theta}(a|s,g)$

Treat reached states as **optimal** goals

What does this result in?

Undirected play data

Goal-directed behavior

Dealing with non-Markovian demonstrators

Markov property $p(s_0, s_1, s_2, a_0, a_1, a_2) = p(s_0)p(a_0|s_0)p(s_1|s_0, a_0)p(a_1|s_1)p(s_2|s_1, a_1)p(a_2|s_2)$

Are human demonstrators Markovian?

If we see the same thing twice, we do the same thing twice, regardless of what happened before

Not necessarily!

Humans often rely on history

Mixtures of Markovian humans may not be Markovian

How can we deal with non-Markovian demonstrators?

Learn
$$\pi_{\theta}(a_t|s_t,s_{t-1},\ldots,s_0)$$

variable number of frames, too many weights

Option 1: Stack all the past frames into a feedforward NN

How can we deal with non-Markovian demonstrators?

Learn
$$\pi_{\theta}(a_t|s_t,s_{t-1},\ldots,s_0)$$

Option 2: Use a recurrent model (LSTM/transformer/RNN)

Credit: Sergey Levine

Why might this be challenging?

Learn
$$\pi_{\theta}(a_t|s_t,s_{t-1},\ldots,s_0)$$

Easier to go OOD

Learns spurious shortcut behaviors

Some cool imitation videos

1x and tesla humanoid robots

ALOHA and CherryBot Fine Manipulation

TRI Diffusion Policies

Perspectives on Imitation

Pros:

- Easy to use, no additional infra
- Can sometimes be unreasonably effective

Cons:

- Challenges of compounding error, multimodality
- Doesn't really generalize
- Very expensive in terms of data collection!

Lecture outline

Recap: Imitation Learning + Why it is hard

Multimodality and Underfitting in Imitation

Compounding Error in Imitation

Frontiers in Imitation