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Framework for RL - Markov Decision Process

Augment Markov chain with rewards and actions

States: S Initial state dist: po($)

Actions: A Discount:fy

Rewards: R

Transition Dynamics - p(s¢i1|Se, a)

Markov property  p(so, s1, s2, a0, a1, a2) = p(so)p(aolso)p(s1]so, ao)p(ai]s1)p(sals1, a1)p(az|ss)

Trajectory T = (So, ao,7o,S1,1,715...,8T,04T, 7QT)



Reinforcement Learning Formalism

* Rules for choosing actions
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[dea 1: Imitation Learning via Supervised Learning

Given: Demonstrations of optimal behavior o
arg max E(s+,a*)~D [log mg(a™|s™)]
Goal: Train a policy to mimic the demonstrator

|dea: Treat imitation learning as a supervised learning problem! —— Behavior Cloning

supervised
[ learning ] ﬂg(atlot)




[dea 1: Imitation Learning via Supervised Learning

Given: Demonstrations of optimal behavior

arg max K

Goal: Train a policy to mimic the demonstrator 0

Discrete vs continuous

Maximum likelihood

if isinstance(env.action_space, gym.spaces.Box):
criterion = nn.MSELoss ()

else:
criterion = nn.CrossEntropylLoss()

# Extract initial policy

model = student.policy.to(device)

def train(model, device, train_loader, optimizer):

model.train()

(s*,a*)~D [lOg o (CL* ‘S*)]

for batch_idx, (data, target) in enumerate(train_loader):

data, target = data.to(device), target.to(device)
optimizer.zero_grad()
if isinstance(env.action_space, gym.spaces.Box):
if isinstance(student, (A2C, PPO)):
action, _, _ = model(data)
else:
action = model(data)
action_prediction = action.double()
else:
dist = model.get_distribution(data)
action_prediction = dist.distribution.logits
target = target.long()
loss = criterion(action_prediction, target)
loss.backward()
optimizer.step()



So does behavior cloning really work?

= Imitation Learning # Supervised Learning

Compounding error!

argmg“XE(s*,a*)ND [lOgﬂ'Q(CL*‘S*)] <1:"(S,a,)f'\J,O(T(') []‘(a’ — a*)]
T |

Not the same!




How well does BC do?: Intuition

Behavior cloning has quadratically compounding error

iy mo(a # 7 (s¢)]se) < €

|t

O(cH?)

Horizon H

If you fall off,
assume the worst EEEEEEEE

E Zc(st, at)

<eHH+. ---+...

Union bound



Let's try and understand where the problem lies?

Behavior cloning has challenges in both theory and practice

ZE(St at)~pr,(st, at) St at < O €H2
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Let's try and understand where the problem lies?

Behavior cloning has challenges in both theory and practice

ZE(Staat)pre(St,at) lc(se,a4)] <O 6H2)
¢

Underfitting Compounding error

ro(a # 7 (s1)]s0) < € < O(cH")




But won't a bigger neural net just solve this?

= Behavior cloning can underfit the data

mo(a # 7 (s1)]se) < e
for St ™~ ptrain(st)

May not be able to satisfy this

ZE(St7a’t)Npﬂ'9(3t,at) [C(Sta at)] < O(EHz)
t

Q: won't a bigger model just solve the problem?
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Kind of, but there’s a fundamental problem!



Distributional Expressivity

= Policy expressivity is a combination of expressivity of the
function approximator and of the distribution family

Categorical

Gaussian

Diffusion policy
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How does this reflect on imitation learning?

Let us consider a case with Gaussian policy

arg max E(s+.a%)~D [log mg(a™|s™)]

A combination of distributional expressivity and objective lead to mode averaging




Let’s take a closer look at the objective

arg max E(s+ a*y~p [log mg(a®|s™)]

O max gy, () [Bar o, (fs) log mo(a[s") — logme (a”|s")]]

me(a”|s")
mo(a*|s*)

min]ES*Npﬂe(.) [Ea*wﬂe(.|s*) [log ]] = ]ES*NPwe(-) [DKL(T‘-e(-‘S*H|7T(9(-|5*))]

Lo

Leads to mode averaging Forward KL divergence

One instance of a broader class of divergences — f divergences Dy (p(z),q(z)) = Ey)

https://timvieira.github.io/blog/post/2014/10/06/kl-divergence-as-an-objective-function/



Fffects of choice of f-divergence on behavior

Different divergences lead to different properties

By opr, () [DrL(T(|87)] |70 (-[57))] " Eoenp, () [Dr(me(]s7), mo(-]s"))]

Forward KL (behavior cloning) More general class of divergences

p()
f(q@ﬂ

Forward KL (mode covering) f(af) = X log(a?)
— — = = Reverse KL (mode seeking) f(:C) = — log(:c)

So how do we fix BC? or Use aricher distribution class!
| (Change my)

Df(p(CC), Q(w)) — Eq(ac)




Using alternative f-divergences: Reverse KL

0 *
m Reverse KL helps, is mode seeking DRKL(We(.‘S*),WQ(,‘S*)) — Ew9(.|s*) [log <7T (|S ))]

me(-|5*)

= Challenge - requires known expert likelihood

= We need a sample based estimate!

Imitation Learning as f-Divergence Minimization

Go read this!
Liyiming Ke!, Sanjiban Choudhury!, Matt Barnes!, Wen Sun?, Gilwoo Lee!,
and Siddhartha Srinivasal
0 *
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(Intractable) (Tractable — GAN style optimization)



Fffects of choice of f-divergence on behavior

Different divergences lead to different properties

By opr, () [DrL(T(|87)] |70 (-[57))] " Eoenp, () [Dr(me(]s7), mo(-]s"))]

Forward KL (behavior cloning) More general class of divergences

p()
f(q@ﬂ

Forward KL (mode covering) f(af) = X log(a?)
— — = = Reverse KL (mode seeking) f(:C) = — log(:c)

Df(p(CC), Q(w)) — Eq(ac)

or | Use aricher distribution class!

: Y,
So how do we fix BC: (Change my)



Using Richer Policy Distribution Classes

Multimodal behavior = use more expressive probability
distributions, no mode averaging issues

1. Output mixture of Gaussians
2. Latent variable models

3. Autoregressive discretization
4. Diffusion models

5.
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Why might we fail to fit the expert?

Output mixture of Gaussians
Latent variable models
Autoregressive discretization

Diffusion models
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Why might we fail to fit the expert?

2
)3
4

Output mixture of Gaussians
Latent variable models
Autoregressive discretization
Diffusion models

Why does this work?

first step: p(atolst)
second step: p(a1|st,atp)

third step: p(a¢2|st, at0,ai1)

p(at,2|St, a0, at,l)p(at,l |St, at,o)p(at,0|st)

= p(at,0>at,1a at,2|St)

= p(ay[st)

At =

use LSTM or
Transformer

-0.3

0.1 at,0
1.2 a1
at 2

Ll

azi,o a?,l —\ G?J
sequence sequence sequence
model block model block model block

conv net
encoder




Why might we fail to fit the expert?

1. Output mixture of Gaussians

2. Latent variable models

3. Autoregressive discretization fﬁ

- 4. Diffusion models
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Let's try and understand where the problem lies?

Behavior cloning has challenges in both theory and practice

ZE(Staat)Npﬂe(St,at) lc(se,a4)] <O €H2)
¢

Underfitting Compounding error

mo(a # 7 (st)]st) < € < O(eH")

Richer policy class Alternative Divergence
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Let's try and understand where the problem lies?

Behavior cloning has challenges in both theory and practice

ZE(Staat)pre(St,at) lc(se,a4)] <O 6H2)
¢
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Can we avoid compounding error in special cases?

Video: Bojarski et al. ‘16, NVIDIA



Why did that work?

Recorded

steering
wheel angle

Adjust for shift
and rotation

Desired steering command

Network
computed

> Random shift
Center camera]—: and rotation

I

steering
command

\ 4

CNN

Right camera

Bojarski et al. ‘16, NVIDIA

i

Back propagation |
weight adjustment |




What is the general principle?

— training trajectory
— g expected trajectory

stability

100

Corrective labels that bring you
back to the data
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What might this mean mathematically?

= training trajectory

can we make pgata(0t) = pr, (0¢)7



Concrete Instantation: DAgger

can we make pqata(0t) = D, (04)7?

idea: instead of being clever about p;,(0:), be clever about pgata(0¢)!

DAgger: Dataset Aggregation

goal: collect training data from p;,(0;) instead of pgata(0¢)
how? just run mg(a;|o;)

but need labels a;!

1. train mg(a;|os) from human data D = {07,a1,...,0n,ayN}
2. run my(as|o;) to get dataset D, = {01,...,0p/}

3. Ask human to label D, with actions ay

4. Aggregate: D < DU D,

Ross et al. ‘11



DAgger Example

Ross et al. ‘13



What's the problem?

1. train my(as|os) from human data D = {o1,a1,...,0n,an}
2. run mg(az|oy) to get dataset D, = {01,...,05}
3. Ask human to label D, with actions a;

4. Aggregate: D < DU D,




How might we fix this?

"Generate”
corrective labels ——

automatically

1. train my(as|os) from human data D = {o1,a1,...,0n,an}

2. run mg(az|os) to get dataset D = {01,...,05/} +
3. Ask human to label D, with actions a;
4. Aggregate: D < DU D,

Do at data
collection time



How might we fix this?

1. train my(as|os) from human data D = {o1,a1,...,0n,an}

) Do at data
2. run mg(az|os) to get dataset D = {01,...,05/} + collection time
3. Ask human to label D, with actions a;

4. Aggregate: D < DU D,

Ross et al. ‘11



Noising the Data Collection Process

Key idea: force the human to correct for noise during training

Under noise during data collection

Maximize likelihood

. Supervisor - l
A Robot Yusa = argmin By, ) — 3 log [my (mg (xe ) xt, )
t=0

V'S
.

Noise Injection

DART: Noise Injection for Robust Imitation Learning, Laskey et al CoRL ‘17



Why might this not be enough?

Key idea: force the human to correct for noise during training

Supervisor

Robot

®

Noise Injection

Assumes that the expert can actually perform behaviors under noise
- Not always possible!

DART: Noise Injection for Robust Imitation Learning, Laskey et al CoRL ‘17



How might we fix this?

1. train my(as|os) from human data D = {o1,a1,...,0n,an}

"Generate” 2. run mg(az|oy) to get dataset D, = {01,...,05}

corrective labels —— 3. Ask human to label D, with actions a;
automatically 4. Aggregate: D «+ DUD,

Ross et al. ‘11



Can we avoid expensive online data collection/labeling?

—
-
—>
—> D={s,a,s’}
—>
SN— -

Generate corrective labels
to dataset for imitation

AbHa&
Deshpande

How can we find corrective labels without an expensive human in the loop
and online data collection?

Yunchu ]JWnﬂng
Zhang Ke



Generating Corrective Labels From True Dynamics

Find states (s,), actions (a,) that lead back
to optimal states under true dynamics

NO--- min [lsg,; — f(s0, a0)|| < e

Easy with known dynamics

Intuition: find labels to bring OOD states back in distribution

But models are unknown! ®

CCIL: Continuity-based Data Augmentation for Corrective Imitation Learning, Ke et al ‘24
Data Efficient Behavior Cloning for Fine Manipulation via Continuity-based Corrective Labels, Deshpande et al ‘24



Generating Corrective Labels with Learned Dynamics

Ok models are unknown,
let’s learn them!

(s ) [ (50000) = st 2]

]
s

-

O ’
| 4

. * L
But learned dynamics f,; are not globally accurate? Isip1 — fo(se, ae)|| < e
1 Find states (s,), actions (a,) that lead back to
Under approximately Lipschitz smooth optimal states under tr4e learned dynamics,
models, trust models around training data where learned dynamics can be trusted
min ||s;, 1 — fe(st,ar)] < € - Corrective label

St, At
s.t||sy — st|| < e, ||lay — at]| < eg «—— Close to data

CCIL: Continuity-based Data Augmentation for Corrective Imitation Learning, Ke et al ‘24
Data Efficient Behavior Cloning for Fine Manipulation via Continuity-based Corrective Labels, Deshpande et al ‘24



How well does generating corrective labels work?

With corrective labels Without corrective labels

Altonomous (1x)

CCIL: Continuity-based Data Augmentation for Corrective Imitation Learning, Ke et al 24
Data Efficient Behavior Cloning for Fine Manipulation via Continuity-based Corrective Labels, Deshpande et al ‘24



How well does generating corrective labels work?

With corrective labels

Without corrective labels
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So does this solve all the issues in imitation?



Frontiers in Imitation Learning

Non-Markovian Demonstrators Characterizing generalization

Humanoid Transformer }

Action-Free Data
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Frontiers in Imitation Learning

Human

Data Curation and Quality Embodiment Shift

State Action
Coverage ‘ consistency

Teleoperation Interfaces




Frontiers in Imitation Learning

Learning how to retry and improve

Task Plan Generation
Sub-goal 1: Sub-goal 2: Sub-goal 3: . Collected
C@ "Open the top drawer ') Grasp the top drawer handle Pull out the drawer handle Check for drawer open Successful task trajectory demonstrations
Trajectory 9
Filtering -

Action Sub-goal
& =P Generation - Verification
2 .. ° Module A Module
Verification condition: E Temporary Goal State
'Did the robot gripper grasp Generated action code
the top drawer handle?'

Error Recovery

Duan et al



Let’s dive into a few



Accounting for Suboptimal Data

Suboptimal
data

Target
>
N
Rg”ﬁom How can we use this suboptimal data,
;‘;y despite not reaching the target?

\_ J




Hindsight relabeling for Imitation Learning

Target (goriginal)

Key insight: maybe the data is not bad, it’s
just been labeled for the wrong problem!

| |

Relabel the right goal in “hindsight” Treat reached states as optimal goals

Learn a multi-goal policy mg(als, g)



What does this result in?

Undirected play data

Goal-directed behavior

Single Play-LMP policy



Dealing with non-Markovian demonstrators

Markov property  p(so, 51, 52, a0, a1, a2) = p(so)p(aolso)p(s1]so, ao)p(ai|s1)p(sals1, a1)p(az|ss)

Are human demonstrators Markovian?

If we see the same thing

@a®
"‘ twice, we do the same thing

twice, regardless of what

To (a ‘ S) happened before

Not necessarily!

Humans often rely on history Mixtures of Markovian humans may not
be Markovian



How can we deal with non-Markovian demonstrators?

Learn 7T9(CLt|St, St—Tyeens So)

variable number of frames,
too many weights

Option 1: Stack all the past frames into a feedforward NN

Credit: Sergey Levine



How can we deal with non-Markovian demonstrators?

Learn 7T9(CLt|St, St—Tyeens So)

shared weights \

RNN state

RNN state

RNN state

Option 2: Use a recurrent model (LSTM/transformer/RNN) . .
Credit: Sergey Levine



Why might this be challenging?

Learn W@(&t‘st, St—Tyeens So)

Easier to go OOD Learns spurious shortcut behaviors

Scenario A: Full Information

— training tre
— Ty expectec

policy attends to brake indicator

Scenario B: Incomplete Information

policy attends to pedestrian




Some cool imitation videos



1x and tesla humanoid robots

® 1X END-TO-END AUTONOMY
UPDATE, JAN 2024




ALOHA and CherryBot Fine Manipulation

Cook Shrimp

(autonomous)

6x speed



TRI Diffusion Policies




Perspectives on Imitation

supervised We(at |0t>
learning

m  Pros:

= Easyto use, no additional infra

= Can sometimes be unreasonably effective

m Cons:

= Challenges of compounding error, multimodality

= Doesn’t really generalize

= Very expensive in terms of data collection!
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