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IRL problem statement + assumptions

Reinforcement Learning

State: Known
Action: Known

Transition Dynamics: Unknown but can sample

Reward: Known

Expert policy: Unknown
Expert traces: Unknown

Inverse Reinforcement Learning

State: Known

Action: Known

Transition Dynamics: Unknown but can sample
Reward: Unknown

Expert policy: Unknown

Expert traces: Known

Find r that explains the demonstrator behavior as noisily optimal

&.

Inverse RL

Reward
ro(s,a)

4 )

Reinforcement Policy

-

Learning W(G‘S)
\ J

New dynamics/state



IRL v1 = (Fancy) Max Margin Feature Matching

Maximum margin > Structured Max-Margin + Slack

min ||w||2

st wly™ >wly™+1,Vr ell

Bigger for more different policies
min |||z + C¢ |
st wly™ >wly™ + D(m, 7)) — ¢, Vr eIl

Slack allows for noisy optimality



IRL v1 — Max Margin Feature Matching

min [|w||2 + C¢

st wly™ >wly™ + D(r,n*) — ¢, Vr el

Solve Max-Margin Planning

-

\_

\

Com pare to expert traces

T Tt

s ~N
Propose a reward function |
re(s,a)
_ Y

re(s,a) = w! ¢ (s, a)

Linear

Known dynamics

B

Optimize policy against

J

re(s,a)

- J




Maximum Entropy IRL Formulation

max H(p(T)) = —/p(T) log p(7)dr Max-entropy
wu(p) = p(m™) Match features
/p(7> =1 Be a probability

Set up the Lagrangian

—+mwmmH@ﬁ»+wWMm—MWﬂ%wK/MﬂW—l)

P w,A

mmme@ﬁ»+wWM@—uWﬂ%nK/Mﬂw—l)

w,\ P

Solve wrt p
Solve wrt w, A

Connect the dots!



Turns out this has nice intuitive properties

max H(p(7)) = —/p(T) log p(7)dr Max-entropy
p
w(p) = p(m™) Match features
/p(T) =1 Be a probability

Objective reduces to min log Z —w p(m™*)
Z = /exp(wT,u(T))dT

J

L expwTu(r)
w log [ exp(wT u(7))dr

Maximum likelihood with
exponential family

exp(w’ p(7*))
[ exp(wT p(7))dr

= max K, pe [log

Intuition: trajectories are chosen proportional to their reward



IRLV2 — Maximum Entropy Inverse RL

Soft optimal policy for
VJ(UJ) = E «pe [waT,LL(T*)} — ]ETNP’{U () [waT,u(T)} T (8¢, a) = w? o(s¢, ay)

Push up on data Push down on policy exp(w’ (7))

PulD) = Jexp(wTu(r)dr

Solve mt to soft-optimal on current r;,

Update
reward w



IRL v2 — Max-Ent IRL — Put it together

Maximum Entropy

> A b(st, at)]
—Ep,, (r) [Z SRCHE atT)]

Vwﬁ - Eﬂ-*

4 )

Com pare to expert traces

T Tt

re(s,a) = w! ¢ (s, a)

Linear

s ~N
Propose a reward function |
re(s,a)
_ Y

Known dynamics

B

Optimize policy against

- J

re(s,a)

- J




IRL v2 —Max-Entropy Inverse RL (Pseudocode)

1. Start with a random policy myand weight vector w
—— 2. Find the “soft” optimal policy under w — P, (7)
3. Take a gradient step onw

Vol =E;-

27t¢(3t7 @t)

— Ky, 0 [Z Vt¢(3t77 GZ)]
¢

L 4. Repeat

|-| > Output the optimal reward function w*
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Max-Ent IRL in Action




Max-Ent IRL in Action
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Ok but no way this could work?

¢ Il Il Il BN NN N N

Maximum Entropy f \

l I

max H(p(r) -, N R OO
p\T . I
gt ]E,p(,r) [¢(S’ CL)] ~ EW* [¢(S7 a)] PI’OpOSE a reward function < I\ Llnear I

[
| Known dynam|CS|

L se

Compare to expert traces Optlmlze policy agalnst
T T re(s,a)
_ Y _ Y




Linear Rewards = Neural Net Rewards

Max-ent IRL allows us to go from linear rewards to arbitrary neural network rewards

||||||

Linear Max-Ent IRL max K«
w

ZwTvtgb(St,at)] — log/T [exp (Zwaytqb(St,at))] dr
V
Zv ro(st, at ] log/T [exp (Z:ytrgést,at))} dr

Non-Linear Max-Ent IRL maxE

Can simply replace, w with arbitrary 6 and use autodiff!



Avoiding Complete Policy Optimization

4 )

Optimize policy against

re(s,a)
\ J

+—— Assumes dynamics are known so we can just do (fast) planning

What happens when dynamics are unknown!

E,-

ZVtVQTQ(Sta at):|
t

—Ep,(m) [Z 7' Vere(st, at)w
L .

« What if we only improved the policy a little bit

Biased!

Requires complete “soft” policy optimization



Avoiding Complete Policy Optimization

Importance sampling to the rescuel!

Epe) [F(2)] = By [@ <w>]

q()
Importance
[ Z”yth“e(St, a/t):| Sampling E, - Z’)/tVQTQ(St,CLt):|
¢ > -
w (T
—E,. {Z ’YtVQTQ(St,CLt)} —E, pq((T)) Z’}/tVQT@(St,CLt):|
¢ t

exp(2_; 7o (5t a1))

Ht7Te<at|St)

Can transfer significantly more from iteration to iteration rather than doing full nested optimization



IRLv4 — Guided Cost Learning

Gradient Step on Reward

Ere | > 7'Voro(s:, at)] ~ ™ re(s,a)
t .
o) t Propose a reward function | Neural network
E Z’Y Vore(se, az)
a(r) 5 re(s,a)
- J
Gradient step on policy
4 ) 4 )
Compare to expert traces Optimize policy against
T T r¢(37 a)

- J - J




IRLv4 — Guided Cost Learning

7z )

) THEEE ’ X
gt S == vt/ ‘Demoyi (of 20)
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Connecting Maximum-Entropy RL to GANs

Generator

Discriminator

=)

Looks like a game

1. Start with a random policy Ty and weight vector w
—— 2. Take a step on “soft” optimal policy under w — p., (7)
3. Take a gradient step on w

V@E — ]Eﬂ-*

Z ’}/tVQ’rg(St, CLt) — Eq
t

p;“(g) Et: Y'Vore(st, at)

L 4. Repeat

|-| > Output the optimal reward function w*




Reminder: Generative Adversarial Networks

Technique to learn generative models via a 2 player game

N\ Real
E\andf)m m {J—’ @E{Fake

Discriminator

Generator Fake image

https://sthalles.github.io/intro-to-gans/

Key idea: Generator tries to “confuse” the discriminator.
At convergence generated samples indistinguishable from real samples

mén max V(D,G) = Eypyoa () log D()] +E,pz) log(l — D(G(2)))]

Often approximate generator loss as:

min B p(z) [10g(1 = D(G(2)))] = E.np(z) [log(D(G(2)))]



Can inverse RL be considered a GAN?

Generator = policy
Discriminator = reward (kinda)

Find a policy which makes a discriminator unable to tell if
the samples came from the policy or the demos

mén max V(D,G) =Erpyono(r) log D(7)] +E;r [log(1l — D(7))]

Push up real data Push down policy data

Discriminator trained with Generator trained to max
classification between Generative Adversarial Imitation Learning

expert/non-expert log D with RL

Challenge: only policy, not really a reward Jonathan Ho Stefano Ermon

Stanford University Stanford University
hoj@cs.stanford.edu ermon@cs.stanford.edu



Tweaking GAIL to connect with IRL

We can make simple tweaks to GAIL to get back to max-ent IRL

Optimal discriminator

N L)
PO = e+ a@
S Discriminator

p(true/false)

o(0)

Choose a particular
form of discriminator

Policy informed discriminator

7 exp(rp(7))

Pol) = T op(ra(m) + 4(7)

r(7)
Discriminator { ’ °

logZ

p(true/false)
log q(7)



Tweaking GAIL to connect with IRL

For a particular parameterization of the discriminator, we can show that GAN = max-ent IRL

Max-Ent Inverse RL

Pul7) > A'Vore(st, at)]

Push up demos, push down policy

Dg(’i‘) =

<

>

With some massaging

ETdiemo(T) [lOg D(T>]
+ Err [log(1 — D(7))]

Push up real data, push down generated

7 exp(ro(7))

1
7 exp

(ro(7)) + Uymg(ac|st)



Generator Optimization as Max-Ent RL

min B, opz) [log(1 — D(G(2)))] — Eonp(z) [log(D(G(2))))

% exp(r9 (7))
7 exp(ra(7)) + q(7)

¢
= exp(ro(7)

minE__ . |lo
o W m
reg(r) [T0(T) —TogZ — log (T

Maximum entropy RL with current reward!

DQ(T) =

max K

Similar proof holds for the discriminator optimization - refer to https://arxiv.org/pdf/1611.03852
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Takeaways on IRL

Pros:

1. Potentially generalizable

2. Can continue improving beyond BC

3. Avoids compounding error

4. Often only option for RL in hard to
specify scenarios

CO n S b ‘ Preferred route Detour route

1. Expensive nested optimization
2. Inherent ambiguity
3. Hard to scale reliably
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From Single Task to Multi-Task RL

assembly basketball button IEress Putton res button press bu ton press coffee button coffee pull

topdow dow
faucet open faucet close

disassemble  door open door unlock drawer close

coffee push

dial turn hammer

h,cg\dle press

ICk place

drawer open

handle press handle pull lever pull pick place

g%rédle pull gl%% insert gﬁ]% unplug ﬁlé:‘lé out of

gf 1

reach

plate slide g{gge slide

late slid It h back h wall
gé:cf slide é:ce g{dde push bac push wa

Simulation Reference

reach wall

window close

shelf place  soccer stick push stick pull sweep into

sweep

window open




Can we make RL algorithms generalists?

We need a single agent to be able to (quickly or directly)
solve multiple different tasks

Specialist RL Generalist RL
Behavior Behavior
) 1
4 Agent A 4 Agent R

% S
r T

Observation Observation  Task Specification




Multi-Task RL — Distribution over MDPs

Assumption: Same state/action space, varying dynamics and rewards

p(Mz')
M:(S,A,T,R,M,W) M; = (8, A, Ti, Riy i, 7y)
| — I
’J Agent || I — | |
state | | reward action ‘ ‘
S R, A (_1
i R f
S| Environment }4— ] 'ﬂ)
. L L state | | reward action
S| | R A,

] RHI @ .
- < Environment




Goals for Today

Our goal: understand different ways to solve meta-MDP/multi-task RL problem

p(MZ) Behavior
Mz' — 87 Aa 7;7 Ria 9 1
( [y 7y) s Agent ~

— |
I —— I @
— | \§ %
S ’_| Agent | / \

V;J . . . .
stato| | roward o Observation  Task Specification
St R’ A,

- S.. | Environment ]<




Why should we do this?

B [earn faster by sharing data

B Generalize immediately (or quickly) to

new, unseen tasks

Language Models are Few-Shot Learners

Tom B. Brown* Benjamin Mann* Nick Ryder* Melanie Subbiah*

Jared Kaplan® Prafulla Dhariwal Arvind Neelakantan Pranav Shyam Girish Sastry

Amanda Askell Sandhini Agarwal Ariel Herbert-Voss Gretchen Krueger Tom Henighan

Rewon Child Aditya Ramesh Daniel M. Ziegler Jeffrey Wu Clemens Winter
Christopher Hesse Mark Chen Eric Sigler Mateusz Litwin Scott Gray
Benjamin Chess Jack Clark Christopher Berner
Sam McCandlish Alec Radford Ilya Sutskever Dario Amodei

OpenAl
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Multi-Task Meta-MDP

Let us assume the factor of variation across MDPs can be characterized by known W;
Eg: task ID, goal, video, language, ...

p(wi)
M= (S, AT, R,u~) M;i = (S, A, To., Res. s 11, 7)
@ Slight reformulation
S — (8, UJZ') Key idea: Multi-task RL == Single task RL in modified MDP
/
T — p(s'|s,a,w;)
R — T‘(S a w.) Just include Ww; in state and run standard RL, solve
T new W; 0-shot

1 — p(so)p(w;)



Multi-Task Actor-Critic

We often want to learn a single policy, Q function which can solve multiple tasks.

Train tasks Test tasks

46. hand insert T T

47. close box

K 0.

T.turnon 2. sweep 3.basketball 4.sweep  5.tunoff 6. push 7. pulllever8. turn dial|9. push with
faucet into hole faucet stick

18. press

10. get 1. pull  12.assemble 13, pull 14, pick out?5. disassemble 14, place  17. push
coffee  handle side nut with stick  of hole nut onto shelf  mu handle side

L sli Lsli 22. . . . 26. retrieve 27. retri
20.slide = 21.slide press 23.press 24.pull  25. soccer retrieve 27. retrieve Ty door

plate  plate side button wall handle handle plate side  plate -
36. pick &

31. press butt i
28. close  29.press 30.reach 31-pressbutton’ 32 regch = 33.insert 34.push  35. push oiacew/wall 49. unlock door

drawer  button top Pl ith wall peg side with wall -
37. press 38.pick &  39.pull "40.unplug 41.close = 42. open 43.open = 44.close =~ 45. open 50. pick bin | T | |

. . |
button lace mu e window  window door door drawer
i T S TaskID S Q Task ID

mq?XEwNp(w) ]E’7T¢(CL|S,LU) thr(saaaw):|
t



Template for Multi-Task RL

Canonical paradigm for doing multi-task RL via RL

1. Sample data from all tasks using the same actor with different task ID

2. Collect all data into a single batch with (s, a, s, task ID) pairs

3. Perform actor and critic updates on the shared actor and critic with losses
summed up across tasks

m < argmaxE. )\ Equr Q7 (5, a,T)]

Q" < argmin ETNP(T)E(S,CL,S’)NP [(Q(S7 a,7) — (r(s,a,7) + 7Ea’~”(-|5’77)Q(8/’ a’, 7_)))2}



Does it work?

Let’s not even study generalization, let’s understand if this fits the train set

MT10
Methods MTS50 e
Multi-task PPO 8.98% 5 oe |
Multi-task TRPO 22.86% - v |
Task embeddings 15.31% § 04 i SR
Multi-task SAC 28.83% 2 PRLEWIR o |
Multi-task multi-head SAC ~ 35.85%

|

0 1000 2000 3000 Yo'oo 5000

o
(=]

Number of thousand eny steps

Multi Task RL



Why is it hard to do Multi-Task RL?

Gradients from different tasks often conflict and hamper performance of all
tasks, especially when coupled with exploration

a TN

. Agent
)  Agent]
9=29 7149 . state | |reward action -~
\ - o o
N S, R, A
: ! ~
< . 54 Rt+l 4 . ‘
95 <] Environment ]4—
"""" Conflicting ’ b

~_ 7




How can we deal with gradient interference in RL?

If issue is exploration + conflicting gradients is bad

|
! v

Idea 1: Remove exploration from MTRL Idea 2: Modify gradients

ol TN -

AR /

projnig ]
Vo ’

V.
f' R g
‘ S
8j




Resolving Gradient Interference with Distillation

Empirical observation:
Multi-task SL (no exploration) is stable, multi-task RL (exploration) is unstable

Policy
t;te ;ee,ward Z?Non st;te ;?Iwa'rd | Z‘:ﬁon : .:..
S.. | Environment m
Single task RL is Multi task supervised.
easier learning is easier
S ft ) atI:tion s, R, N Z«;:tion Lea rn i n g
S.i | Environment < @]4—

T1||T2|T3 || T4

Idea: convert multi-task RL into single task RL + multi task SL




Divide and Conquer Approach to RL

Divide into multiple single task RL problems, “distill” into a single solution

Iﬁm

Single task RL = standard RL Distillation = supervised learning

Distral: Robust multi-task RL Teh et al 2017



Divide and Conqguer RL: Mathematical Formulation

Shared policy  Per-task policy

/ -

J (o, {mi}iz1) :ZEW Z’YtRi(amSt) - CKL'Yt log

T4

distill regularise Tla
o

regularise distill

,-\regularise
g ‘_/ \,
':.':!;:‘-'Z'«':

regularise distill

Per-task reward

Match shared/individual Entropy
policy

___________________________________________________

Single task RL = standard RL

max J (o, {7 }i—1)

-
-
——
e

Distillation = supervised learning

max J (g, {m; }ieq)
0



Experimental Validation

60 —— DnC [ours]
5o M centralized DnC [ours]
- Unconstrained
40 — Distral
€ —— TRPO
-
B 30
o
20
10
0
200 400 600 800
(a) Picking task (b) Average Return on Picking
140
120
100
o
5 80
ko)
X 60
40
20
0
200 400 600
() Ant (k) Average Return on Ant (1) Distance from goal on Ant

Divide and Conquer RL, Ghosh et al 2018



Experimental Validation

Divide and Conquer
Reinforcement
Learning

Divide and Conquer RL, Ghosh et al 2018



|s this enough?

Lot of the learning is done independently, limited data/parameter sharing

|
I I
| N\
1

\

~~ LT distill
O

\ regularise

regularise

/
|
|
V
T

regularise distill

Can we do better?



What if we directly modified the gradients?

gi

Replace g by g/’ —
g ! What should g’ and g’ be?
4_/ Replace g; by g’ — J

|

conflicting

ldea: When gradients conflict, project them to deconflict




Deconflicting gradients with PCGrad

If gradients conflict: project them onto the normal plane

vprojn,.gj
\s . gi.g.
* g . J
W gi = g .9,
7 gl

g; 8j

i
I

Otherwise: leave them alone

gi

8j

non-conflicting
Gradient Surgery for Multi-Task RL, Yu et al 2018



Does this empirically help?

L1(0) = 20log(max(|.561 + tanh(62)|,0.000005))
L2(0) = 25log(max(|.50; — tanh(fs) + 2|,0.000005))

Multi-Task Objective  Task 1 Objective  Task 2 Objective Adam Adam + PCGrad
o / 62 ] | ) ,J i l ’
;1" - ! — - 2 0 - - 2 0 4 5 2 g o0 1 2 3 & s L3 o 4
01
(a) (b) (c) (d) (e)

Gradient Surgery for Multi-Task RL, Yu et al 2018



Does this empirically help?

Success Rates

MT10 MT50 MT10
1.0 1.0
[ 0.7 "
" AN ‘ il | ' , :
0.8 1 L ("W I 0.6 . 0.8 ! |
I
0.5 i y
0.6 b : 0.6 5 bl
0.4 ; '
0.4 t ‘ d 0.3 0.4 i 3
£ Kw 20 4 ‘S i'.’ ' Xy %
B } 0.2 4 4 : "l -
0.2 ,’ p 02{ B Y 3 0 N g
0.1 . "-“ o ‘ | '3 L.
0.0 0.0 0.0
1000 2000 3000 4000 5000 : ) Q0 10000 15000 2000 1000 2000 3000 4000 5000
Number of thousand env step:s " Numbegof thousand env step Number of thousand env steps
SAC —+— Multi-head SAC In§epende —— SAC+PCSsgd (ours) —— SAC+PCGrad dir —+— SAC+PCGrad mag —— SAC+GradNorm}

Modified gradients

Original multi-task RL

Gradient Surgery for Multi-Task RL, Yu et al 2018



50 multi-task RL is pretty cool, does it work?

Cae - S hEs
e ,\ - <

' <
-

MT-Opt quantitative performance comparison

m MT-Opt (ours)

Em QT-Opt Multi-Task [36]
mmm Data Sharing Multi-Task
[ QT-Opt [36]

0.8

o
o

Task performance
o
-

©
[N}

0 0 N/A
' XY R e & S+ S & N .
= v QO QO & ) N QO 53 & N 4 <
a ™ \{&0 &P ,bo"’b t&é\ \@) & & d?z”b Q"’,&O@Q\"’ S
r a ’ n ’ n ¢ £ N & S J
& N & N 0 <9

Mt-Opt: Kalashnikov et al 2021



50 multi-task RL is pretty cool, does it work?

can /yb_u move the coke
can to the far counter?
Al A

e

N
How would you pick up
the jalepeno chips and
move it to the trash can

How would you rest‘{ick '
the rice chips on the -
far counter

How would you bring
me a soda

How would you bring
me something to eat

y

How would you bring
me something
hydrating

Throw away the
jalapeno chips

How would you put the
coke can down

How would you throw
away the water bottle

W; can be language too!

;)va_coke can to

Do As | Can, Not as | Say: Ahn et al 2022



Takeaways

1. Multi-task RL solves a contextual meta-MDP for 0-shot generalization
* (Can help with efficiency and generalization
2. Optimization in multi-task RL can be challenging:
* Gradient interference during optimization
*  Winner take all during optimization
3. Solutions to multi-task optimization include:
* Divide and conquer
* Gradient projection
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Recap: Multi-task RL Setup, 0-shot generalization

Factor of variation across MDPs can be characterized by w;, which is known
Eg: task ID, goal, video, language, ...

Multi-task RL @;
\_

S Wj

Good 0-shot performance

When is this not enough?

Visual from C Finn



From O—shot learning to few-shot learning

Factor of variation across MDPs can be characterized by w;, which is known
Eg: task ID, goal, video, language, ...

Policy is not good enough O- ?
shot, need to finetune 4 Agent )

Context is unknown or hard
to specify analytically




From O0—shot learning to few-shot learning

0-shot MTRL: No experience

at test time

Meta-RL: Small amount of experience at test time

Fast adaptation with experience

S

S

& Agent

\
\_ g J

NN

Agent

B

->

Agent

B




Connection to Contextual Multi-Task RL

multi-task reinforcement learning

learn tasks

N’I‘r\

O‘\(-)J

perform tasks

I

’M‘

meta reinforcement learning

Iearn to learn tasks

N'ﬂ‘ﬂ

O?(-)/

s Multi-task policy evaluates 0-shot performance

quickly learn
new task

—A

s  Meta-RL trains for good k-shot policy by ”“learning to learn”



Meta-Learning Problem for RL

Given i.i.d. task distribution,
learn a new task efficiently

= Given a distribution over tasks p(7), learn an update function f@ that
can learn tasks drawn from p(7) quickly!

" Leverage regularity across tasks to optimize for a fast RL algorithm

Visual from C Finn



Meta-Learning Problem for RL

Standard RL:

Single reward function, single dynamics arg mea,x R E r(st,at)
t

Meta RL:

Distribution of tasks p(7), optimize for update function f@

[ N
- S

’ —_ —
0" = arg mGaX ETNP(T){IEW% Z T(St, atﬁ Encourages quick update

t
\\ -

>
~.--_—’

Per-task updated policy where ¢z — f@ (DT) Shared update function
| ] L |




Intuition behind Meta-RL

m Leverage regularity in task distribution to speed up learning

m Explore for some time before exploiting

= Minimizes regret not just maximizes reward

Duan et al 2016



General Structure of Meta-RL Algorithms

0" = argmax E

5 T~~p(T)

Erx, ZT(St,at) < Outer loop
_ 1 J

where ¢; = fo(D,) - Inner loop
1. Sample a batch of tasks from p(7)

2. collect data pre-update

3. Compute update according to ¢; = fo(D)
4. Sample data from @; post-update to evaluate the update

5. Optimize for update function fe



- Solution Techniques for Meta-RL Problems

E.,

> r(st, at)] ] < Quter loop
t

where ¢; = fg(D;) «— Inner loop

Main design choices: 0" = argmax Er ()
m Parameterization offg for inner loop

s Algorithm for outer loop optimization

r———~~YF~&FY> "~~~ ===/~~~ =7—7/—"7= "= "=7"=7"="="="="======="= I
: Inner loop :
| |
| Memory based Latent Variable Gradient Descent |
| < > |
| |
| |
QOuter loop
Policy Gradient Off-Policy RL Model-Based RL

< >




Memory Based Meta-RL

Idea: Make the update function forward pass of an RNN
= Learn RNN that takes in past s, a, r(s, a), produce action.

= Maintain hidden state across episodes

= Maximize sum of returns across episodes

................................................................................................................................

RLZDuan et al, Learning to RL Wang et al



Memory Based Meta-RL

0* :argmeaxETNp(T) Er,, Zr(st,at)

\ Combine inner and

(D) |
Meta-Training where ¢; = fo(Dr) outer E)OPRIIF\\I’CI\? black
OX

1. Sample a batch of tasks from p(7)

2. Collect data using RNN across episodes for each task, with
persistent hidden state and rewards available to the policy

3. Optimize RNN policy via policy gradient BPTT
Meta-Testing

1. Simply run the RNN forward pass across episodes



Memory Based Meta-RL

r

———

R, ——— —f‘/
- ”,'-N’

(a) Good behavior, 1st (b) Good behavior, 2nd
episode episode

Visual from Duan et al 2016



How well does memory based meta-RL work?

Convergent RL

Pros:

Simple, easy to implement

Arbitrarily flexible inner loop Potential RL2 update

Generally stable optimization

Cons:

No guaranteed improvement during meta-test time

Poor performance OOD



Optimization Based Meta-RL

Idea:
What if we force f(6) to be convergent?

Force f(0) to be a convergent optimization algorithm like SGD

0™ :argmeaxETNp(T) Er,, Z’r(st,at)

Restrict to be convergent optimization



MAML: Gradient Based Meta-RL

— meta-learning

6 ---- |earning/adaptation - - -
VL, 0* = arg mQaX ETNP(T) EW@; ; rr(st, a)
VL, - - o _
c 0,
VEi \ ¢i =0+ aVgEr, ZTT(S“ at)
A 0 t -

x ¢ N L
910’ o 9*

Learn most fine-tunable initial parameters, such that 1-step of SGD is good

Finn et al 2017, 2018




Pseudocode for Gradient Based RL

. Sample a batch of tasks from p(7)

. collect data pre-update from 7g

. Compute update accordingto ¢; =0 + aVyE,, Zn(st, at)
t

. Sample data from ¢; post-update

. Optimize for initial parameters by PG in outer loop

Z?“T(st,at)H

t

> rr(se, )

t

0" = argmax K E

5 T~p(T)

7T¢7:

Second order gradients

via bi-level optimization
sz' =0+ anEmg




How well does it work?

average return

|
= | |
o (o] (=2}
o o o

I
-
N
o

-140

Tasks:

Half cheetah: goal velocity,
Half cheetah: forward/backward
Ant: forward/backward

half-cheetah, goal velocity

1 2
number of gradient steps

half-cheetah, forward/backward
R L SR s L R e SR SRS SN RN - 120

100

number of gradient steps

ant, goal velocity

s s s e s s o B P

number of gradient steps

—e— MAML (ours)
--=-- pretrained
—*— oracle

0 1 2

number of gradient steps

Finn et al 2017



How well does it work?

Pros:

Consistent, worst case performance is PG

Only need to learn initialization

Cons:

Second order gradients needed

Potentially less expressive update



| atent Variable Models for Meta-RL

Think of meta-RL similar to multi-task RL, but context W; is a hidden variable
that must be inferred

Meta-RL as a POMDP

Need to infer this




Recasting meta-RL as context inference

Er,, Zr(st,at)

0" = argmax E

T~p(T)
¢ i Mt i
\
\
\
where ¢; = fo(D-) v
\\ \
\ \
\ \
\\ \
\‘ \\

Infer latent variable from
experience

Deploy latent conditioned
policy o (CL‘S, Z)

PEARL: Off-Policy Meta RL via Probabilistic Context Variables, Rakelly et al 2019



Recasting meta-RL as context inference

Meta-Training

1. Sample a batch of tasks from p(7)

2. Sample trajectories {80, ag, 7o, ---,ST,QT, TT}fvzl

3. Train qg(z|S0, a0, 70, 81,01,71,...,ST,ar,rT) andmg(als, z)
to maximize rewards via RL ( + some regularization)

Meta-Testing

1. Sample z from prior p(z)

2. Sample trajectories from 7g (a\s, Z) and z

3. Update p(z)to posterior go(%|s0, a0, 70, 51,a1,71,-..,5T,a7,7T)



| atent Variable Model Intuition

Latent Space

Different images correspond to Different tasks correspond to different z
different z Quick search happens in z space




How well does it work?

Quantitative:

Half Cheetah Humanoid Walker

Half-Cheetah-Fwd-Back Half-Cheetah-Vel Humanoid-Direc-2D
2000
£ 1500
== |
2
31000
o
[
>
© 500
07 i 0 0 " i i 0 d
0 1 2 3 4 5 0.0 0.4 0.8 1.2 1.6 2.0 0.0 0.2 0.4 0.6 0.8 1.0
Ant-Fwd-Back 16 Ant-Goal-2D 1=0 Walker-2D-Params 1€6
1500- 800-

—200-
1250
600

{ o
5 1000- —400—_fz. ________________
8 [
750-
3 —600 400 = = —
S 500
>
® 200

0 < 1000- 0-
00 06 12 18 24 30 00 02 04 06 08 10 O 1 2 3 4 5
time steps le6 time steps le7 time steps le6
- PEARL (ours) = ProMP MAML RL2 = = final performance

Gains mainly from off-policy RL

Exploration:

PEARL: Off-Policy Meta RL via Probabilistic Context Variables, Rakelly et al 2019



How well does it work?

Rapid Motor Adaptation: Kumar et al 2021



How well does it work?

Pros:

Easy to run with off-policy RL
Can be very efficient, trained offline, etc

Might be easy to incorporate priors into inference network

Cons:

Exploration may be suboptimal

May need a huge context variable, hard to optimize/generalize



50 meta-RL is cool, does it actually work?

Industrial insertion = adapting to different plug shapes

Wl -l ®L%. | "l
al Al o L el

US-AC-plug NEMA14-30P  Metal-peg-rec Metal-peg-rd UK-AC-plug Car-plug-4p Metal-peg-sq Car-plug-3p EU-AC-plug
Ours 100/100 100/100 100/100 100/100 100/100 100/100 99/100 75/100 99/100
AWAC 87/100 93/100 96/100 99/100 100/100 100/100 90/100 64/100 100/100

Sneedi100x B Sveed50x N - Sheed 100x

Offline Meta-Reinforcement Learning for Industrial Insertion, Zhao 2021



50 meta-RL is cool, does it actually work?

Adapting to different terrains/robot conditions

Training

2x speed

Styrofoam Carpet Turf

Learning to Adapt in Dynamic, Real-World Environments, Nagabandi. 2018



Takeaways from meta-RL

s Meta-RL takes multi-task RL from 0-shot to few-shot

s Meta-RL algorithms can be viewed as choices on top of bi-level optimization
— memory based, gradient based, latent variable

= Meta-RL can allow adaptation when context is unknown or hard to describe

— —

{Training signal 9 1

Rewarq Distribution of
Observahon\ environments
E Agent |1-Action»  Epyvironment <«

Last actionj

l Inner loop J
D <_ Outer loop -




Putting things in perspective

s Multi-task (and meta) RL takes RL from specialists to generalists (well, kind of)

s The landscape can be understood along 2 axes

0-shot few-shot many-shot
Amount of test-time ) R
experience
Multi-task Meta-Learning RL from scratch
Inference Scheme D >

Gradient Based Memory-based LVM



Some heavily biased readings

Multi-Task RL

1.

O 0 N o U bk

Gradient conflict: Gradient Surgery for Multi-Task Learning (Yu et al 2020), Multi-Task Learning as Multi-Objective
Optimization (Sener et al 2019)

Divide and Conquer: Distral: Robust Multitask Reinforcement Learning (Teh et al 2017), Divide-and-Conquer
Reinforcement Learning (Ghosh et al 2018)

Multi-task RL at scale: MT-Opt: Continuous Multi-Task Robotic Reinforcement Learning at Scale (Kalashnikov et al 2021),
BC-Z: (Jang et al 2022), Do As | Can, Not As | Say: Grounding Language in Robotic Affordances (Ahn et al 2022)

Meta-RL

Meta-RL overview, older papers by Schimdhuber/Hochreiter

Recurrent meta-RL: RL2 (Duan et al), L2ZRL (Wang et al), SNAIL (Mishra et al), CNP (Garnelo et al 2018)

Gradient-based meta-RL: MAML (Finn et al), REPTILE (Nichols et al), ProMP (Clavera et al), Antoniu 2018, Bechtle 2019
Latent variable meta-RL: PEARL (rakelly et al), VariBAD (zintgraf et al), MAESN (Gupta et al), Zhang et al 2020
Model-based meta-RL: Clavera and Nagabandi 2019, Harrison and Sharma 2020, MIER (Mendonca et al)

Exploration in meta-RL: MAESN (Gupta et al), DREAM (Liu et al), GMPS (Mendonca et al)

10. Supervision in meta-RL: UMRL (Gupta et al), CARML (Jabri et al), UML (Hsu et al)



L ecture Outline

Recap - Max-margin and Max-ent IRL

1

Making max entropy IRL practical

1

IRL as a GAN

1

Why multi-task or meta-RL?

l

Multi-Task Reinforcement Learning

l

Meta-Reinforcement Learning



