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Multi-Task RL — Distribution over MDPs

Assumption: Same state/action space, varying dynamics and rewards

p(Mz')
M:(S,A,T,R,M,W) M; = (8, A, Ti, Riy i, 7y)
| — I
’J Agent || I — | |
state | | reward action ‘ ‘
S R, A (_1
i R f
S| Environment }4— ] 'ﬂ)
. L L state | | reward action
S| | R A,

] RHI @ .
- < Environment




Multi-Task Meta-MDP

Let us assume the factor of variation across MDPs can be characterized by known W;
Eg: task ID, goal, video, language, ...

p(wi)
M= (S, AT, R,u~) M;i = (S, A, To., Res. s 11, 7)
@ Slight reformulation
S — (8, UJZ') Key idea: Multi-task RL == Single task RL in modified MDP
/
T — p(s'|s,a,w;)
R — T‘(S a w.) Just include Ww; in state and run standard RL, solve
T new W; 0-shot

1 — p(so)p(w;)



Template for Multi-Task RL

Canonical paradigm for doing multi-task RL via RL

1. Sample data from all tasks using the same actor with different task ID

2. Collect all data into a single batch with (s, a, s, task ID) pairs

3. Perform actor and critic updates on the shared actor and critic with losses
summed up across tasks

m < argmaxE. )\ Equr Q7 (5, a,T)]

Q" < argmin ETNP(T)E(S,CL,S’)NP [(Q(S7 a,7) — (r(s,a,7) + 7Ea’~”(-|5’77)Q(8/’ a’, 7_)))2}



Does it work?

Let’s not even study generalization, let’s understand if this fits the train set
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Why is it hard to do Multi-Task RL?

Gradients from different tasks often conflict and hamper performance of all
tasks, especially when coupled with exploration
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Winner-Take-All Phenomena

Vicious cycle of data collection and policy optimization
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How can we deal with gradient interference in RL?

If issue is exploration + conflicting gradients is bad

|
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Idea 1: Remove exploration from MTRL Idea 2: Modify gradients
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Resolving Gradient Interference with Distillation

Empirical observation:
Multi-task SL (no exploration) is stable, multi-task RL (exploration) is unstable

Policy
t;te ;ee,ward Z?Non st;te ;?Iwa'rd | Z‘:ﬁon : .:..
S.. | Environment m
Single task RL is Multi task supervised.
easier learning is easier
S ft ) atI:tion s, R, N Z«;:tion Lea rn i n g
S.i | Environment < @]4—

T1||T2|T3 || T4

Idea: convert multi-task RL into single task RL + multi task SL




Divide and Conquer Approach to RL

Divide into multiple single task RL problems, “distill” into a single solution

Iﬁm

Single task RL = standard RL Distillation = supervised learning

Distral: Robust multi-task RL Teh et al 2017



Divide and Conqguer RL: Mathematical Formulation

Shared policy  Per-task policy

/ -
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Experimental Validation
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Divide and Conquer RL, Ghosh et al 2018



Experimental Validation

Divide and Conquer
Reinforcement
Learning

Divide and Conquer RL, Ghosh et al 2018



|s this enough?

Lot of the learning is done independently, limited data/parameter sharing
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What if we directly modified the gradients?

gi

Replace g by g/’ —
g ! What should g’ and g’ be?
4_/ Replace g; by g’ — J

|

conflicting

ldea: When gradients conflict, project them to deconflict




Deconflicting gradients with PCGrad

If gradients conflict: project them onto the normal plane

vprojn,.gj
\s . gi.g.
* g . J
W gi = g .9,
7 gl

g; 8j

i
I

Otherwise: leave them alone

gi

8j

non-conflicting
Gradient Surgery for Multi-Task RL, Yu et al 2018



Does this empirically help?

L1(0) = 20log(max(|.561 + tanh(62)|,0.000005))
L2(0) = 25log(max(|.50; — tanh(fs) + 2|,0.000005))

Multi-Task Objective  Task 1 Objective  Task 2 Objective Adam Adam + PCGrad
o / 62 ] | ) ,J i l ’
;1" - ! — - 2 0 - - 2 0 4 5 2 g o0 1 2 3 & s L3 o 4
01
(a) (b) (c) (d) (e)

Gradient Surgery for Multi-Task RL, Yu et al 2018



Does this empirically help?

Success Rates
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Gradient Surgery for Multi-Task RL, Yu et al 2018



50 multi-task RL is pretty cool, does it work?
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50 multi-task RL is pretty cool, does it work?

can /yb_u move the coke
can to the far counter?
Al A

e

N
How would you pick up
the jalepeno chips and
move it to the trash can

How would you rest‘{ick '
the rice chips on the -
far counter

How would you bring
me a soda

How would you bring
me something to eat

y

How would you bring
me something
hydrating

Throw away the
jalapeno chips

How would you put the
coke can down

How would you throw
away the water bottle

W; can be language too!

;)va_coke can to

Do As | Can, Not as | Say: Ahn et al 2022



Takeaways

1. Multi-task RL solves a contextual meta-MDP for 0-shot generalization
* (Can help with efficiency and generalization
2. Optimization in multi-task RL can be challenging:
* Gradient interference during optimization
*  Winner take all during optimization
3. Solutions to multi-task optimization include:
* Divide and conquer
* Gradient projection
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Recap: Multi-task RL Setup, 0-shot generalization

Factor of variation across MDPs can be characterized by w;, which is known
Eg: task ID, goal, video, language, ...

Multi-task RL @;
\_

S Wj

Good 0-shot performance

When is this not enough?

Visual from C Finn



From O—shot learning to few-shot learning

Factor of variation across MDPs can be characterized by w;, which is known
Eg: task ID, goal, video, language, ...

Policy is not good enough O- ?
shot, need to finetune 4 Agent )

Context is unknown or hard
to specify analytically




From O0—shot learning to few-shot learning

0-shot MTRL: No experience

at test time

Meta-RL: Small amount of experience at test time

Fast adaptation with experience
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Agent
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Connection to Contextual Multi-Task RL

multi-task reinforcement learning

learn tasks

N’I‘r\

O‘\(-)J

perform tasks

I

’M‘

meta reinforcement learning

Iearn to learn tasks

N'ﬂ‘ﬂ

O?(-)/

s Multi-task policy evaluates 0-shot performance

quickly learn
new task

—A

s  Meta-RL trains for good k-shot policy by ”“learning to learn”



Meta-Learning Problem for RL

Given i.i.d. task distribution,
learn a new task efficiently

= Given a distribution over tasks p(7), learn an update function f@ that
can learn tasks drawn from p(7) quickly!

" Leverage regularity across tasks to optimize for a fast RL algorithm

Visual from C Finn



Meta-Learning Problem for RL

Standard RL:

Single reward function, single dynamics arg mea,x R E r(st,at)
t

Meta RL:

Distribution of tasks p(7), optimize for update function f@

[ N
- S

’ —_ —
0" = arg mGaX ETNP(T){IEW% Z T(St, atﬁ Encourages quick update

t
\\ -

>
~.--_—’

Per-task updated policy where ¢z — f@ (DT) Shared update function
| ] L |




Intuition behind Meta-RL

m Leverage regularity in task distribution to speed up learning

m Explore for some time before exploiting

= Minimizes regret not just maximizes reward

Duan et al 2016



General Structure of Meta-RL Algorithms

0" = argmax E

5 T~~p(T)

Erx, ZT(St,at) < Outer loop
_ 1 J

where ¢; = fo(D,) - Inner loop
1. Sample a batch of tasks from p(7)

2. collect data pre-update

3. Compute update according to ¢; = fo(D)
4. Sample data from @; post-update to evaluate the update

5. Optimize for update function fe



- Solution Techniques for Meta-RL Problems

E.,

> r(st, at)] ] < Quter loop
t

where ¢; = fg(D;) «— Inner loop

Main design choices: 0" = argmax Er ()
m Parameterization offg for inner loop

s Algorithm for outer loop optimization

r———~~YF~&FY> "~~~ ===/~~~ =7—7/—"7= "= "=7"=7"="="="="======="= I
: Inner loop :
| |
| Memory based Latent Variable Gradient Descent |
| < > |
| |
| |
QOuter loop
Policy Gradient Off-Policy RL Model-Based RL

< >




Memory Based Meta-RL

Idea: Make the update function forward pass of an RNN
= Learn RNN that takes in past s, a, r(s, a), produce action.

= Maintain hidden state across episodes

= Maximize sum of returns across episodes

................................................................................................................................

RLZDuan et al, Learning to RL Wang et al



Memory Based Meta-RL

0* :argmeaxETNp(T) Er,, Zr(st,at)

\ Combine inner and

(D) |
Meta-Training where ¢; = fo(Dr) outer E)OPRIIF\\I’CI\? black
OX

1. Sample a batch of tasks from p(7)

2. Collect data using RNN across episodes for each task, with
persistent hidden state and rewards available to the policy

3. Optimize RNN policy via policy gradient BPTT
Meta-Testing

1. Simply run the RNN forward pass across episodes



Memory Based Meta-RL

r

———

R, ——— —f‘/
- ”,'-N’

(a) Good behavior, 1st (b) Good behavior, 2nd
episode episode

Visual from Duan et al 2016



How well does memory based meta-RL work?

Convergent RL

Pros:

Simple, easy to implement

Arbitrarily flexible inner loop Potential RL2 update

Generally stable optimization

Cons:

No guaranteed improvement during meta-test time

Poor performance OOD



Optimization Based Meta-RL

Idea:
What if we force f(6) to be convergent?

Force f(0) to be a convergent optimization algorithm like SGD

0™ :argmeaxETNp(T) Er,, Z’r(st,at)

Restrict to be convergent optimization



MAML: Gradient Based Meta-RL

— meta-learning

6 ---- |earning/adaptation - - -
VL, 0* = arg mQaX ETNP(T) EW@; ; rr(st, a)
VL, - - o _
c 0,
VEi \ ¢i =0+ aVgEr, ZTT(S“ at)
A 0 t -

x ¢ N L
910’ o 9*

Learn most fine-tunable initial parameters, such that 1-step of SGD is good

Finn et al 2017, 2018




Pseudocode for Gradient Based RL

. Sample a batch of tasks from p(7)

. collect data pre-update from 7g

. Compute update accordingto ¢; =0 + aVyE,, Zn(st, at)
t

. Sample data from ¢; post-update

. Optimize for initial parameters by PG in outer loop

Z?“T(st,at)H

t

> rr(se, )

t

0" = argmax K E

5 T~p(T)

7T¢7:

Second order gradients

via bi-level optimization
sz' =0+ anEmg




How well does it work?

average return

|
= | |
o (o] (=2}
o o o
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-140

Tasks:

Half cheetah: goal velocity,
Half cheetah: forward/backward
Ant: forward/backward

half-cheetah, goal velocity

1 2
number of gradient steps

half-cheetah, forward/backward
R L SR s L R e SR SRS SN RN - 120

100

number of gradient steps

ant, goal velocity

s s s e s s o B P

number of gradient steps

—e— MAML (ours)
--=-- pretrained
—*— oracle

0 1 2

number of gradient steps

Finn et al 2017



How well does it work?

Pros:

Consistent, worst case performance is PG

Only need to learn initialization

Cons:

Second order gradients needed

Potentially less expressive update



| atent Variable Models for Meta-RL

Think of meta-RL similar to multi-task RL, but context W; is a hidden variable
that must be inferred

Meta-RL as a POMDP

Need to infer this




Recasting meta-RL as context inference

Er,, Zr(st,at)

0" = argmax E

T~p(T)
¢ i Mt i
\
\
\
where ¢; = fo(D-) v
\\ \
\ \
\ \
\\ \
\‘ \\

Infer latent variable from
experience

Deploy latent conditioned
policy o (CL‘S, Z)

PEARL: Off-Policy Meta RL via Probabilistic Context Variables, Rakelly et al 2019



Recasting meta-RL as context inference

Meta-Training

1. Sample a batch of tasks from p(7)

2. Sample trajectories {80, ag, 7o, ---,ST,QT, TT}fvzl

3. Train qg(z|S0, a0, 70, 81,01,71,...,ST,ar,rT) andmg(als, z)
to maximize rewards via RL ( + some regularization)

Meta-Testing

1. Sample z from prior p(z)

2. Sample trajectories from 7g (a\s, Z) and z

3. Update p(z)to posterior go(%|s0, a0, 70, 51,a1,71,-..,5T,a7,7T)



| atent Variable Model Intuition

Latent Space

Different images correspond to Different tasks correspond to different z
different z Quick search happens in z space




How well does it work?

Quantitative:

Half Cheetah Humanoid Walker

Half-Cheetah-Fwd-Back Half-Cheetah-Vel Humanoid-Direc-2D
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07 i 0 0 " i i 0 d
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- PEARL (ours) = ProMP MAML RL2 = = final performance

Gains mainly from off-policy RL

Exploration:

PEARL: Off-Policy Meta RL via Probabilistic Context Variables, Rakelly et al 2019



How well does it work?

Rapid Motor Adaptation: Kumar et al 2021



How well does it work?

Pros:

Easy to run with off-policy RL
Can be very efficient, trained offline, etc

Might be easy to incorporate priors into inference network

Cons:

Exploration may be suboptimal

May need a huge context variable, hard to optimize/generalize



50 meta-RL is cool, does it actually work?

Industrial insertion = adapting to different plug shapes

Wl -l ®L%. | "l
al Al o L el

US-AC-plug NEMA14-30P  Metal-peg-rec Metal-peg-rd UK-AC-plug Car-plug-4p Metal-peg-sq Car-plug-3p EU-AC-plug
Ours 100/100 100/100 100/100 100/100 100/100 100/100 99/100 75/100 99/100
AWAC 87/100 93/100 96/100 99/100 100/100 100/100 90/100 64/100 100/100

Sneedi100x B Sveed50x N - Sheed 100x

Offline Meta-Reinforcement Learning for Industrial Insertion, Zhao 2021



50 meta-RL is cool, does it actually work?

Adapting to different terrains/robot conditions

Training

2x speed

Styrofoam Carpet Turf

Learning to Adapt in Dynamic, Real-World Environments, Nagabandi. 2018



Takeaways from meta-RL

s Meta-RL takes multi-task RL from 0-shot to few-shot

s Meta-RL algorithms can be viewed as choices on top of bi-level optimization
— memory based, gradient based, latent variable

= Meta-RL can allow adaptation when context is unknown or hard to describe

— —

{Training signal 9 1

Rewarq Distribution of
Observahon\ environments
E Agent |1-Action»  Epyvironment <«

Last actionj

l Inner loop J
D <_ Outer loop -




Putting things in perspective

s Multi-task (and meta) RL takes RL from specialists to generalists (well, kind of)

s The landscape can be understood along 2 axes

0-shot few-shot many-shot
Amount of test-time ) R
experience
Multi-task Meta-Learning RL from scratch
Inference Scheme D >

Gradient Based Memory-based LVM



Some heavily biased readings

Multi-Task RL

1.

O 0 N o U bk

Gradient conflict: Gradient Surgery for Multi-Task Learning (Yu et al 2020), Multi-Task Learning as Multi-Objective
Optimization (Sener et al 2019)

Divide and Conquer: Distral: Robust Multitask Reinforcement Learning (Teh et al 2017), Divide-and-Conquer
Reinforcement Learning (Ghosh et al 2018)

Multi-task RL at scale: MT-Opt: Continuous Multi-Task Robotic Reinforcement Learning at Scale (Kalashnikov et al 2021),
BC-Z: (Jang et al 2022), Do As | Can, Not As | Say: Grounding Language in Robotic Affordances (Ahn et al 2022)

Meta-RL

Meta-RL overview, older papers by Schimdhuber/Hochreiter

Recurrent meta-RL: RL2 (Duan et al), L2ZRL (Wang et al), SNAIL (Mishra et al), CNP (Garnelo et al 2018)

Gradient-based meta-RL: MAML (Finn et al), REPTILE (Nichols et al), ProMP (Clavera et al), Antoniu 2018, Bechtle 2019
Latent variable meta-RL: PEARL (rakelly et al), VariBAD (zintgraf et al), MAESN (Gupta et al), Zhang et al 2020
Model-based meta-RL: Clavera and Nagabandi 2019, Harrison and Sharma 2020, MIER (Mendonca et al)

Exploration in meta-RL: MAESN (Gupta et al), DREAM (Liu et al), GMPS (Mendonca et al)

10. Supervision in meta-RL: UMRL (Gupta et al), CARML (Jabri et al), UML (Hsu et al)
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Cost of Real World Data Collection

55

Real world data is not free!




Where does vanilla RL fall short?

Sample Efficiency Generalization

Grasping
(Pre-Train)

Checkerboard
Backing

Harsh Lighting Transparent Bottles

v %

VY,
1‘;) A
i e |

_A 5

A

Grasping Harsh Light Bottles Checker
=608,000 800 800 800
8 ye a rS Dgrasp 86% Dharsh 32% Dbottles 49% Dchecker 50%

Julian et al

Exploration

nm
i

Long Horizon Goal RPL Policy

Gupta et al



What makes modern machine learning work?
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Can we develop data-driven RL methods?

on-policy RL off-policy RL
ioloul data {(s.a;.s},r:)} rollout data {(s;.a;.s8].7;)}
e [T e e
@ ﬂ-k update ﬂ-k D
¥
" Tk+1
t a | t a |
rollout(s) rollout(s) ; .
; Tht1 ; TR % big datasets

from past train for
) . |
Data-driven reinforcement learning ’ | Interaction many epochs
occasionally
LA : get more data
TR
l—]s.gr : | [ 8.7 |
@ @
a : learn a
rollout(s) I [ I deployment
datacollected ONCE w= == == == = |
with any policy training phase

Levine, Kumar, Tucker, Fu. Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems. ‘20



Transfer in Reinforcement Learning

Other tasks Prior Experience on Human supervision
the same task

|

reinforcement learning

this is done
many times

s
A
5 ¢
At
£

e

¢

Learning from scratch is impractical, leverage different sources of prior information!



Transfer in Reinforcement Learning

Prior Experience on Human supervision
the same task

this is done

many times

%
A_:xi_} )
127

£
"~
e

Learning from scratch is impractical, leverage different sources of prior information!



Transfer from Prior Datasets in Supervised Learning

Fgeta -l 5
> !

048 \dense

1000

2048 048

Max Max pooling
pooling pooling

lllllllllllllllllll’

Pretraining

Input Prompt: Recite the first law of robotics

v

<Illlllllllllllll

GPT-3

I Expensive training on massive datasets
Dataset: 300 billion tokens of text i A robot may not injure a husan

I T & . being or, through inaction,
Obijective: Predict the next word I Output: allow a human being to

I Example: come to harm.

a robot  must ? I



Transfer from Prior Datasets in RL

Large scale datasets Teleoperated Data Prewous Experlments

View from inside VR

= control begin

(/‘isoﬁ AN

/e

wipe. d@wn counter %

human teleoperation realime

Damen et al l Zhang et al Levine et al

reinforcement learning

\ 4
A

this is done
many times _

Sample efficiency Generalization Exploration



56

Offsetting the Cost of Real World Data

RL from scratch Large-Scale Imitation Learning

Human Effort

Cost of
Autonomous
Data Collection

v

A\ 4
Bootstrapping from small amount of prior data



Making the RL problem more tractable

57

Small amount of data

-  brovided upfront ]
&5 —_— Agent A
- / \ How? w @ 9 =9 J
- J \ / "“___........._..... '(%
o (s,a,r5s) \ Bootstrap; = c
* (S,CL,?", S/)l ................. * > m\ 8
. O <
) S
)N 2

.(s,a:r,s' ( 1
SN— -~ L Environment J:

Arbitrary, potentially
suboptimal prior data

How can we bootstrap RL with prior data to improve data collection?
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72

Off-Policy Bootstrapping from Suboptimal Data

Imitation learning no longer works as performance may be arbitrarily suboptimal!

Pick more‘
4 ®
"""""""""""""""""" A 19
I |\
) \ :
Expert o -~ ! . Pick less
~ | ! \
s ) 7 v ! \ l RN
T L7 \T \ // s
; r
> >
ap a1 a2 anN ap ai; a9 an
Actions for S Actions for S

If we were able to estimate long term “goodness” of actions, we can use them to pick actions

l

QO-function




Offline RL Problem Setting

Go from RL with data collection -> learning policies offline from large datasets

(a) online reinforcement learning (b) off-policy reinforcement learning (c) offline reinforcement learning
|

F____

rollout data {(s;,a;,s;,7;)} rollout data {(s:,a;,s;,7:)} {(si, a4, s}, T'i)}.

[ | l . I
4 [ s,r |\ 4 [ s,7 |\ buffer 4 [ s,r |\I| / [ s,r |\
{ upd:':lte J ‘ ‘ I|

3 -

& ik : k el : ! K n
TL, Tk +1 TL, update 5 | l learn - |
\ rollout(s) j k rollout(s) / 7Tk‘|‘ 1 \ rollout(s) j : 7T | K deployment /
t k41 t Mhk+1 | data collected ONCE w= == == == = I
with any policy training phase

Why would we do this?
s Leverage large existing datasets -> sample efficiency, generalization, exploration

s Useful debugging tool for fundamental problems in RL

Visuals from S.Levine



Formalism for Offline RL

max I

{
aX Wsonpio (5),a0mmo (anlse) o1 nP(seplse,a0) > ' R(s, )

Offline dataset: D = {(s,a,s’, 7))},
Behavior policy generating offline dataset: 713 (a|8)
Goal:

= With only sampling access to D, learn 7Tg for the original RL objective

s Perform better than the original behavior policy



When might offline RL be effective?

If D is only expert demos:

D: o Ty as good as D
© ©

If Dis sub-optimal data with insufficient coverage:

D: ‘ o: ‘ 7T9 , D are both suboptimal

If Dis sub- optlmal data with insufficient coverage

D: Y- m T better than D



Application Domains

Useful in domains where data collection is risky/hard, but human datasets available

Driving Healthcare

- State Vector

W i . i Dense

v layers
Actor

) C/n\H

Stimulator 4-\

Agent controls based
on the sensor data

O

Rewar Stt A tio Steering & Speed
Comman d Sensor
Dialogue

Visuals from Levine et al



Attempt 1: Off-Policy RL

Can try directly adding offline data to D

(b) off-policy reinforcement learning

rollout data {(S a;, S’ T )}

roIIout(s)

3 m

Train by sampling from D (no sampling in env):

buffer
E 7 ej 1. Add offline data to the replay buffer

</

\

update
Tk+1

J 2. Minimize Bellman Equation

MTk+1

@ min(Q(s, ) — (r(s.a) + 7 max Q(s'.')))’
3. Optimize actor 7(a|s) wrt Q™ (s, a)

m <+ argmaxE, [Q]



Attempt 1: Off-Policy RL

Empirical performance with vanilla off-policy RL on offline data

1000

30

HalfCheetah-v2: AverageReturn HalfCheetah-v2: log(Q)

 aiono 2=1000 m Returns don’t increase but
750 froe - — n=10000 o5 | —— n=10000 ... ... S .
00— n—100000 | — n-w0000 Q-values diverge

~ —— n=1000000 ol 01 Y NS SO SR
250_ ............... FRLERERPEPEPRRPE EELTEETEPEPPRPPE PP : :

s Not classical overfitting!

0 15 -
—9250 1 -
500 | & = More data does not
_750— 5_. .................................................................................... improve performance
1000 0K 02K 0AK 06K 08K 10K  OOK 02K 04K 06K 08K LOK
TrainSteps TrainSteps

Divergence because of distribution shift

Visuals from Kumar et al



Distribution shift in Offline RL

Q* _ T*Q* 7 (T*Q)(S7a) = R(S,CL) —+ ’)/ET(S/|3,a [HZH;X Q(S/,a/)]

Can bootstrap on OOD actions. Q can be arbitrarily overestimated <+—

() := arg Hgﬂ ESND,aNB(CLlS) [(Q(Sv a) — (T*Q)(S, a))2:

Will be used for
backups

2\ /8

Q-values on training data Q-values being backed up

Visuals from Kumar et al



Why is distribution shift problematic in Offline RL?

= When Q is trained on 73 (als), it may not be accurate for arbitrary W(a\s)

= Some a, s may just be very OOD/out of support.

s Overestimated Q-values can continue to be backed up erroneously.

Online data collection corrects over-optimistic Q, but not so offline!



Tackling distribution shift in offline RL

Key Idea for controlling distribution shift in offline RL: (minimize choosing OOD actions)
m  Policy constraint methods

= Lower bounding returns/Q-values Prevent these actions

Will be used for
backups

from being chosen

/

Q(s,a) /Q\\ﬁ Q(s,a)‘ //ﬂ\\ﬁ
a AVZRN
/ N /




Attempt 2: Policy Constraint Algorithms

ldea: Constrain the actor update to remain close to the behavior policy.

) . 2
QZ+1 < arg mé;n E(s,a,s’)ND [(Q(S, a) — (T(S, a) + ’YEa/Nﬂ'k(a/ls/) [Q’IZ(S,, a/)])) ]

Th+1 ¢ argmax Es~p [Ea,\,w(a|s) [Qzﬂ(s,a)]} s.t. D(m,mg) < e.

Why would this work?

OOD actions violate the constraint

Q(S7a’) /Q\\ﬁ Q(S,CI,)

SN

/ N\
\

m(als) = mg(als)

/




Policy Constraint Algorithms

Different forms of the constraint and optimization leads to different algorithms

Support matching (Kumar et al. 2019,
D = MMD(7g,m) Laroche et al. 2019,

Wu et al. 2019)

Distribution Matching BCQ (Fujimoto et al),
D = Dk (w||ms)  (Jaques et al 2019),
BRAC (Wu et al)

State-marginal D = Dy (d™||d™®) AlgaeDICE (Nachum et
constraints al)

Implicit distribution AWR (Peng et al),
constraints D = Dir(7||ms)  AWAC (Nair et al), CRR

(Wang et al)



Implementation of Policy Constraint Algorithms

Pseudocode of a policy constraint algorithm:
1. Add offline data to the replay buffer

2. Minimize Bellman Equation

QQ_H — arg mén
A 2 <
E (s a0~ [(Q(s, 8)— (7(5,2) +VEarmry (1) [Q (8,2 — 0D (mi (18'), w5 (- 18')) ) }

3. Optimize actor m(als)wrt Q™ (s, a)

mi1 ¢ argmax Eowp |Eqeon(ale)[QF41(5,2)] — aD(r([s), 75(18))] -

Requires estimation of behavior policyﬂ'@ via MILE



Tradeoffs between Policy Constraints

Support constraint;

Distribution-matching
constraint; can choose
one of purple policies

Will be used for
backups

can choose one of
yellow policies

Q(s,a) Q(s,a) Q(s, a) /\/;\\7}
a a N
Actions: —,
0.10.1 0.1 0.1 0.1 0.1
[ e = OO
e e R T e JIJIII T T T T

Initial state: S Goal state: G
(a) 1D-Lineworld Environment

negligible likelihood—

Ve

1.0 1.0 1.0 1.0 1.0 1.0 0.9
(b) Behavior

goo

olicy

Tttt

Joouud

(c) Learned Policy via distribution-matching

(d) Learned Policy via support-constraint

Support constraints are less
pessimistic, works across
behavior distributions

Visuals from A. Kumar



Performance of Policy Constraint Algorithms

kI vp

3500 Hopper-v2 200 . Walker2d-v2
w 3000 w 3000
. o o
How well does this work? | b s
& 2000 M\ /\WNM ~NTYU ® 2000
v N
.g 1500 g 1500 L4 .
. . ® 1000 AN VT . A AL G dnA © 1000} , |
s Works significantly better 2 o X AW
v 0 (] 0
than Off-pOIICV RL =300, 2 I 5 ~3005 2 3
training steps (1e5) training steps (1e5)
= Not good on harder — sac b — bcg — bear
ta S kS, tO O p essimi St IC Naive off- Behavior Policy constraint methods: BCQ,
policy RL cloning BEAR and BRAC (Wlth KL)
Task Name SAC BC SAC-off BEAR BRAC-p BRAC-v AWR cREM BCQ aDICE
© maze2d-umaze 62.7 3.8 88.2 3.4 4.7 -16.0 1.0 -15.8 12.8 -15.7
2 8 maze2d-medium 21.3 30.3 26.1 29.0 324 33.8 7.6 0.9 8.3 10.0
= maze2d-large 2.7 5.0 -1.9 4.6 10.4 40.6 23.7 -2.2 6.2 -0.1
antmaze-umaze 0.0 65.0 0.0 73.0 50.0 70.0 56.0 0.0 78.9 0.0
@ antmaze-umaze-diverse 0.0 55.0 0.0 61.0 40.0 70.0 70.3 0.0 55.0 0.0
§ antmaze-medium-play 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
= antmaze-medium-diverse 0.0 0.0 0.0 8.0 0.0 0.0 0.0 0.0 0.0 0.0
< antmaze-large-play 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.7 0.0
antmaze-large-diverse 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2 0.0

Slide from A Kumar



Challenges with Policy Constraint Algorithms

) . 2
QZ—{—l — arg mcgn E(S,&,S')ND |:<Q(S, a) — (T(S, a) + ’yEa/N'}rk(a/|s/) [QZ(S,, a,)])> ]

k41 ¢ arg m;xxEsz [Ea,\,ﬁ(a|s) [Qzﬂ(s,a)]] s.t. D(m,mg) < e.

1. Requires challenging estimation of behavior policy

2. Constraint can often be too pessimistic



Attempt 3: Lower Bounding Q-Values

ldea: Push down over-optimistic Q-values, rather than completely avoiding OOD

= Less pessimistic than avoiding all OOD actions. Some OOD actions may not be bad!

Will be used for
backups
AR B
/ \
/ \
y/
/
/

a

Q(s,a)|




Model-Free Lower Bounding Q-Values

Conservative Q-Learning:

Reduce overestimation by forcing them to lower bound the true Q-value

Push down big Q values Minimize Bellman Equation

v

mC;n mg,x a]ESND,a,N,LL(CL|S) [Q(Sa CL)] + v

E(S,&,S’)NP [(Q(S, CL) o (T(‘S? CL) + Ex [Q(‘S/? CL,)]))2]

AN

Q™ (s,a) < Q7 (s,a),Vs,a

Conservative Q Learning, Kumar et al 2020



Model-Free Lower Bounding Q-Values

Can tighten bound further by also pushing up Q-values in the data

Push down big Q values Push up Q values in data
Hlén mBXQ(ESND,aNM(MS) [Q(Sv a’)] _ ESND,aNﬁg (als) [Q(87 CL)]) +
Minimize Bellman Equation «...ceeu.e. > Efsa~p [(Q(s,a) — (r(s,a) + Ex [Q(s',d")]))?

7r(a, s) [Q (8, a)} < Eﬁ(a|8) [QW(S, a)] Vs €D

Conservative Q Learning, Kumar et al 2020



CQL Pseudocode

Pseudocode:

= Simply modify the critic update, same actor update and replay buffer.

Algorithm 1 Conservative Q-Learning (both variants)

1: Initialize Q-function, ()9, and optionally a policy, 7.

2: forsteptin{1,..., N} do

3:  Train the Q- functlon using GG¢ gradient steps on objective
from Equation 4
9t = 91;_1 — ’l’]QV@CQL(R) (9)
(Use B* for Q-learning, B™ ¢+ for actor-critic)

4:  (only with actor-critic) Improve policy 74 via G» gradient
steps on ¢ with SAC-style entropy regularization:

¢t 1= ¢t—1 + NrBsp,anmy(-|s)[Qo(S,; a) —log Ty (als)]
5: end for

Conservative Q Learning, Kumar et al 2020



How well does this do?

Performs surprisingly we

Domain Task Name BC | SAC | BEAR | BRAC-p CQL(p)
antmaze-umaze 65.0 0.0 73.0 50.0 73.5
antmaze-umaze-diverse 55.0 0.0 61.0 40.0 61.0
antmaze-medium-play 0.0 0.0 0.0 0.0 4.6

AntMaze | i maze-medium-diverse | 0.0 | 0.0 8.0 0.0 5.1
antmaze-large-play 0.0 0.0 0.0 0.0 32
antmaze-large-diverse 0.0 0.0 0.0 0.0 2.3
pen-human 34.4 6.3 -1.0 8.1 5.8
hammer-human 1.5 0.5 0.3 0.3 2.1
door-human 0.5 3.9 -0.3 -0.3 .

Adroit relocate-human 0.0 0.0 -0.3 -0.3
pen-cloned 56.9 | 235 26.5 1.6
hammer-cloned 0.8 0.2 0.3 0.3
door-cloned -0.1 0.0 -0.1 -0.1
relocate-cloned -0.1 -0.2 -0.3 -0.3
kitchen-complete 33.8 15.0 0.0 0.0

Kitchen kitchen-partial 33.8 0.0 13.1 0.0
kitchen-undirected 47.5 2.5 47.2 0.0

Underestimates the true Q-values

Task Name Ensemble(2) Ens.(4) | Ens.(10) | Ens.(20) BEAR
hopper-medium-expert . 3.71e6 2.93e6 0.32¢6 24.05e3 65.93
hopper-mixed . 15.00e6 59.93¢3 8.92¢3 2.47e3 | 1399.46
hopper-medium -156.70 26.03e12 | 437.57e¢6 1.12e12 885e3 4.32

Difference between estimated Q and true Q

Conservative Q Learning, Kumar et al 2020



Attempt 4: Model-Based Offline RL

Can we extrapolate past the offline data besides stitching?

Models can generalize past experienced states, actions.

What is the problem with using models for offline RL?

S o*

Experienced Data Erroneously Overoptimistic Planning



Model-Based Lower Bounding Q-Values

ldea: Down-weight rewards for uncertain model transitions to avoid overoptimism

Modified pessimistic MDP with r(s,a) = r(s,a) — Au(s, a)

Tout

Policy
Dataset Optlmlzer
{0 } data support ( )

= unknown Learn MDP
B - nown [ 2 ]—»[ P-MDP M, ]

Penalize OOD (s, a) via reward Leave in distribution r unchanged [

S x| A

Output policy]

U

ALT

MoREL (Kidambi et al 2020), MOPO (Yu et al 2020)



Model-Based Lower Bounding Q-Values

How to implement u(s, a) ?

MOPO (Yu et al):
N

MoREL (Kidambi et al):

disc(s, a) = max; ; ||f¢i (s,a) — f:/,j (.s,a,)”2
7(s,a) = —Rmax if disc(s,a) > threshold

MoREL (Kidambi et al 2020), MOPO (Yu et al 2020)



Model-Based Lower Bounding Q-Values

Works well on random data and mixed data, but less so on medium data

Dataset type | Environment | BC | MOPO (ours) | MBPO | SAC | BEAR | BRAC-v |

random halfcheetah 2.1 319 +28 30.7 £3.9 | 305 25.5 28.1
random hopper 1.6 13.31+ 1.6 45+60 | 113 9.5 12.0
random walker2d 9.8 13.0 £ 2.6 8.6 + 8.1 4.1 6.7 0.5
medium halfcheetah 36.1 402427 | 2834+£227 | -43 38.6 45.5
medium hopper 29.0 26.5 £ 3.7 49+33 0.8 47.6 32.3
medium walker2d 6.6 14.0 £ 10.1 127 +7.6 0.9 33.2 81.3
mixed halfcheetah 38.4 54.0+26 | 473+ 126 | -24 36.2 45.9
mixed hopper 11.8 925+ 6.3 | 498 +304 1.9 10.8 0.9
mixed walker2d 11.3 427+ 83 | 22.2 + 12.7 3.5 25.3 0.8
med-expert | halfcheetah 35.8 57.9 +£24.38 9.7+95 1.8 51.7 45.3
med-expert | hopper 111.9 51.7£429 | 56.0 & 34.5 1.6 4.0 0.8
med-expert | walker2d 6.4 55.0 £19.1 7.6 3.7 | -0.1 26.0 66.6

Can extrapolate beyond the offline data coverage.

Batch data

X

t=

t=

t=100

t=

V4
-
N

Learned policy

=

y

t=100

MoREL (Kidambi et al 2020), MOPO (Yu et al 2020)




Going from offline RL to online finetuning

- off-policy data

In deployment, typically want to pre-train offline, but finetune online!

1. Offline Learning

- expert demos D= {(87 a, 8/7 T)j}

- prior runs of RL -

> —

)

Use large datasets to inform exploration and quick learning.

Advantage Weighted Actor Critic (Nair et al 2020)



Why is this challenging?

Typical offline methods can be too conservative, and struggle to improve

3. Policy Constraint Methods 4. Log Likelihood of 7y
10-_~=""""" \
L o\
1N
o v A
c R \
2 o0 \ gy
Q _’4" _O S \\
O —— s \\\
i s ~\‘~ """"""
' ' ' 0 ) i o | ' !
OK 50K 100K 150K 200K Offline Training . 200K 400K
Timesteps Timesteps
BEAR -=== Offline data
-=-=- BEAR-loose - === Online data

Behavior models hard to fit and adapt when finetuning

Advantage Weighted Actor Critic (Nair et al 2020)



Advantage Weighted Actor-Critic

Avoid behavior modeling using a policy constraint method, but solve implicitly

n]

Trow = 5?31%( tatNWuSt)[Am“ (s¢,a¢)] 8.t Drp(m(.|se)||ma(.]st)) < e.

Solving the KKT conditions, projecting via supervised learning

1
Qk—l—l — argm@ax Est,atNﬁ logﬂg(at\st) exXp (XAWk (Su%ﬁ))}

Never sample OOD actions, only from buffer

Advantage Weighted Actor Critic (Nair et al 2020)



Does this work?

Works reasonably on offline RL, but very effective on finetuning!

pen-binary-v0 : door-binary-v0 e relocate-binary-v0

0.8- 0.8-
o
~——
<
[a4 0.6- 0.6-
5]
7]
S
S 0.4- 0.4-
=
9]

0.2- %VV\A\WM/ 0.2-

I /N
0.0 - ‘ : .

0.0~ , ‘ ! . 0.0- ‘ - 0.0 -
0K 200K 400K 600K 800K 0 Q)K 200K 400K 600K 800K  OM IM 2M 3M 4M
Timesteps Timesteps Timesteps
—— AWAC (Ours) ABM [40] oo AWR [32] BEAR [23] —— BRAC [50] —— DAPG [37] = SACID [45] === SAC+BC [30]

Advantage Weighted Actor Critic (Nair et al 2020)



Can we get rid of the actor altogether?

|dea: Stay within the data like AWAC, just regress onto the upper expectile

04 . .
i N\ 1.5
I v/ 0\
0.8 : |/ - \|
S %3N 1.0
S 0.6 A
: Ro2d /i >~ :
= 0.4- ] v/ 77Tt Moo\ 0.51 4
e L) e moa
g 1/ “4\ o
- 0.1 7 /I(/ T m05 \"\ 0 O_ ':
0_2 /: I mO,Q \\ . . \..
I
0.0- 0.0{ Mo.o0 054
~1.0 -0.5 0.0 0.5 1.0 —2 0 2 ~1.0 -0.5 0.0 0.5 1.0
u X X
. T
argmin E,. x [L3 (x — m)],

mr

Ly(u) = |1 — 1(u < 0)|u?



Implicit Q-learning

Learn an upper expectile of Q-functions from replay buffer, no bootstrapping!!

L(0) = E(s,a,5',a)~p[L3(7(s,a) +7Q4(s", a') — Qo(s, a))]

But why?

Dataset AWAC CQL IQL (Ours)
antmaze-umaze-v( 56.7 — 59.0 70.1 — 994 86.7 — 96.0
antmaze-umaze-diverse-v( 493 —49.0 31.1 — 994 75.0 — 84.0
antmaze-medium-play-v0 0.0 —0.0 230 — 0.0 720 — 95.0
antmaze-medium-diverse-v0 0.7 —0.3 230 — 323 68.3 — 92.0
antmaze-large-play-v0 0.0 —0.0 1.0 —00 255 — 46.0
antmaze-large-diverse-v0 1.0 —00 1.0 —00 42.6 — 60.7
antmaze-v( total 107.7 — 108.3 151.5 — 231.1 | 370.1 — 473.7
pen-binary-v0 4.6 — 70.3 312 — 9.9 374 — 60.7
door-binary-v( 1.3 —30.1 02 —0.0 0.7 — 323
relocate-binary-v( 08 —27 0.1 —0.0 0.0 —31.0
hand-vO0 total 46.7 — 103.1 | 31.5 — 9.9 38.1 — 124.0
total 1544 — 2114 | 182.8 —241.0 | 408.2 — 597.7




Landscape of Offline RL methods

offline reinforcement learning

‘IF —-_— L] L] —

-

| learn
rollout(s) j : 7.‘-

data collected once
with any policy

Policy Constraint Methods

Simple, works well offline

Too pessimistic

Lower Bounded Q Values

1tV
T
[ S—

|

)
D
| |

| }

-

1

training phase

\ deployment /

N

Will cover in readings!

Importance Sampling

Less conservative

More complex min-
max optimization

Unbiased solution

High variance



D4RL: Benchmarks for Offline RL

= Non-representable behavior policies

= Narrow distributions
s Undirected/multi-task behavior
= Visual perception

= Human demos

D4RL Fu, Kumar, et al 2020



RL Unplugged: Benchmarks for Offline RL

s Partially observable

s Real world RL considerations
— latency, noise

= Image based tasks

JEN el ETM DM Control Suite / DM Locomotion DM Locomotion o Atari 2600
Real World RL Suite - | Humanoid " R \

s Challenging exploration

Action space continuous continuous continuous discrete
Observation space state pixels pixels pixels
Exploration difficulty low to moderate high moderate moderate

Dynamics | deterministic / stochasitic deterministic deterministic stochastic

RL Unplugged, Gulcehre 2020



Offline RL on Real Problems

Robotics:

Dynamics
B —
< e

Bellman
Backup

reward = 1

Dynamics

reward =0 reward = 1

Training data

Prior Data

reward = 0

Can stitch together behaviors from prior data

COG: Connecting New Skills to Past Experience with Offline Reinforcement Learning, Singh et al 2020



Offline RL on Real Problems

Dialogue systems:

[User]: hey, what’s up?

[KL-control]: i’m not sure, but 1’m glad to see you, and
1’m so happy that you’re not alone

[User]: oh thanks, that’s very nice of you!

[KL-control]: i’m sorry, but 1’m glad to see what you think.
[User]: don’t be sorry, you did a good job.

[KL-control]: that’s really nice to me.

Way Off Policy Batch RL, Jaques et al 2019



Offline RL on Real Problems

Dialogue systems:

[User]: hey, what’s up?

[KL-control]: i’m not sure, but 1’m glad to see you, and
1’m so happy that you’re not alone

[User]: oh thanks, that’s very nice of you!

[KL-control]: i’m sorry, but 1’m glad to see what you think.
[User]: don’t be sorry, you did a good job.

[KL-control]: that’s really nice to me.

Way Off Policy Batch RL, Jaques et al 2019



Takeaways from Offline RL

m  Offline RL allows us to leverage large offline datasets to improve RL

m  Key challenge in offline RL is distribution shift
= Avoid OOD actions
= Push down OOD Q/R values

= Importance sampling

m Can be used to finetune online as well



L ecture Outline

Recap: Multi-task RL formalism

|

Multi-Task Reinforcement Learning

Meta-Reinforcement Learning

Why offline RL?

|

Methods for offline RL



