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Reinforcement Learning requires Task Specification

state reward action

Manual state estimation/perception
:[Agent
-

. | Environment
\ Complex reward specification

v Name Reward | Heroes | Description
Win 5 Team
. . . Hero Death -1 Solo
Does not magically appear in most settings Cogirbutn | 2| T
XP Gained 0.002 Solo
Gold Gained 0.006 Solo | For each unit of gold gained. Reward is not lost
when the gold is spent or lost.
Gold Spent 0.0006 Solo | Per unit of gold spent on items without using
courier.
Health Changed 2 Solo | Measured as a fraction of hero’s max health.
Mana Changed 0.75 Solo | Measured as a fraction of hero’s max mana.
Killed Hero -0.6 Solo | For killing an enemy hero. The gold and expe-

rience reward is very high, so this reduces the
total reward for killing enemies.

Last Hit -0.16 Solo | The gold and experience reward is very high, so
this reduces the total reward for last hit to ~ 0.4.

. ° Deny 0.15 Solo

Has to be manually specified e (=
u y p Ancient HP Change 5 Team | Measured as a fraction of ancient’s max health.

Megas Unlocked 4 Team

T1 Tower™ 2.25 Team

T2 Tower" 3 Team

T3 Tower™ 4.5 Team

T4 Tower” 2.25 Team

Shrine” 2.25 Team

Barracks” 6 Team

9 Ca n We d O b ett e r? Lane Assign' -0.15 | Solo | Per second in wrong lane.

* For buildings, two-thirds of the reward is earned linearly as the building loses health, and
one-third is earned as a lump sum when it dies.

1 See item 0.2.

 Hero’s health is quartically interpolated between 0 (dead) and 1 (full health); health at
fraction @ of full health is worth (z + 1 — (1 —z)*) /2. This function was not tuned; it was
set once and then untouched for the duration of the project.

Table 6: Shaped Reward Weights




Learning from Demonstrations

Avoid manual reward specification by learning from demos of optimal behavior

- > " Agent ———
o A state reward action
1 1 \
D = {807a07317a17'"9ST7aT}7j:1 S’ R’ Ar
1 i Rt+1 (
Demos of expert behavior = S i
— U < l Environment ]<
4 )
Infer rewards from demonstrations of
Inverse Reinforcement optimal behavior
Leammg -> Optimal behavior optimizes some
\_ ) reward via RL, so the RL process must be

"inverted” to find the reward



IRL problem statement + assumptions

Reinforcement Learning

State: Known
Action: Known

Transition Dynamics: Unknown but can sample

Reward: Known

Expert policy: Unknown
Expert traces: Unknown

Inverse Reinforcement Learning

State: Known

Action: Known

Transition Dynamics: Unknown but can sample
Reward: Unknown

Expert policy: Unknown

Expert traces: Known

Find r that explains the demonstrator behavior as noisily optimal

&.

Inverse RL

Reward
ro(s,a)

4 )

Reinforcement Policy

-

Learning W(G‘S)
\ J

New dynamics/state



Why is this hard?

Find r that explains the demonstrator behavior as noisily optimal

‘fm.

Challenging for a variety of reasons:

r ~N 1. Inherently underspecified
2. Rand m both unknown
R, @ Inverse RL 3. Difficult optimization with T unknown.
L G y 4. Distributions/comparison metrics unknown

Reward Function
ro(s,a)

Can be parameterized by arbitrary function approximator
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A Formula for Inverse Reinforcement Learning

How do we instantiate?

4 )
Propose a reward function
re(s,a)
- J
4 ) 4 )
Compare to expert traces Optimize policy against
T re(s,a)

- J - J




IRL vO — Assumptions

4 ™ re(s,a) = w' ¢(s, a)
Propose a reward function | Linear
re(s,a)
\_ J

Known dynamics

— L B

Compare to expert traces Optimize policy against
T T r¢(37 a)
- / - /

777 ——




IRL vO — What is a good reward function?

A good reward would evaluate optimal data higher than all other data

V™ (s) > V7™ (s) Vr,Vs

Low reward

a

High reward

Find

E,-

E,-

T
w* " E -

Z ’Vt/r(stv at)
t

Z ’ytw*Tgb(Sta at) Z ET(‘
t i

w* such that (s, a) = w** ¢(s, a)
thr(st, at)] , Vm
'

Z ’th*Tqb(Stv at)] ) v
t

> Ky

Z /Vt(b(sh G,t) Z w*TEW
t i

Z Vt(b(sta at)] ) v
t

pw(m*, @) pu(m, @)

Underdefined, w* = 0 trivially satisfies!



IRL vO — What is a good reward function?

How do we tackle ambiguity?

W Ere [6(s,0)] > w Exe [6(s,a)] ¥, Vs

4

st wiy™ >wly™ +m,Vrell

max m
w,m

A

Positively sampled
labels

Separating
Hyperplane

Negatively sampled
labels

|

Find rewards which maximize the gap between the expert and all other policies



IRL v1 — Max Margin Feature Matching

Choose w such that “margin” is maximized

maxim

st wly™ >wly™ +m,Vr ell

Looks a lot like an SVM! ﬂ

min [[wl]z

s.t ’wTu”* > wl ™ +1,¥r e 11

What might the issues be =
1. Uniform gap across all i, m*
2. Noisily optimal may compromise the optimization

https://cs229.stanford.edu/lectures-spring2022/main_notes.pdf



IRL v1 = (Fancy) Max Margin Feature Matching

Maximum margin > Structured Max-Margin + Slack

min ||w||2

st wly™ >wly™+1,Vr ell

Bigger for more different policies
min |||z + C¢ |
st wly™ >wly™ + D(m, 7)) — ¢, Vr eIl

Slack allows for noisy optimality



IRL v1 — Max Margin Feature Matching

min [|w||2 + C¢

st wly™ >wly™ + D(r,n*) — ¢, Vr el

Solve Max-Margin Planning

-

\_

\

Com pare to expert traces

T Tt

s ~N
Propose a reward function |
re(s,a)
_ Y

re(s,a) = w! ¢ (s, a)

Linear

Known dynamics

B

Optimize policy against

J

re(s,a)

- J




IRL v1 — Max Margin Feature Matching

1. Start with a random policy m,
— 2. Find the w that optimizes

mi?Hsz + C(¢
st wl ™ >wly™ + D(m,7*) = (,Vm € {mg,71,...,7;}

3. Solve for the optimal policy against 7(s,a) = w®" ¢(s, a)
Ti+1 — Opt(re(s,a),T)

—— 4. Add to constraint set and repeat

ﬂ > Output the optimal reward function w*




Max Margin Feature Matching in Action
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IRL v1 — Why this may not be

enough?

min ||wl|o + C¢

st wly™ >wl'y™ + D(n,n*) — (,¥r el

May not be able to deal with scenario where
true margin is quite small for some policies

Not clear if this is a good way
to deal with suboptimality

Constrained optimization is tough to optimize
for non-linear functions

Can we do better?




Aside: Feature Matching

Instead of focusing on the reward function, focus on the feature expectations

IA

<

K-

—E.

Z ’ytr(stv at)] |

Z/Y%%St? a’t)
t

> (s, at)] |

> 2 (s, at)] —w' En
t

w' p(m") — w p(m)

wll2 (™) = p()]l2 lwllz <1 (™) — ()2 <e

€ => If average feature expectations are close, then values are close

Abbeel, Ng ‘04



Intuition on Feature Matching

Let’s provide some intuition

Features - distance to object
’ end effector position

Q’ I object orientation

(a_c
— / Matching features probably means that

behavior is roughly similar



From max margin to max-ent |RL

Two key ideas in maximum-entropy IRL:

‘/—' Feature matching
1. Prefer good trajectories

2. Weight other trajectories equally to deal with ambiguity

\ .
— Maximum entropy

Notation:

Trajectory distribution - p(7)

Feature expectations:

max H(p(7)) = — /p 7)log p(7)dT Max-entro
Policy ,LL(]?) :Ep(T) nyt(,b(st;at)] D ( ( )) ( ) ( ) Py
! wu(p) = p(m™) Match features

Expert pu(7") = Epe Z’Y%(&ﬂt)] /p(T) =1 Be a probability
t



Let’s simplity

max H(p(T)) = —/p(T) log p(7)dr Max-entropy
wu(p) = p(m™) Match features
/p(7> =1 Be a probability

Set up the Lagrangian

—+ maxmin H(p(r)) + w” (u(p) — p(m*)) — A( / p(r)dr — 1)

P w,A

min max H(p(r)) + w? (u(p) — p(m*)) — Al / p(r)dr — 1)

w,\ P

Solve wrt p
Solve wrt w, A

Connect the dots!



Let’s simplify — solve for p

Set up the Lagrangian

s macmin H(p(r)) + 0 (u(p) - (")) = AC[ p(r)dr ~ 1)

P w,A

mmmwawv»+wﬂmm—u@ﬂ»nx/Mﬂm—1>

w,\A P

Solve wrt p
Vp [’H(p(T)) +w! (u(p) — p(7™)) = A / p(r)dr — 1)] =0

\

- /p(T) log p(T)dr + wT(/p(T)M(T)dT — (")) — A(/p(T)dT - 1)] =0

—logp(r) = 1+ w'u(r) = A =0
p(1) = exp(—1+w’ p(1) — A)

Intuition: p(t) is proportional to the exponential reward of a trajectory w' u(7)



Let’s simplity — solve for 4

Valexp(—=1 =N Z —wlp(7m*) + A| =

minmax H(p(r)) + w7 (4(p) ~ p(r*)) = X [ p(r)dr ~ 1)
p(r) = exp(—1 + wTu(r) — A)

ll
mm / ) log p(7)d7 + w? / T)dT — 1)

T)dT — 1t
mm 1—|—% /(QT—FUJ //{ T)dT — 1t /pAdT—l)

IB1/I\1/ T)dr — w! p(nw -
miilfexp(—l +wl (1) = Ndr — wh p(n*) + X /r\lexp( 1— A)/exp(wT,u(T))dT —w? p(m*) + A

U

1 min 1 — w’ pu(7*) + X

— exp(—1—M\) = 7

= mui)n log Z — w! p(n*)



Ok — let's unpack what we have so far

max H(p(T)) = —/p(T) logp(T)dr Max-entropy
wu(p) = p(m™) Match features
/p(T) =1 Be a probability

Solve wrt p

p(1) = exp(—1 +w’ p(r) — A)
Solve wrt A

1 . *
7 = /exp(wT,u(T))dT exp(—1—\) = - Objective reduces to min log Z — w” p(m*)

g

Solve wrt w Find reward function!



Turns out this has nice intuitive properties

max H(p(7)) = —/p(T) log p(7)dr Max-entropy
p
w(p) = p(m™) Match features
/p(T) =1 Be a probability

Objective reduces to min log Z —w p(m™*)
Z = /exp(wT,u(T))dT

J

L expwTu(r)
w log [ exp(wT u(7))dr

Maximum likelihood with
exponential family

exp(w’ p(7*))
[ exp(wT p(7))dr

= max K, pe [log

Intuition: trajectories are chosen proportional to their reward



Turns out this has nice intuitive properties

max H(p(71)) = —/p(T) logp(T)dr Max-entropy

w(p) = p(m™) Match features

R=60
/p(T) =1 Be a probability P=0.65 ,7‘
@ R=30 1/ N
P=0.25 /
r =+

Maximum likelihood with maxE o exp(wl u(r*)) ] R=10
exponential family w TP [T exp(w? u(7))dr || Hard to estimate | (0 / P=0.1
Intuition: trajectories are chosen proportional to their reward S

U

Let’s solve with gradient descent! Has a nice tractable form



Maximum likelihood estimation of w

exp(w’ ()

i
[ exp(w? p(r))dr

max K« pe llog

J() = Ererpe [T p(r*)] - log / exp(w” u(7))dr

Gradient has a much nicer form @ Painful to estimate log integral

VJ(w) = VyEreupe [w! p(7)] =V log/exp(wT,u(T))dT

T T
B [Vl ()] [ exp(w' u(7))Vypw! pw(r)dr
VJ(w) pe [Vaw” (7)) [ exp(wT u(T))dr Soft optimal policy for
. ) . ru (st ar) = w' ¢(se, ar)
VJ(w) = Er«upe [wa p(r )} — /pw(T)Vw’w pu(T)dr exp(w? p(r))
o . 2ol = T ep () 7
VJ(w) = Erenpe [V u(77)] = Erpe (1) [Vwo” u(7)]

Push up on data Push down on policy




IRLV2 — Maximum Entropy Inverse RL

Soft optimal policy for
VJ(UJ) = E «pe [waT,LL(T*)} — ]ETNP’{U () [waT,u(T)} T (8¢, a) = w? o(s¢, ay)

Push up on data Push down on policy exp(w’ (7))

PulD) = Jexp(wTu(r)dr

Solve mt to soft-optimal on current r;,

Update
reward w



IRL v2 — Max-Ent IRL — Put it together

Maximum Entropy

> A b(st, at)]
—Ep,, (r) [Z SRCHE atT)]

Vwﬁ - Eﬂ-*

4 )

Com pare to expert traces

T Tt

re(s,a) = w! ¢ (s, a)

Linear

s ~N
Propose a reward function |
re(s,a)
_ Y

Known dynamics

B

Optimize policy against

- J

re(s,a)

- J




IRL v2 —Max-Entropy Inverse RL (Pseudocode)

1. Start with a random policy myand weight vector w
—— 2. Find the “soft” optimal policy under w — P, (7)
3. Take a gradient step onw

Vol =E;-

27t¢(3t7 @t)

— Ky, 0 [Z Vt¢(3t77 GZ)]
¢

L 4. Repeat

|-| > Output the optimal reward function w*




Max-Ent IRL in Action




Ok but no way this could work?

¢ Il Il Il BN NN N N

Maximum Entropy f \

l I

max H(p(r) -, N R OO
p\T . I
gt ]E,p(,r) [¢(S’ CL)] ~ EW* [¢(S7 a)] PI’OpOSE a reward function < I\ Llnear I

[
| Known dynam|CS|

L se

Compare to expert traces Optlmlze policy agalnst
T T re(s,a)
_ Y _ Y




Linear Rewards = Neural Net Rewards

Max-ent IRL allows us to go from linear rewards to arbitrary neural network rewards

||||||

Linear Max-Ent IRL max K«
w

ZwTvtgb(St,at)] — log/T [exp (Zwaytqb(St,at))] dr
V
Zv ro(st, at ] log/T [exp (Z:ytrgést,at))} dr

Non-Linear Max-Ent IRL maxE

Can simply replace, w with arbitrary 6 and use autodiff!



Avoiding Complete Policy Optimization

4 )

Optimize policy against

re(s,a)
\ J

+—— Assumes dynamics are known so we can just do (fast) planning

What happens when dynamics are unknown!

E,-

ZVtVQTQ(Sta at):|
t

—Ep,(m) [Z 7' Vere(st, at)w
L .

« What if we only improved the policy a little bit

Biased!

Requires complete “soft” policy optimization



Avoiding Complete Policy Optimization

Importance sampling to the rescuel!

Epe) [F(2)] = By [@ <w>]

q()
Importance
[ Z”yth“e(St, a/t):| Sampling E, - Z’)/tVQTQ(St,CLt):|
¢ > -
w (T
—E,. {Z ’YtVQTQ(St,CLt)} —E, pq((T)) Z’}/tVQT@(St,CLt):|
¢ t

exp(2_; 7o (5t a1))

Ht7Te<at|St)

Can transfer significantly more from iteration to iteration rather than doing full nested optimization



IRLv4 — Guided Cost Learning

Gradient Step on Reward

Ere | > 7'Voro(s:, at)] ~ ™ re(s,a)
t .
o) t Propose a reward function | Neural network
E Z’Y Vore(se, az)
a(r) 5 re(s,a)
- J
Gradient step on policy
4 ) 4 )
Compare to expert traces Optimize policy against
T T r¢(37 a)

- J - J




IRLv4 — Guided Cost Learning

7z )

) THEEE ’ X
gt S == vt/ ‘Demoyi (of 20)
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Connecting Maximum-Entropy RL to GANs

Generator

Discriminator

=)

Looks like a game

1. Start with a random policy Ty and weight vector w
—— 2. Take a step on “soft” optimal policy under w — p., (7)
3. Take a gradient step on w

V@E — ]Eﬂ-*

Z ’}/tVQ’rg(St, CLt) — Eq
t

p;“(g) Et: Y'Vore(st, at)

L 4. Repeat

|-| > Output the optimal reward function w*




Reminder: Generative Adversarial Networks

Technique to learn generative models via a 2 player game

N\ Real
E\andf)m m {J—’ @E{Fake

Discriminator

Generator Fake image

https://sthalles.github.io/intro-to-gans/

Key idea: Generator tries to “confuse” the discriminator.
At convergence generated samples indistinguishable from real samples

mén max V(D,G) = Eypyoa () log D()] +E,pz) log(l — D(G(2)))]

Often approximate generator loss as:

min B p(z) [10g(1 = D(G(2)))] = E.np(z) [log(D(G(2)))]



Can inverse RL be considered a GAN?

Generator = policy
Discriminator = reward (kinda)

Find a policy which makes a discriminator unable to tell if
the samples came from the policy or the demos

mén max V(D,G) =Erpyono(r) log D(7)] +E;r [log(1l — D(7))]

Push up real data Push down policy data

Discriminator trained with Generator trained to max
classification between Generative Adversarial Imitation Learning

expert/non-expert log D with RL

Challenge: only policy, not really a reward Jonathan Ho Stefano Ermon

Stanford University Stanford University
hoj@cs.stanford.edu ermon@cs.stanford.edu



Tweaking GAIL to connect with IRL

We can make simple tweaks to GAIL to get back to max-ent IRL

Optimal discriminator

N L)
PO = e+ a@
S Discriminator

p(true/false)

o(0)

Choose a particular
form of discriminator

Policy informed discriminator

7 exp(rp(7))

Pol) = T op(ra(m) + 4(7)

r(7)
Discriminator { ’ °

logZ

p(true/false)
log q(7)



Recasting GAIL as an IRL method

For a particular parameterization of the discriminator, we can show that GAN = max-ent IRL

Max-Ent Inverse RL

Pul7) > A'Vore(st, at)]

Push up demos, push down policy

Dg(’i‘) =

<

>

With some massaging

ETdiemo(T) [lOg D(T>]
+ Err [log(1 — D(7))]

Push up real data, push down generated

7 exp(ro(7))

1
7 exp

(ro(7)) + Uymg(ac|st)



Generator Optimization as Max-Ent RL

min B, opz) [log(1 — D(G(2)))] — Eonp(z) [log(D(G(2))))

% exp(r9 (7))
7 exp(ra(7)) + q(7)

¢
= exp(ro(7)

minE__ . |lo
o W m
reg(r) [T0(T) —TogZ — log (T

Maximum entropy RL with current reward!

DQ(T) =

max K

Similar proof holds for the discriminator optimization - refer to https://arxiv.org/pdf/1611.03852
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