

Reinforcement Learning Autumn 2024

Abhishek Gupta

TA: Jacob Berg

Class Structure

Lecture Outline

```
Recap – Max-margin and Max-ent IRL
 Making max entropy IRL practical
           IRL as a GAN
    Why multi-task or meta-RL?
 Multi-Task Reinforcement Learning
   Meta-Reinforcement Learning
```

IRL problem statement + assumptions

Reinforcement Learning

State: Known

Action: Known

Transition Dynamics: Unknown but can sample

Reward: Known

Expert policy: Unknown Expert traces: **Unknown**

Inverse Reinforcement Learning

State: Known

Action: Known

Transition Dynamics: Unknown but can sample

Reward: **Unknown**

Expert policy: Unknown

Expert traces: **Known**

Find r that **explains** the demonstrator behavior as noisily optimal

Inverse RL

Reward $r_{ heta}(s,a)$

Reinforcement Learning Policy $\pi(a|s)$

New dynamics/state

IRL v1 – (Fancy) Max Margin Feature Matching

Maximum margin → Structured Max-Margin + Slack

$$\min \|w\|_2$$

s.t $w^T \mu^{\pi^*} \ge w^T \mu^{\pi} + 1, \forall \pi \in \Pi$

Bigger for more different policies

$$\min \|w\|_2 + C\zeta \qquad \downarrow$$
s.t $w^T \mu^{\pi^*} \ge w^T \mu^{\pi} + D(\pi, \pi^*) - \zeta, \forall \pi \in \Pi$

Slack allows for noisy optimality

IRL v1 – Max Margin Feature Matching

Maximum Entropy IRL Formulation

$$\max_{p} \mathcal{H}(p(\tau)) = -\int p(\tau) \log p(\tau) d\tau$$

$$\mu(p) = \mu(\pi^{*})$$

$$\int p(\tau) = 1$$

Max-entropy

Match features

Be a probability

Set up the Lagrangian

$$\max_{p} \min_{w,\lambda} \mathcal{H}(p(\tau)) + w^{T}(\mu(p) - \mu(\pi^{*})) - \lambda(\int p(\tau)d\tau - 1)$$

$$\min_{w,\lambda} \max_{p} \mathcal{H}(p(\tau)) + w^{T}(\mu(p) - \mu(\pi^{*})) - \lambda(\int p(\tau)d\tau - 1)$$

Solve wrt p

Solve wrt w, λ

Connect the dots!

Turns out this has nice intuitive properties

$$\max_{p} \mathcal{H}(p(\tau)) = -\int p(\tau) \log p(\tau) d\tau$$

$$\mu(p) = \mu(\pi^{*})$$

$$\int p(\tau) = 1$$

.

Max-entropy

Match features

Be a probability

$$\hat{\Gamma}$$

Objective reduces to $\min_{w} \log Z - w^T \mu(\pi^*)$

$$Z = \int \exp(w^T \mu(\tau)) d\tau$$

$$\bigcup_{T \in \mathcal{T}} (T = T) = 0$$

$$\max_{w} \log \frac{\exp(w^T \mu(\pi^*))}{\int \exp(w^T \mu(\tau)) d\tau}$$

Maximum likelihood with exponential family

$$= \max_{w} \mathbb{E}_{\tau^* \sim \mathcal{D}^e} \left[\log \frac{\exp(w^T \mu(\tau^*))}{\int \exp(w^T \mu(\tau)) d\tau} \right]$$

R = 60 P = 0.65 R = 30 P = 0.25 R = 10 P = 0.1

Intuition: trajectories are chosen proportional to their reward

IRLv2 – Maximum Entropy Inverse RL

$$\nabla J(w) = \mathbb{E}_{\tau^* \sim \mathcal{D}^e} \left[\nabla_w w^T \mu(\tau^*) \right] - \mathbb{E}_{\tau \sim p_w^*(\tau)} \left[\nabla_w w^T \mu(\tau) \right]$$
 Push up on data Push down on policy

Soft optimal policy for

$$r_w(s_t, a_t) = w^T \phi(s_t, a_t)$$
$$p_w^*(\tau) = \frac{\exp(w^T \mu(\tau))}{\int \exp(w^T \mu(\tau')) d\tau'}$$

Update reward w

Solve π to soft-optimal on current r_w

IRL v2 – Max-Ent IRL – Put it together

Maximum Entropy

IRL v2 – Max-Entropy Inverse RL (Pseudocode)

- 1. Start with a random policy π_0 and weight vector w
- → 2. Find the "soft" optimal policy under w $p_w(au)$
 - 3. Take a gradient step on w

$$\nabla_w \mathcal{L} = \mathbb{E}_{\pi^*} \left[\sum_t \gamma^t \phi(s_t, a_t) \right] - \mathbb{E}_{p_w(\tau)} \left[\sum_t \gamma^t \phi(s_t^{\tau}, a_t^{\tau}) \right]$$

4. Repeat

Lecture Outline

```
Recap – Max-margin and Max-ent IRL
  Making max entropy IRL practical
            IRL as a GAN
     Why multi-task or meta-RL?
  Multi-Task Reinforcement Learning
    Meta-Reinforcement Learning
```

Max-Ent IRL in Action

Max-Ent IRL in Action

Kings Hair () Western Terrina Remarkation Total Cites M. T

Detour route

Ok but no way this could work?

Linear Rewards -> Neural Net Rewards

Max-ent IRL allows us to go from linear rewards to arbitrary neural network rewards

Can simply replace, w with arbitrary θ and use autodiff!

Avoiding Complete Policy Optimization

Optimize policy against $r_{\phi}(s,a)$

$$r_{\phi}(s,a)$$

Assumes dynamics are known so we can just do (fast) planning

What happens when dynamics are unknown!

$$\mathbb{E}_{\pi^*} \left[\sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right] \qquad \qquad \text{What if we only } \underline{\text{improved}} \text{ the policy a little bit} \\ -\mathbb{E}_{p_w(\underline{\tau})} \left[\sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right] \qquad \qquad \qquad \text{Biased!}$$

Requires complete "soft" policy optimization

Avoiding Complete Policy Optimization

Importance sampling to the rescue!

$$\mathbb{E}_{p(x)}\left[f(x)\right] = \mathbb{E}_{q(x)}\left[\frac{p(x)}{q(x)}f(x)\right]$$

$$\mathbb{E}_{\pi^*} \left[\sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right]$$
$$-\mathbb{E}_{p_w(\tau)} \left[\sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right]$$

$$\mathbb{E}_{\pi^*} \left[\sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right]$$

$$-\mathbb{E}_{q} \left[\frac{p_w(\tau)}{q(\tau)} \sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right]$$

$$\xrightarrow{\exp(\sum_{t} r_{\theta}(s_t, a_t))} \frac{\exp(\sum_{t} r_{\theta}(s_t, a_t))}{\prod_{t} \pi_{\theta}(a_t | s_t)}$$

Can transfer significantly more from iteration to iteration rather than doing full nested optimization

IRLv4 – Guided Cost Learning

IRLv4 – Guided Cost Learning

Lecture Outline

```
Recap – Max-margin and Max-ent IRL
 Making max entropy IRL practical
            IRL as a GAN
     Why multi-task or meta-RL?
  Multi-Task Reinforcement Learning
    Meta-Reinforcement Learning
```

Connecting Maximum-Entropy RL to GANs

Looks like a game

- 1. Start with a random policy π_0 and weight vector w
- ightarrow 2. Take a step on "soft" optimal policy under w $p_w(au)$
 - 3. Take a gradient step on w

$$\nabla_{\theta} \mathcal{L} = \mathbb{E}_{\pi^*} \left[\sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right] - \mathbb{E}_q \left[\frac{p_w(\tau)}{q(\tau)} \sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right]$$

4. Repeat

Output the optimal reward function w*

Reminder: Generative Adversarial Networks

Technique to learn generative models via a 2 player game

https://sthalles.github.io/intro-to-gans/

Key idea: Generator tries to "confuse" the discriminator.

At convergence generated samples indistinguishable from real samples

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{x \sim p_{\text{data}}(x)} \left[\log D(x) \right] + \mathbb{E}_{z \sim p(z)} \left[\log (1 - D(G(z))) \right]$$

Often approximate generator loss as:

$$\min_{G} \mathbb{E}_{z \sim p(z)} \left[\log(1 - D(G(z))) \right] - \mathbb{E}_{z \sim p(z)} \left[\log(D(G(z))) \right]$$

Can inverse RL be considered a GAN?

Generator = policy Discriminator = reward (kinda)

Find a policy which makes a discriminator unable to tell if the samples came from the policy or the demos

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\tau \sim p_{\text{demo}}(\tau)} \left[\log D(\tau) \right] + \mathbb{E}_{\tau \sim \pi} \left[\log(1 - D(\tau)) \right]$$

Push up real data

Push down policy data

Discriminator trained with classification between expert/non-expert

Generator trained to max log D with RL

Generative Adversarial Imitation Learning

Challenge: only policy, not really a reward

Jonathan Ho
Stanford University
hoj@cs.stanford.edu

Stefano Ermon Stanford University ermon@cs.stanford.edu

Tweaking GAIL to connect with IRL

We can make simple tweaks to GAIL to get back to max-ent IRL

Optimal discriminator

$$D^*(x) = \frac{p(x)}{p(x) + q(x)}$$

Choose a particular form of discriminator

Policy informed discriminator

$$D_{\theta}(\tau) = \frac{\frac{1}{Z} \exp(r_{\theta}(\tau))}{\frac{1}{Z} \exp(r_{\theta}(\tau)) + q(\tau)}$$

s Discriminator $\sigma(o)$ p(true/false)

 $\begin{array}{c|c} \tau & \text{Discriminator} \\ \hline \\ \log Z \\ \hline \\ \log q(\tau) \\ \end{array}$ p(true/false)

Tweaking GAIL to connect with IRL

For a particular parameterization of the discriminator, we can show that GAN = max-ent IRL

Max-Ent Inverse RL

$$\mathbb{E}_{\pi^*} \left[\sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right]$$

$$-\mathbb{E}_q \left[\frac{p_w(\tau)}{q(\tau)} \sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right]$$

Push up demos, push down policy

With some massaging

Push up real data, push down generated

$$D_{\theta}(\tau) = \frac{\frac{1}{Z} \exp(r_{\theta}(\tau))}{\frac{1}{Z} \exp(r_{\theta}(\tau)) + \Pi_{t} \pi_{\theta}(a_{t}|s_{t})}$$

Generator Optimization as Max-Ent RL

$$\min_{G} \mathbb{E}_{z \sim p(z)} \left[\log(1 - D(G(z))) \right] - \mathbb{E}_{z \sim p(z)} \left[\log(D(G(z))) \right]$$

$$D_{\theta}(\tau) = \frac{\frac{1}{Z} \exp(r_{\theta}(\tau))}{\frac{1}{Z} \exp(r_{\theta}(\tau)) + q(\tau)}$$

$$\sqrt{ }$$

$$\min \mathbb{E}_{\tau \sim q(\tau)} \left[\log \frac{q(\tau)}{\frac{1}{Z} \exp(r_{\theta}(\tau)) + q(\tau)} - \log \frac{\frac{1}{Z} \exp(r_{\theta}(\tau))}{\frac{1}{Z} \exp(r_{\theta}(\tau)) + q(\tau)} \right]$$

$$\max \mathbb{E}_{\tau \sim q(\tau)} \left[r_{\theta}(\tau) - \log Z - \log q(\tau) \right]$$

Maximum entropy RL with current reward!

Similar proof holds for the discriminator optimization – refer to https://arxiv.org/pdf/1611.03852

Adversarial IRL in Action

Takeaways on IRL

Pros:

- 1. Potentially generalizable
- 2. Can continue improving beyond BC
- 3. Avoids compounding error
- 4. Often only option for RL in hard to specify scenarios

Cons

- 1. Expensive nested optimization
- 2. Inherent ambiguity
- 3. Hard to scale reliably

Lecture Outline

```
Recap – Max-margin and Max-ent IRL
 Making max entropy IRL practical
            IRL as a GAN
     Why multi-task or meta-RL?
  Multi-Task Reinforcement Learning
    Meta-Reinforcement Learning
```

From Single Task to Multi-Task RL

Can we make RL algorithms generalists?

We need a single agent to be able to (quickly or directly) solve multiple different tasks

Specialist RL

Generalist RL

Multi-Task RL – Distribution over MDPs

Assumption: Same state/action space, varying dynamics and rewards

$$\mathcal{M} = (\mathcal{S}, \mathcal{A}, \mathcal{T}, \mathcal{R}, \mu, \gamma)$$

$$p(\mathcal{M}_i)$$

$$\mathcal{M}_i = (\mathcal{S}, \mathcal{A}, \mathcal{T}_i, \mathcal{R}_i, \mu, \gamma)$$

Goals for Today

Our goal: understand different ways to solve meta-MDP/multi-task RL problem

$$p(\mathcal{M}_i)$$

$$\mathcal{M}_i = (\mathcal{S}, \mathcal{A}, \mathcal{T}_i, \mathcal{R}_i, \mu, \gamma)$$

Why should we do this?

- Learn faster by sharing data
- Generalize immediately (or quickly) to new, unseen tasks

Language Models are Few-Shot Learners

Tom B. Bro	wn* Benjamin	Mann* Nick	Ryder* M	elanie Subbiah*
Jared Kaplan [†]	Prafulla Dhariwal	Arvind Neelakanta	n Pranav Shyan	n Girish Sastry
Amanda Askell	Sandhini Agarwal	Ariel Herbert-Voss	Gretchen Kruege	er Tom Henighan
Rewon Child	Aditya Ramesh	Daniel M. Ziegler	Jeffrey Wu	Clemens Winter
Christopher He	esse Mark Chen	Eric Sigler	Mateusz Litwin	Scott Gray
Benjamin Chess		Jack Clark	Christopher Berner	
Sam McCandlish Alec Ra		adford Ilya	Sutskever	Dario Amodei

Lecture Outline

```
Recap – Max-margin and Max-ent IRL
 Making max entropy IRL practical
            IRL as a GAN
     Why multi-task or meta-RL?
 Multi-Task Reinforcement Learning
    Meta-Reinforcement Learning
```

Multi-Task Meta-MDP

Let us assume the factor of variation across MDPs can be characterized by known ω_i Eg: task ID, goal, video, language, ...

$$p(\omega_i)$$

$$\mathcal{M} = (\mathcal{S}, \mathcal{A}, \mathcal{T}, \mathcal{R}, \mu, \gamma)$$

$$\mathcal{M}_i = (\mathcal{S}, \mathcal{A}, \mathcal{T}_{\omega_i}, \mathcal{R}_{\omega_i}, \mu, \gamma)$$

Slight reformulation

$$s \to (s, \omega_i)$$

$$\mathcal{T} \to p(s'|s, a, \omega_i)$$

$$\mathcal{R} \to r(s, a, \omega_i)$$

$$\mu \to \mu(s_0)p(\omega_i)$$

Key idea: Multi-task RL == Single task RL in modified MDP

Just include ω_i in state and run standard RL, solve new ω_i 0-shot

Multi-Task Actor-Critic

We often want to learn a single policy, Q function which can solve multiple tasks.

Template for Multi-Task RL

Canonical paradigm for doing multi-task RL via RL

- 1. Sample data from all tasks using the same actor with different task ID
- 2. Collect all data into a single batch with (s, a, s', task ID) pairs
- 3. Perform actor and critic updates on the shared actor and critic with losses summed up across tasks

$$\pi \leftarrow \arg\max \mathbb{E}_{\tau \sim p(\tau)} \mathbb{E}_{a \sim \pi} \left[Q^{\pi}(s, a, \tau) \right]$$

$$Q^{\pi} \leftarrow \arg\min \mathbb{E}_{\tau \sim p(\tau)} \mathbb{E}_{(s, a, s') \sim p} \left[(Q(s, a, \tau) - (r(s, a, \tau) + \gamma \mathbb{E}_{a' \sim \pi(.|s', \tau)} Q(s', a', \tau)))^{2} \right]$$

Does it work?

Let's not even study generalization, let's understand if this fits the train set

MT50
8.98%
22.86%
15.31%
28.83%
35.85%

Why is it hard to do Multi-Task RL?

Gradients from different tasks often conflict and hamper performance of all tasks, especially when coupled with exploration

How can we deal with gradient interference in RL?

If issue is exploration + conflicting gradients is bad

Idea 1: Remove exploration from MTRL

Idea 2: Modify gradients

Resolving Gradient Interference with Distillation

Empirical observation:

Multi-task SL (no exploration) is stable, multi-task RL (exploration) is unstable

Idea: convert multi-task RL into single task RL + multi task SL

Divide and Conquer Approach to RL

Divide into multiple single task RL problems, "distill" into a single solution

Single task RL → standard RL

Distillation → supervised learning

Divide and Conquer RL: Mathematical Formulation

regularise

distill

$$\max_{\pi_0} J(\pi_0, \{\pi_i\}_{i=1}^n)$$

Experimental Validation

Experimental Validation

Divide and Conquer Reinforcement Learning

Is this enough?

Lot of the learning is done independently, limited data/parameter sharing

Can we do better?

What if we directly modified the gradients?

Idea: When gradients conflict, project them to deconflict

Deconflicting gradients with PCGrad

If gradients conflict: project them onto the normal plane

$$g_i = g_i - \frac{g_i \cdot g_j}{\|g_j\|^2} \cdot g_j$$

Otherwise: leave them alone

Does this empirically help?

$$\mathcal{L}_1(\theta) = 20 \log(\max(|.5\theta_1 + \tanh(\theta_2)|, 0.000005))$$

$$\mathcal{L}_2(\theta) = 25 \log(\max(|.5\theta_1 - \tanh(\theta_2) + 2|, 0.000005))$$

Does this empirically help?

So multi-task RL is pretty cool, does it work?

So multi-task RL is pretty cool, does it work?

 ω_i can be language too!

Takeaways

- 1. Multi-task RL solves a contextual meta-MDP for 0-shot generalization
 - Can help with efficiency and generalization
- 2. Optimization in multi-task RL can be challenging:
 - Gradient interference during optimization
 - Winner take all during optimization
- 3. Solutions to multi-task optimization include:
 - Divide and conquer
 - Gradient projection
 - •

Lecture Outline

```
Recap – Max-margin and Max-ent IRL
 Making max entropy IRL practical
           IRL as a GAN
     Why multi-task or meta-RL?
Multi-Task Reinforcement Learning
    Meta-Reinforcement Learning
```

Recap: Multi-task RL Setup, 0-shot generalization

Factor of variation across MDPs can be characterized by ω_i , which is known Eg: task ID, goal, video, language, ...

When is this not enough?

From 0-shot learning to few-shot learning

Factor of variation across MDPs can be characterized by ω_i , which is known Eg: task ID, goal, video, language, ...

Context is unknown or hard to specify analytically

From 0-shot learning to few-shot learning

0-shot MTRL: No experience at test time

Meta-RL: Small amount of experience at test time

Fast adaptation with experience

Connection to Contextual Multi-Task RL

multi-task reinforcement learning

meta reinforcement learning

- Multi-task policy evaluates 0-shot performance
- Meta-RL trains for good k-shot policy by "learning to learn"

Meta-Learning Problem for RL

Collect Experience (Meta-Training)

Given i.i.d. task distribution, learn a new task efficiently learn Fast Adaptation (Meta-Testing)

- Given a distribution over tasks p(au) , learn an update function $f_ heta$ that can learn tasks drawn from p(au) quickly!
- Leverage regularity across tasks to optimize for a fast RL algorithm

Meta-Learning Problem for RL

Standard RL:

Single reward function, single dynamics $\arg\max_{ heta}\mathbb{E}_{\pi_{ heta}}\left[\sum_{t}r(s_{t},a_{t})\right]$

Meta RL:

Distribution of tasks p(au) , optimize for update function $f_{ heta}$

$$\theta^* = \arg\max_{\theta} \mathbb{E}_{\tau \sim p(\tau)} \left[\mathbb{E}_{\pi_{\phi_i}} \left[\sum_t r(s_t, a_t) \right] \right]$$
 Encourages quick update

Per-task updated policy

where
$$\phi_i = f_{ heta}(\mathcal{D}_{ au})$$

Shared update function

Intuition behind Meta-RL

- Leverage regularity in task distribution to speed up learning
- Explore for some time before exploiting
- Minimizes regret not just maximizes reward

General Structure of Meta-RL Algorithms

$$\theta^* = \arg\max_{\theta} \mathbb{E}_{\tau \sim p(\tau)} \left[\mathbb{E}_{\pi_{\phi_i}} \left[\sum_t r(s_t, a_t) \right] \right]$$
 — Outer loop

where
$$\phi_i = f_{ heta}(\mathcal{D}_{ au})$$
 ------ Inner loop

- 1. Sample a batch of tasks from $p(\tau)$
- 2. collect data pre-update
- 3. Compute update according to $\phi_i = f_{\theta}(\mathcal{D}_{\tau})$
- 4. Sample data from ϕ_i post-update to evaluate the update
- 5. Optimize for update function f_{θ}

Solution Techniques for Meta-RL Problems

Main design choices:

where $\phi_i = f_{\theta}(\mathcal{D}_{\tau}) \longleftarrow$ Inner loop

- lacksquare Parameterization of $f_ heta$ for inner loop
- Algorithm for outer loop optimization

Policy Gradient Off-Policy RL

Model-Based RL

Memory Based Meta-RL

Idea: Make the update function forward pass of an RNN

- Learn RNN that takes in past s, a, <u>r(s, a)</u>, produce action.
- Maintain hidden state across episodes
- Maximize sum of returns across episodes

Trial 1

Trial 2

Memory Based Meta-RL

$$\theta^* = \arg\max_{\theta} \mathbb{E}_{\tau \sim p(\tau)} \left[\mathbb{E}_{\pi_{\phi_i}} \left[\sum_{t} r(s_t, a_t) \right] \right]$$
 Combine inner and where $\phi_i = f_{\theta}(\mathcal{D}_{\tau})$ outer loop into black box RNN

Meta-Training

- 1. Sample a batch of tasks from $p(\tau)$
- 2. Collect data using RNN across episodes for each task, with persistent hidden state and rewards available to the policy
- 3. Optimize RNN policy via policy gradient BPTT

Meta-Testing

1. Simply run the RNN forward pass across episodes

Memory Based Meta-RL

How well does memory based meta-RL work?

Pros:

Simple, easy to implement

Arbitrarily flexible inner loop

Generally stable optimization

Cons:

No guaranteed improvement during meta-test time

Poor performance OOD

Optimization Based Meta-RL

Idea:

What if we force $f(\theta)$ to be convergent?

Force $f(\theta)$ to be a convergent optimization algorithm like SGD

$$\theta^* = \arg\max_{\theta} \mathbb{E}_{\tau \sim p(\tau)} \left[\mathbb{E}_{\pi_{\phi_i}} \left[\sum_{t} r(s_t, a_t) \right] \right]$$

$$\phi_i = f_{\theta}(\mathcal{M}_i)$$

Restrict to be convergent optimization

MAML: Gradient Based Meta-RL

$$\theta^* = \arg\max_{\theta} \mathbb{E}_{\tau \sim p(\tau)} \left[\mathbb{E}_{\pi_{\phi_i}} \left[\sum_{t} r_{\tau}(s_t, a_t) \right] \right]$$

$$\phi_i = \theta + \alpha \nabla_{\theta} \mathbb{E}_{\pi_{\theta}} \left[\sum_t r_{\tau}(s_t, a_t) \right]$$

Learn most fine-tunable initial parameters, such that 1-step of SGD is good

Pseudocode for Gradient Based RL

- 1. Sample a batch of tasks from $p(\tau)$
- 2. collect data pre-update from π_{θ}
- 3. Compute update according to $\phi_i = \theta + \alpha \nabla_{\theta} \mathbb{E}_{\pi_{\theta}} \left| \sum_i r_{\tau}(s_t, a_t) \right|$
- 4. Sample data from ϕ_i post-update
- Optimize for initial parameters by PG in outer loop

$$\theta^* = \arg \max_{\theta} \mathbb{E}_{\tau \sim p(\tau)} \left[\mathbb{E}_{\pi_{\phi_i}} \left[\sum_{t} r_{\tau}(s_t, a_t) \right] \right]$$
$$\phi_i = \theta + \alpha \nabla_{\theta} \mathbb{E}_{\pi_{\theta}} \left[\sum_{t} r_{\tau}(s_t, a_t) \right]$$

Second order gradients via bi-level optimization

Tasks:

Half cheetah: goal velocity,

Half cheetah: forward/backward

Ant: forward/backward

Pros:

Consistent, worst case performance is PG

Only need to learn initialization

Cons:

Second order gradients needed

Potentially less expressive update

Latent Variable Models for Meta-RL

Think of meta-RL similar to multi-task RL, but context ω_i is a hidden variable that must be inferred

Meta-RL as a POMDP

Recasting meta-RL as context inference

where
$$\phi_i=rg\max_{ heta}\mathbb{E}_{ au\sim p(au)}\left[\mathbb{E}_{\pi_{\phi_i}}\!\left[\sum_t r(s_t,a_t)
ight]
ight]$$
 where $\phi_i=f_{ heta}(\mathcal{D}_{ au})$ is $\phi_i=f_{ heta}(\mathcal{D}_{ au})$ and $\phi_i=f_{ heta}(\mathcal{D}_{ au})$ is $\phi_i=f_{ heta}(\mathcal{D}_{ heta}(\mathcal{D}_{ au})$ and $\phi_i=f_{ heta}(\mathcal{D}_{ heta}(\mathcal{D}_{ au})$ is $\phi_i=f_{ heta}(\mathcal{D}_{ heta}(\mathcal{$

Infer latent variable from experience

Deploy latent conditioned policy

Recasting meta-RL as context inference

Meta-Training

- 1
- 1. Sample a batch of tasks from $p(\tau)$
- 2. Sample trajectories $\{s_0, a_0, r_0, \dots, s_T, a_T, r_T\}_{I=1}^{N}$
- 3. Train $q_{\theta}(z|s_0, a_0, r_0, s_1, a_1, r_1, \ldots, s_T, a_T, r_T)$ and $\pi_{\theta}(a|s, z)$ to maximize rewards via RL (+ some regularization)

Meta-Testing

- - ▶ 1. Sample z from prior p(z)
 - 2. Sample trajectories from $\pi_{\theta}(a|s,z)$ and z
 - 3. Update p(z) to posterior $q_{\theta}(z|s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_T, a_T, r_T)$

Latent Variable Model Intuition

Different images correspond to different z

Different <u>tasks</u> correspond to different z Quick search happens in z space

Exploration:

Gains mainly from off-policy RL

Pros:

Easy to run with off-policy RL

Can be very efficient, trained offline, etc

Might be easy to incorporate priors into inference network

Cons:

Exploration may be suboptimal

May need a huge context variable, hard to optimize/generalize

So meta-RL is cool, does it actually work?

Industrial insertion → adapting to different plug shapes

So meta-RL is cool, does it actually work?

Adapting to different terrains/robot conditions

Takeaways from meta-RL

- Meta-RL takes multi-task RL from 0-shot to few-shot
- Meta-RL algorithms can be viewed as choices on top of bi-level optimization
 memory based, gradient based, latent variable
- Meta-RL can allow adaptation when context is unknown or hard to describe

Putting things in perspective

- Multi-task (and meta) RL takes RL from specialists to generalists (well, kind of)
- The landscape can be understood along 2 axes

Some heavily biased readings

Multi-Task RL

- 1. Gradient conflict: Gradient Surgery for Multi-Task Learning (Yu et al 2020), Multi-Task Learning as Multi-Objective Optimization (Sener et al 2019)
- 2. Divide and Conquer: Distral: Robust Multitask Reinforcement Learning (Teh et al 2017), Divide-and-Conquer Reinforcement Learning (Ghosh et al 2018)
- 3. Multi-task RL at scale: MT-Opt: Continuous Multi-Task Robotic Reinforcement Learning at Scale (Kalashnikov et al 2021), BC-Z: (Jang et al 2022), Do As I Can, Not As I Say: Grounding Language in Robotic Affordances (Ahn et al 2022)

<u>Meta-RL</u>

- 4. Meta-RL overview, older papers by Schimdhuber/Hochreiter
- 5. Recurrent meta-RL: RL² (Duan et al), L2RL (Wang et al), SNAIL (Mishra et al), CNP (Garnelo et al 2018)
- 6. Gradient-based meta-RL: MAML (Finn et al), REPTILE (Nichols et al), ProMP (Clavera et al), Antoniu 2018, Bechtle 2019
- 7. Latent variable meta-RL: PEARL (rakelly et al), VariBAD (zintgraf et al), MAESN (Gupta et al), Zhang et al 2020
- 8. Model-based meta-RL: Clavera and Nagabandi 2019, Harrison and Sharma 2020, MIER (Mendonca et al)
- 9. Exploration in meta-RL: MAESN (Gupta et al), DREAM (Liu et al), GMPS (Mendonca et al)
- 10. Supervision in meta-RL: UMRL (Gupta et al), CARML (Jabri et al), UML (Hsu et al)

Lecture Outline

```
Recap – Max-margin and Max-ent IRL
 Making max entropy IRL practical
           IRL as a GAN
     Why multi-task or meta-RL?
Multi-Task Reinforcement Learning
   Meta-Reinforcement Learning
```