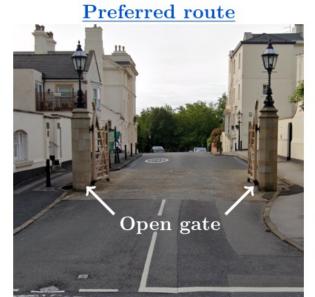


Reinforcement Learning Autumn 2024

Abhishek Gupta

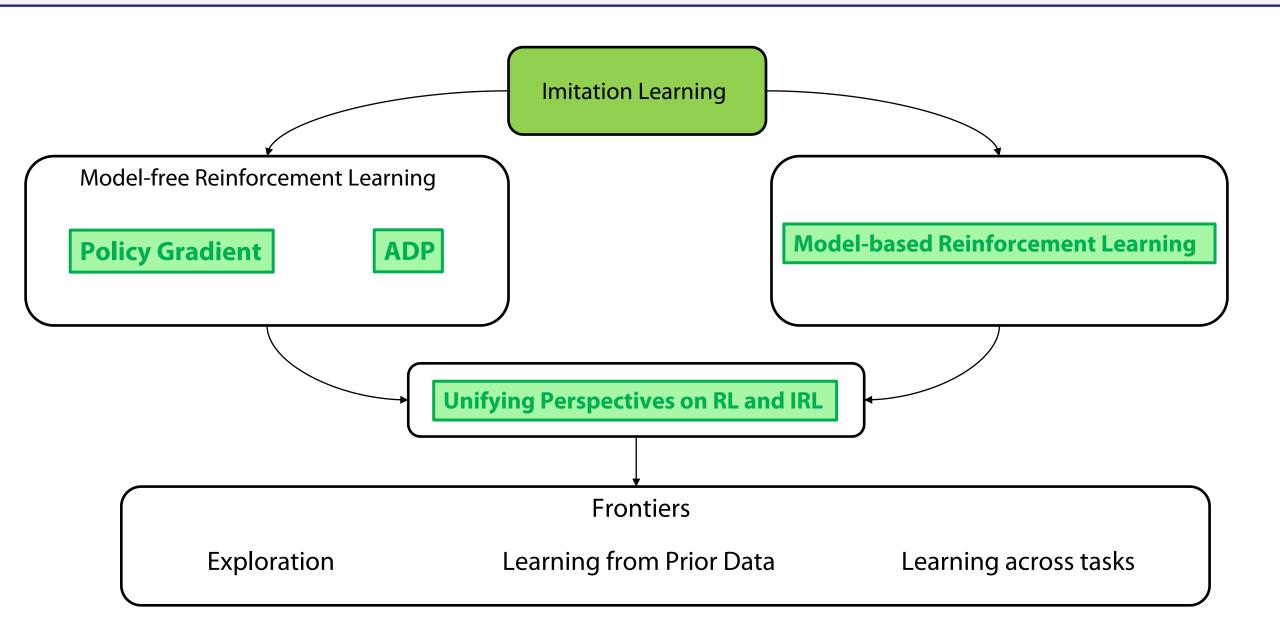
TA: Jacob Berg

Kings Hair :



Longer route

Class Structure



Lecture Outline

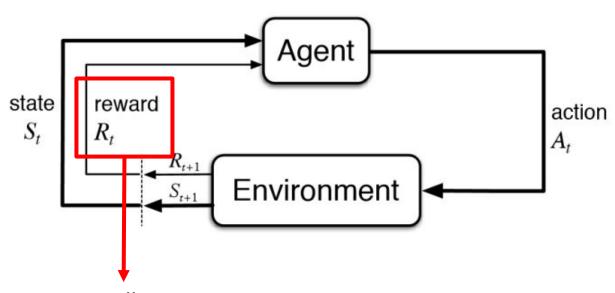
```
Recap – IRL formulation

IRLv1 – max margin planning

IRLv2 – max entropy IRL

IRL as a GAN
```

Reinforcement Learning requires Task Specification

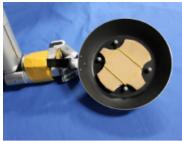


Does not magically appear in most settings

Has to be manually specified

 \rightarrow can we do better?

Manual state estimation/perception



Complex reward specification

Name	Reward	Heroes	Description
Win	5	Team	Description
Hero Death	-1	Solo	
Courier Death	-2	Team	
XP Gained	0.002	Solo	
Gold Gained	0.006	Solo	For each unit of gold gained. Reward is not lost
			when the gold is spent or lost.
Gold Spent	0.0006	Solo	Per unit of gold spent on items without using
			courier.
Health Changed	2	Solo	Measured as a fraction of hero's max health. [‡]
Mana Changed	0.75	Solo	Measured as a fraction of hero's max mana.
Killed Hero	-0.6	Solo	For killing an enemy hero. The gold and expe-
			rience reward is very high, so this reduces the
			total reward for killing enemies.
Last Hit	-0.16	Solo	The gold and experience reward is very high, so
			this reduces the total reward for last hit to ~ 0.4 .
Deny	0.15	Solo	
Gained Aegis	5	Team	
Ancient HP Change	5	Team	Measured as a fraction of ancient's max health.
Megas Unlocked	4	Team	
T1 Tower*	2.25	Team	
T2 Tower*	3	Team	
T3 Tower*	4.5	Team	
T4 Tower*	2.25	Team	
Shrine*	2.25	Team	
Barracks*	6	Team	
Lane Assign [†]	-0.15	Solo	Per second in wrong lane.

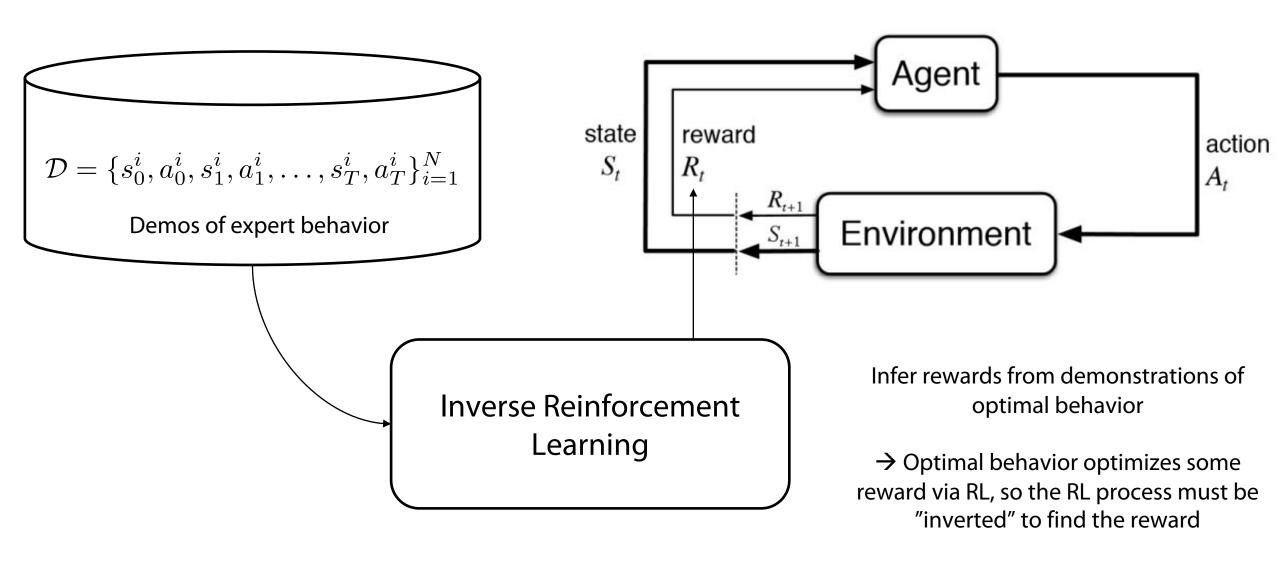
^{*} For buildings, two-thirds of the reward is earned linearly as the building loses health, and one-third is earned as a lump sum when it dies.

See item O.2.

 $^{^{\}ddagger}$ Hero's health is quartically interpolated between 0 (dead) and 1 (full health); health at fraction x of full health is worth $(x+1-(1-x)^4)/2$. This function was not tuned; it was set once and then untouched for the duration of the project.

Learning from Demonstrations

Avoid manual reward specification by learning from demos of optimal behavior



IRL problem statement + assumptions

Reinforcement Learning

State: Known

Action: Known

Transition Dynamics: Unknown but can sample

Reward: Known

Expert policy: Unknown Expert traces: **Unknown**

Inverse Reinforcement Learning

State: Known

Action: Known

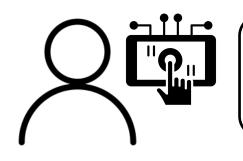
Transition Dynamics: Unknown but can sample

Reward: **Unknown**

Expert policy: Unknown

Expert traces: **Known**

Find r that **explains** the demonstrator behavior as noisily optimal



Inverse RL

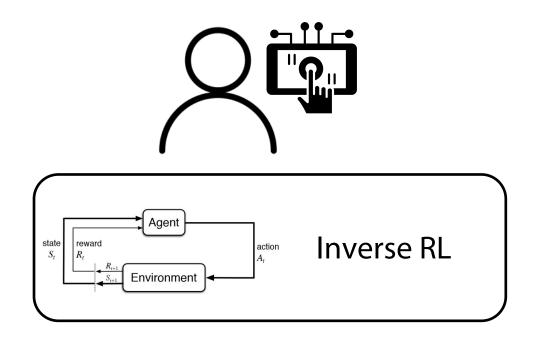
Reward $r_{ heta}(s,a)$

Reinforcement Learning Policy $\pi(a|s)$

New dynamics/state

Why is this hard?

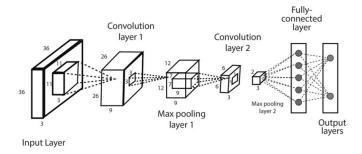
Find r that **explains** the demonstrator behavior as noisily optimal



Reward Function $r_{\theta}(s,a)$

Challenging for a variety of reasons:

- 1. Inherently underspecified
- 2. R and π both unknown
- 3. Difficult optimization with T unknown.
- 4. Distributions/comparison metrics unknown



Can be parameterized by arbitrary function approximator

Lecture Outline

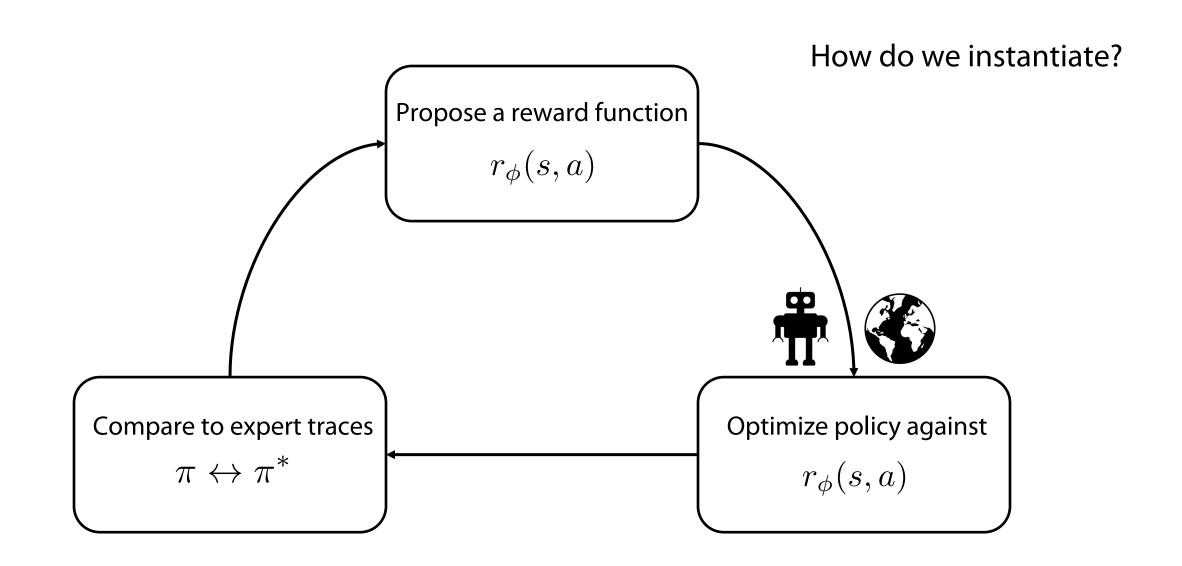
```
Recap – IRL formulation

IRLv1 – max margin planning

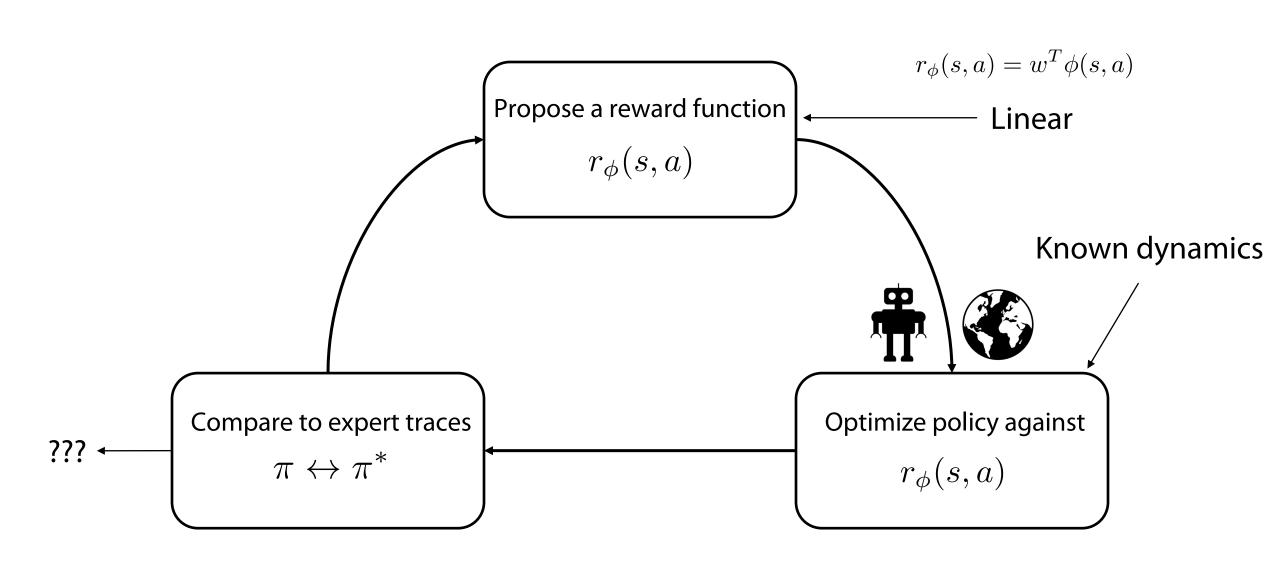
IRLv2 – max entropy IRL

IRL as a GAN
```

A Formula for Inverse Reinforcement Learning



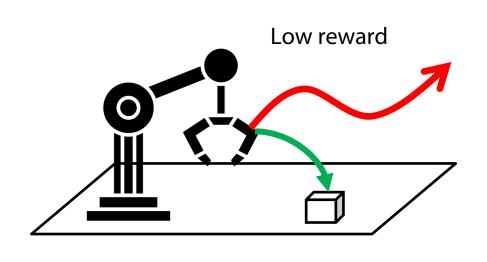
IRL v0 – Assumptions



IRL v0 – What is a good reward function?

A good reward would evaluate optimal data higher than all other data

$$V_r^{\pi^*}(s) \ge V_r^{\pi}(s) \ \forall \pi, \forall s$$



High reward

Find w* such that
$$r(s, a) = w^{*T} \phi(s, a)$$

$$\mathbb{E}_{\pi^*} \left[\sum_t \gamma^t r(s_t, a_t) \right] \ge \mathbb{E}_{\pi} \left[\sum_t \gamma^t r(s_t, a_t) \right], \quad \forall \pi$$

$$\mathbb{E}_{\pi^*} \left[\sum_{t} \gamma^t w^{*T} \phi(s_t, a_t) \right] \ge \mathbb{E}_{\pi} \left[\sum_{t} \gamma^t w^{*T} \phi(s_t, a_t) \right], \quad \forall \pi$$

$$w^{*T} \mathbb{E}_{\pi^*} \left[\sum_{t} \gamma^t \phi(s_t, a_t) \right] \ge w^{*T} \mathbb{E}_{\pi} \left[\sum_{t} \gamma^t \phi(s_t, a_t) \right], \quad \forall \pi$$

$$\mu(\pi^*, \phi)$$

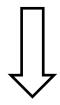
$$\mu(\pi, \phi)$$

Underdefined, $w^* = 0$ trivially satisfies!

IRL v0 – What is a good reward function?

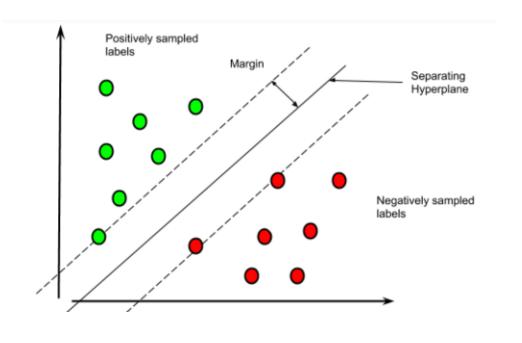
How do we tackle ambiguity?

$$w^{*T} \mathbb{E}_{\pi^*} \left[\phi(s, a) \right] \ge w^{*T} \mathbb{E}_{\pi^*} \left[\phi(s, a) \right] \quad \forall \pi, \forall s$$



 $\max_{w,m} m$

s.t
$$w^T \mu^{\pi^*} \ge w^T \mu^{\pi} + m, \forall \pi \in \Pi$$



Find rewards which maximize the gap between the expert and all other policies

IRL v1 – Max Margin Feature Matching

Choose w such that "margin" is maximized

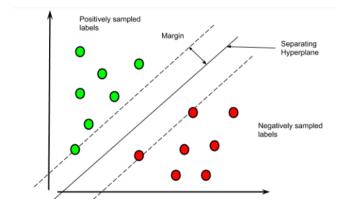
 $\max m$

s.t
$$w^T \mu^{\pi^*} \ge w^T \mu^{\pi} + m, \forall \pi \in \Pi$$

Looks a lot like an SVM!

$$\min \|w\|_2$$

s.t $w^T \mu^{\pi^*} \ge w^T \mu^{\pi} + 1, \forall \pi \in \Pi$



What might the issues be \rightarrow

- 1. Uniform gap across all π , π^*
- 2. Noisily optimal may compromise the optimization

IRL v1 – (Fancy) Max Margin Feature Matching

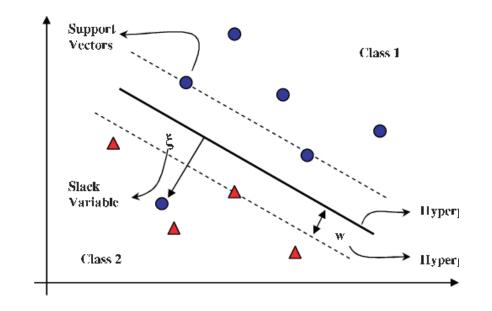
Maximum margin → Structured Max-Margin + Slack

$$\min \|w\|_2$$

s.t $w^T \mu^{\pi^*} \ge w^T \mu^{\pi} + 1, \forall \pi \in \Pi$

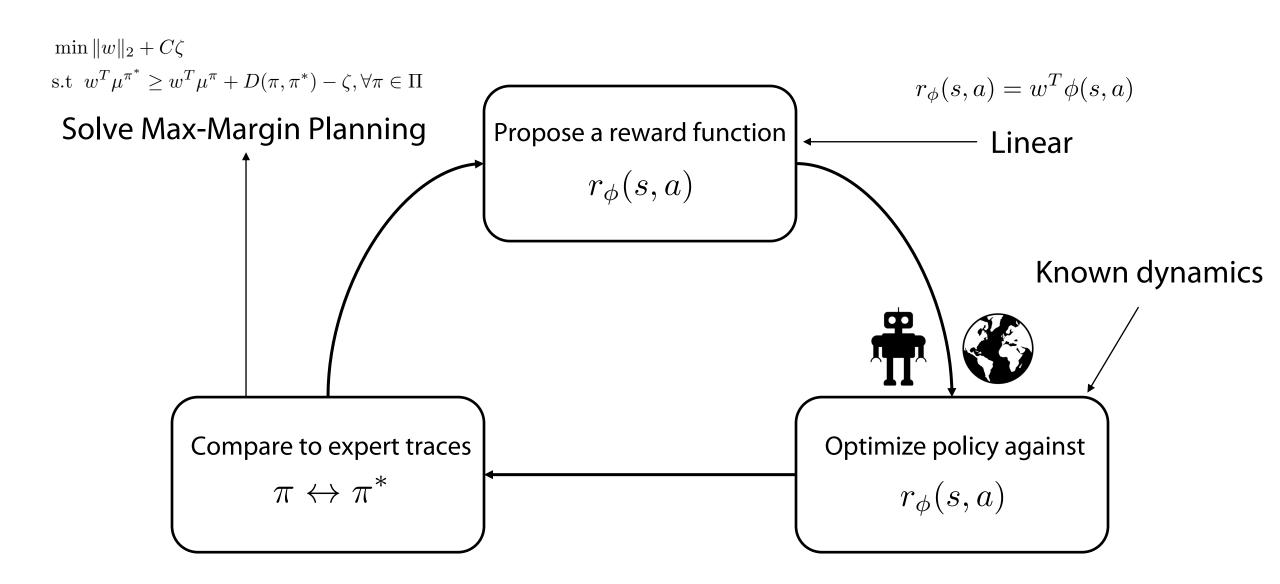
Bigger for more different policies

$$\min \|w\|_2 + C\zeta \qquad \downarrow$$
s.t $w^T \mu^{\pi^*} \ge w^T \mu^{\pi} + D(\pi, \pi^*) - \zeta, \forall \pi \in \Pi$



Slack allows for noisy optimality

IRL v1 – Max Margin Feature Matching



IRL v1 – Max Margin Feature Matching

- 1. Start with a random policy π_0
- 2. Find the w that optimizes

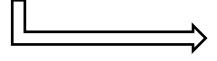
$$\min_{w,\zeta} \|w\|_2 + C\zeta$$

s.t
$$w^T \mu^{\pi^*} \ge w^T \mu^{\pi} + D(\pi, \pi^*) - \zeta, \forall \pi \in \{\pi_0, \pi_1, \dots, \pi_i\}$$

3. Solve for the optimal policy against $r_{\phi}(s, a) = w^{(i)^T} \phi(s, a)$

$$\pi_{i+1} \to \operatorname{Opt}(r_{\phi}(s,a),T)$$

4. Add to constraint set and repeat



Output the optimal reward function w*

Max Margin Feature Matching in Action

Lecture Outline

```
Recap – IRL formulation

IRLv1 – max margin planning

IRLv2 – max entropy IRL

IRL as a GAN
```

IRL v1 – Why this may not be enough?

min
$$||w||_2 + C\zeta$$

s.t $w^T \mu^{\pi^*} \ge w^T \mu^{\pi} + D(\pi, \pi^*) - \zeta, \forall \pi \in \Pi$

May not be able to deal with scenario where true margin is quite small for some policies

Not clear if this is a good way to deal with suboptimality

Constrained optimization is tough to optimize for non-linear functions

Can we do better?

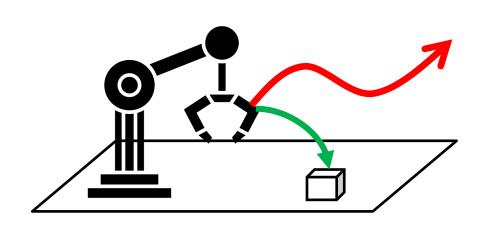
Aside: Feature Matching

Instead of focusing on the reward function, focus on the feature expectations

$$\begin{split} & \left| \mathbb{E}_{\pi^*} \left[\sum_t \gamma^t r(s_t, a_t) \right] - \mathbb{E}_{\pi} \left[\sum_t \gamma^t r(s_t, a_t) \right] \right| \\ & = \left| w^T \mathbb{E}_{\pi^*} \left[\sum_t \gamma^t \phi(s_t, a_t) \right] - w^T \mathbb{E}_{\pi} \left[\sum_t \gamma^t \phi(s_t, a_t) \right] \right| \\ & = \left| w^T \mu(\pi^*) - w^T \mu(\pi) \right| \\ & \leq \| w \|_2 \| \mu(\pi^*) - \mu(\pi) \|_2 \qquad \| w \|_2 < 1 \qquad \| \mu(\pi^*) - \mu(\pi) \|_2 < \epsilon \\ & \leq \epsilon \qquad \qquad = > \text{If average feature expectations are close, then values are close} \end{split}$$

Intuition on Feature Matching

Let's provide some intuition



Features - distance to object end effector position object orientation

. . . .

Matching features probably means that behavior is roughly similar

From max margin to max-ent IRL

Two key ideas in maximum-entropy IRL:

- 1. Prefer good trajectories
- 2. Weight other trajectories equally to deal with ambiguity

→ Maximum entropy

Feature matching

Notation:

Trajectory distribution – $p(\tau)$ Feature expectations:

Policy
$$\mu(p) = \mathbb{E}_{p(\tau)} \left[\sum_t \gamma^t \phi(s_t, a_t) \right]$$

Expert
$$\mu(\pi^*) = \mathbb{E}_{\mathcal{D}^e} \left[\sum_t \gamma^t \phi(s_t, a_t) \right]$$

$$\max_p \ \mathcal{H}(p(\tau)) = -\int p(\tau) \log p(\tau) d\tau \qquad \text{Max-entropy}$$

$$\mu(p) = \mu(\pi^*) \qquad \text{Match features}$$

$$\int p(\tau) = 1 \qquad \text{Be a probability}$$

Let's simplify

$$\max_{p} \mathcal{H}(p(\tau)) = -\int p(\tau) \log p(\tau) d\tau$$

$$\mu(p) = \mu(\pi^{*})$$

$$\int p(\tau) = 1$$

Set up the Lagrangian

$$\max_{p} \min_{w,\lambda} \mathcal{H}(p(\tau)) + w^{T}(\mu(p) - \mu(\pi^{*})) - \lambda(\int p(\tau)d\tau - 1)$$

$$\min_{w,\lambda} \max_{p} \mathcal{H}(p(\tau)) + w^{T}(\mu(p) - \mu(\pi^{*})) - \lambda(\int p(\tau)d\tau - 1)$$

Solve wrt p

Solve wrt w, λ

Connect the dots!

Max-entropy

Match features

Be a probability

Let's simplify – solve for p

Set up the Lagrangian

$$\max_{p} \min_{w,\lambda} \mathcal{H}(p(\tau)) + w^{T}(\mu(p) - \mu(\pi^{*})) - \lambda(\int p(\tau)d\tau - 1)$$

$$\min_{w,\lambda} \max_{p} \mathcal{H}(p(\tau)) + w^{T}(\mu(p) - \mu(\pi^{*})) - \lambda(\int p(\tau)d\tau - 1)$$

Solve wrt p

$$\nabla_{p} \left[\mathcal{H}(p(\tau)) + w^{T}(\mu(p) - \mu(\pi^{*})) - \lambda \left(\int p(\tau) d\tau - 1 \right) \right] = 0$$

$$\nabla_{p} \left[-\int p(\tau) \log p(\tau) d\tau + w^{T} \left(\int p(\tau) \mu(\tau) d\tau - \mu(\pi^{*}) \right) - \lambda \left(\int p(\tau) d\tau - 1 \right) \right] = 0$$

$$-\log p(\tau) - 1 + w^{T} \mu(\tau) - \lambda = 0$$

$$p(\tau) = \exp(-1 + w^{T} \mu(\tau) - \lambda)$$

Intuition: $p(\tau)$ is proportional to the exponential reward of a trajectory $w^T \mu(\tau)$

Let's simplify – solve for λ

$$\min_{w,\lambda} \max_{p} \mathcal{H}(p(\tau)) + w^{T}(\mu(p) - \mu(\pi^{*})) - \lambda \left(\int p(\tau)d\tau - 1\right)$$

$$p(\tau) = \exp(-1 + w^{T}\mu(\tau) - \lambda)$$

$$\min_{w,\lambda} - \int p(\tau) \log p(\tau)d\tau + w^{T} \left(\int p(\tau)\mu(\tau)d\tau - \mu(\pi^{*})\right) - \lambda \left(\int p(\tau)d\tau - 1\right)$$

$$\min_{w,\lambda} - \int p(\tau)(-1 + w^{T}\mu(\tau) - \lambda)d\tau + w^{T} \left(\int p(\tau)\mu(\tau)d\tau - \mu(\pi^{*})\right) - \lambda \left(\int p(\tau)d\tau - 1\right)$$

$$\min_{w,\lambda} \int p(\tau)d\tau - w^{T}\mu(\pi^{*}) + \lambda$$

$$\min_{w,\lambda} \int \exp(-1 + w^{T}\mu(\tau) - \lambda)d\tau - w^{T}\mu(\pi^{*}) + \lambda = \min_{w,\lambda} \exp(-1 - \lambda) \int \exp(w^{T}\mu(\tau))d\tau - w^{T}\mu(\pi^{*}) + \lambda$$

$$\bigoplus_{w} \nabla_{\lambda} \left[\exp(-1 - \lambda)Z - w^{T}\mu(\pi^{*}) + \lambda \right] = 0 \implies \exp(-1 - \lambda) = \frac{1}{Z}$$

$$\min_{w} 1 - w^{T}\mu(\pi^{*}) + \lambda = \min_{w} \log Z - w^{T}\mu(\pi^{*})$$

Ok – let's unpack what we have so far

$$\max_{p} \mathcal{H}(p(\tau)) = -\int p(\tau) \log p(\tau) d\tau$$
$$\mu(p) = \mu(\pi^{*})$$
$$\int p(\tau) = 1$$

Max-entropy

Match features

Be a probability

Solve wrt p

$$p(\tau) = \exp(-1 + w^T \mu(\tau) - \lambda)$$

Solve wrt λ

$$Z = \int \exp(w^T \mu(\tau)) d\tau \qquad \exp(-1 - \lambda) = \frac{1}{Z} \qquad \text{Objective reduces to} \quad \min_w \log Z - w^T \mu(\pi^*)$$

Solve wrt w

Find reward function!

Turns out this has nice intuitive properties

$$\max_{p} \mathcal{H}(p(\tau)) = -\int p(\tau) \log p(\tau) d\tau$$

$$\mu(p) = \mu(\pi^{*})$$

$$\int p(\tau) = 1$$

.

Max-entropy

Match features

Be a probability

$$\hat{\mathbf{U}}$$

Objective reduces to $\min_{w} \log Z - w^T \mu(\pi^*)$

$$Z = \int \exp(w^T \mu(\tau)) d\tau$$

$$\bigcup_{T \in \mathcal{T}} T = (-\tau)^T$$

$$\max_{w} \log \frac{\exp(w^T \mu(\pi^*))}{\int \exp(w^T \mu(\tau)) d\tau}$$

Maximum likelihood with exponential family

$$= \max_{w} \mathbb{E}_{\tau^* \sim \mathcal{D}^e} \left[\log \frac{\exp(w^T \mu(\tau^*))}{\int \exp(w^T \mu(\tau)) d\tau} \right]$$

R = 60 P = 0.65 R = 30 P = 0.25 R = 10 P = 0.1

Intuition: trajectories are chosen proportional to their reward

Turns out this has nice intuitive properties

$$\max_{p} \ \mathcal{H}(p(\tau)) = -\int p(\tau) \log p(\tau) d\tau \qquad \text{Max-entropy}$$

$$\mu(p) = \mu(\pi^*) \qquad \text{Match features}$$

$$\int p(\tau) = 1 \qquad \text{Be a probability}$$

$$R = 30 \qquad \text{P} = 0.65 \qquad \text{G}$$

$$\text{Maximum likelihood with exponential family} \qquad \max_{w} \mathbb{E}_{\tau^* \sim \mathcal{D}^c} \left[\log \frac{\exp(w^T \mu(\tau^*))}{\int \exp(w^T \mu(\tau)) d\tau} \right] \rightarrow \text{Hard to estimate}$$

$$\text{Intuition: trajectories are chosen } \frac{\exp(w^T \mu(\tau))}{\exp(w^T \mu(\tau))} \rightarrow \text{Hard to estimate}$$

Let's solve with gradient descent! Has a nice tractable form

Maximum likelihood estimation of w

$$\max_{w} \mathbb{E}_{\tau^* \sim \mathcal{D}^e} \left[\log \frac{\exp(w^T \mu(\tau^*))}{\int \exp(w^T \mu(\tau)) d\tau} \right]$$

$$J(w) = \mathbb{E}_{\tau^* \sim \mathcal{D}^e} \left[w^T \mu(\tau^*) \right] - \log \int \exp(w^T \mu(\tau)) d\tau$$

Gradient has a much nicer form $\downarrow \downarrow$

Painful to estimate log integral

$$\nabla J(w) = \nabla_w \mathbb{E}_{\tau^* \sim \mathcal{D}^e} \left[w^T \mu(\tau^*) \right] - \nabla_w \log \int \exp(w^T \mu(\tau)) d\tau$$

$$\nabla J(w) = \mathbb{E}_{\tau^* \sim \mathcal{D}^e} \left[\nabla_w w^T \mu(\tau^*) \right] - \frac{\int \exp(w^T \mu(\tau)) \nabla_w w^T \mu(\tau) d\tau}{\int \exp(w^T \mu(\tau)) d\tau}$$

$$\nabla J(w) = \mathbb{E}_{\tau^* \sim \mathcal{D}^e} \left[\nabla_w w^T \mu(\tau^*) \right] - \int p_w^*(\tau) \nabla_w w^T \mu(\tau) d\tau$$

$$\nabla J(w) = \mathbb{E}_{\tau^* \sim \mathcal{D}^e} \left[\nabla_w w^T \mu(\tau^*) \right] - \mathbb{E}_{\tau \sim p_w^*(\tau)} \left[\nabla_w w^T \mu(\tau) \right]$$

Push up on data

Push down on policy

Soft optimal policy for

$$r_w(s_t, a_t) = w^T \phi(s_t, a_t)$$
$$p_w^*(\tau) = \frac{\exp(w^T \mu(\tau))}{\int \exp(w^T \mu(\tau')) d\tau'}$$

IRLv2 – Maximum Entropy Inverse RL

$$\nabla J(w) = \mathbb{E}_{\tau^* \sim \mathcal{D}^e} \left[\nabla_w w^T \mu(\tau^*) \right] - \mathbb{E}_{\tau \sim p_w^*(\tau)} \left[\nabla_w w^T \mu(\tau) \right]$$
 Push up on data Push down on policy

Soft optimal policy for

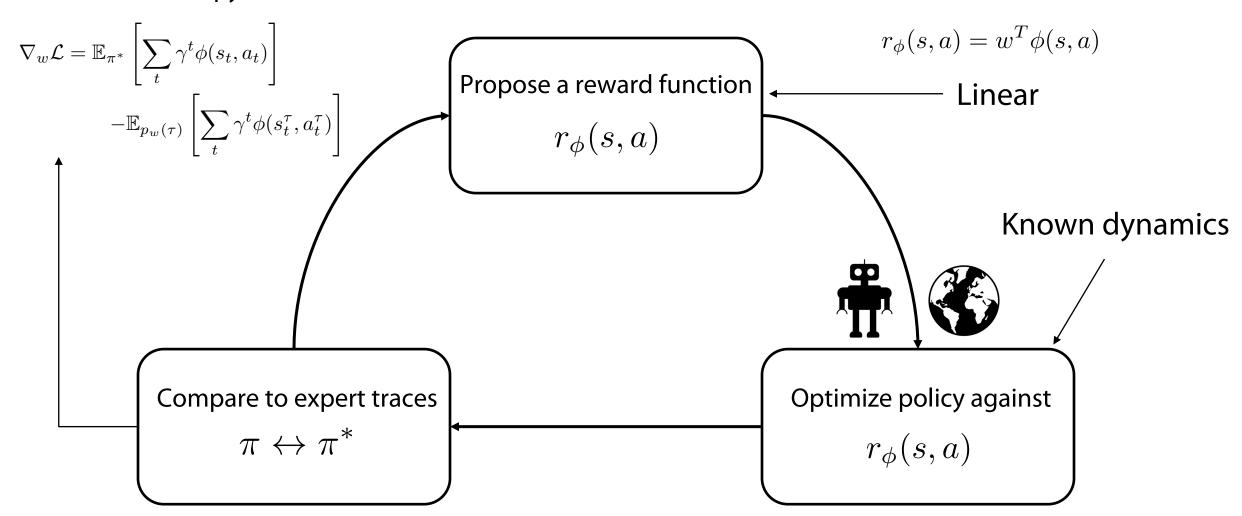
$$r_w(s_t, a_t) = w^T \phi(s_t, a_t)$$
$$p_w^*(\tau) = \frac{\exp(w^T \mu(\tau))}{\int \exp(w^T \mu(\tau')) d\tau'}$$

Update reward w

Solve π to soft-optimal on current r_w

IRL v2 – Max-Ent IRL – Put it together

Maximum Entropy



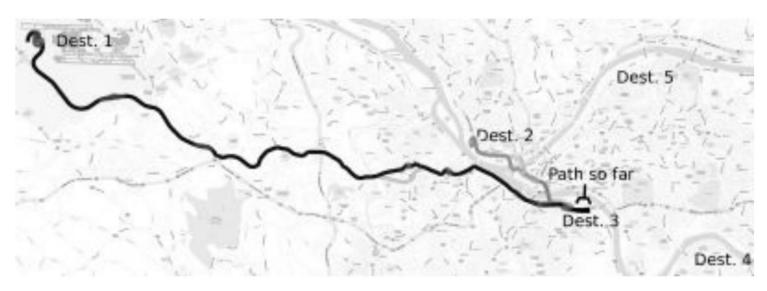
IRL v2 – Max-Entropy Inverse RL (Pseudocode)

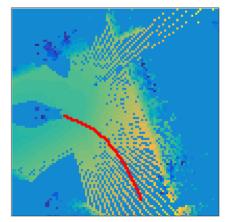
- 1. Start with a random policy π_0 and weight vector w
- → 2. Find the "soft" optimal policy under w $p_w(au)$
 - 3. Take a gradient step on w

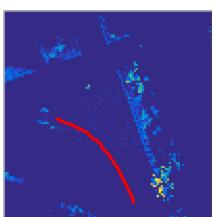
$$\nabla_w \mathcal{L} = \mathbb{E}_{\pi^*} \left[\sum_t \gamma^t \phi(s_t, a_t) \right] - \mathbb{E}_{p_w(\tau)} \left[\sum_t \gamma^t \phi(s_t^{\tau}, a_t^{\tau}) \right]$$

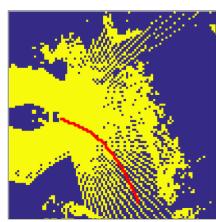
4. Repeat

Max-Ent IRL in Action

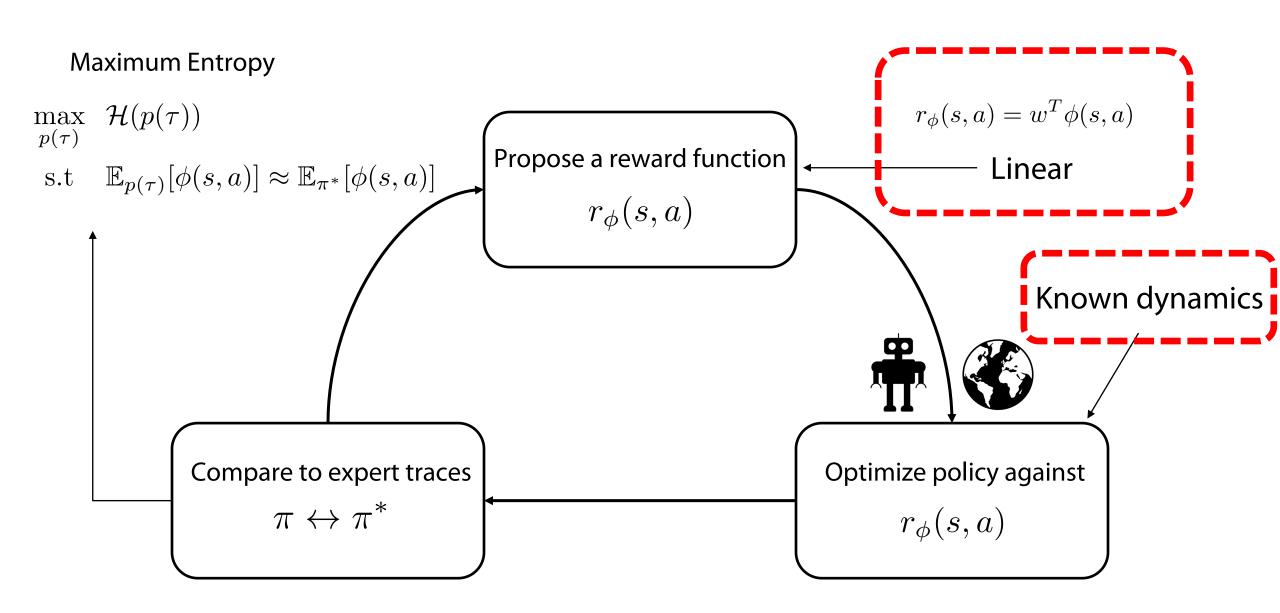






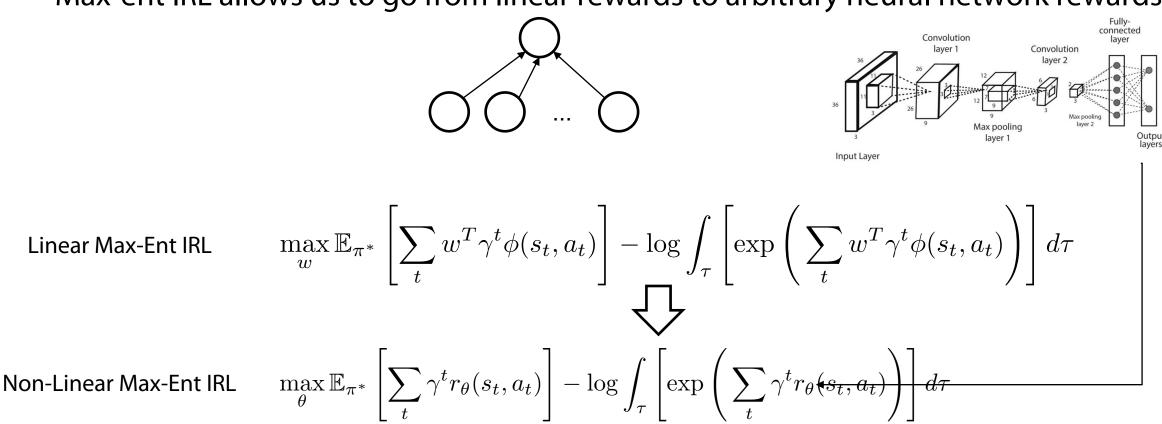


Ok but no way this could work?



Linear Rewards -> Neural Net Rewards

Max-ent IRL allows us to go from linear rewards to arbitrary neural network rewards



Can simply replace, w with arbitrary θ and use autodiff!

Avoiding Complete Policy Optimization

Optimize policy against $r_{\phi}(s,a)$

$$r_{\phi}(s,a)$$

Assumes dynamics are known so we can just do (fast) planning

What happens when dynamics are unknown!

$$\mathbb{E}_{\pi^*} \left[\sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right] \qquad \qquad \text{What if we only } \underline{\text{improved}} \text{ the policy a little bit} \\ -\mathbb{E}_{p_w(\underline{\tau})} \left[\sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right] \qquad \qquad \qquad \text{Biased!}$$

Requires complete "soft" policy optimization

Avoiding Complete Policy Optimization

Importance sampling to the rescue!

$$\mathbb{E}_{p(x)}\left[f(x)\right] = \mathbb{E}_{q(x)}\left[\frac{p(x)}{q(x)}f(x)\right]$$

$$\mathbb{E}_{\pi^*} \left[\sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right]$$
$$-\mathbb{E}_{p_w(\tau)} \left[\sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right]$$

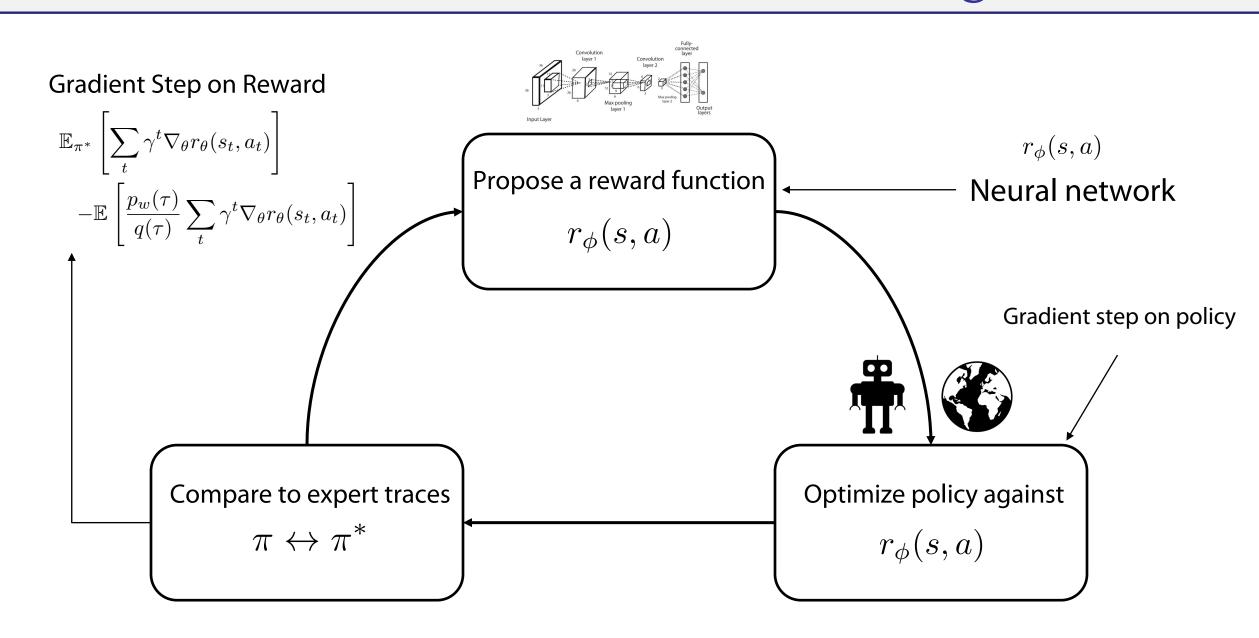
$$\mathbb{E}_{\pi^*} \left[\sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right]$$

$$-\mathbb{E}_{q} \left[\frac{p_w(\tau)}{q(\tau)} \sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right]$$

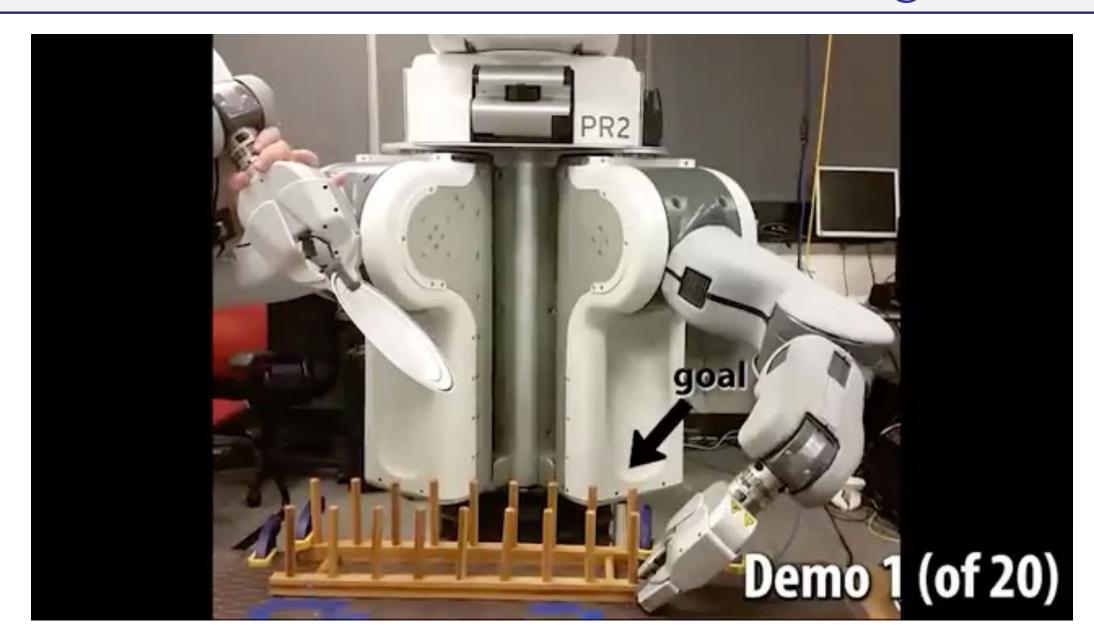
$$\xrightarrow{\exp(\sum_{t} r_{\theta}(s_t, a_t))} \frac{\exp(\sum_{t} r_{\theta}(s_t, a_t))}{\prod_{t} \pi_{\theta}(a_t | s_t)}$$

Can transfer significantly more from iteration to iteration rather than doing full nested optimization

IRLv4 – Guided Cost Learning



IRLv4 – Guided Cost Learning



Lecture Outline

```
Recap – IRL formulation

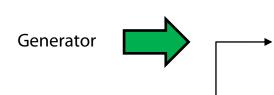
IRLv1 – max margin planning

IRLv2 – max entropy IRL

IRL as a GAN
```

Connecting Maximum-Entropy RL to GANs

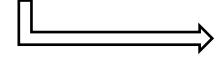
Looks like a game



- 1. Start with a random policy π_0 and weight vector w
- ightarrow 2. Take a step on "soft" optimal policy under w $p_w(au)$
 - 3. Take a gradient step on w

$$\nabla_{\theta} \mathcal{L} = \mathbb{E}_{\pi^*} \left[\sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right] - \mathbb{E}_q \left[\frac{p_w(\tau)}{q(\tau)} \sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right]$$

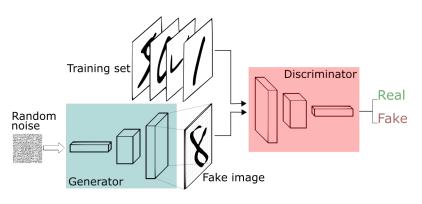
4. Repeat



Output the optimal reward function w*

Reminder: Generative Adversarial Networks

Technique to learn generative models via a 2 player game



https://sthalles.github.io/intro-to-gans/

Key idea: Generator tries to "confuse" the discriminator.

At convergence generated samples indistinguishable from real samples

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{x \sim p_{\text{data}}(x)} \left[\log D(x) \right] + \mathbb{E}_{z \sim p(z)} \left[\log (1 - D(G(z))) \right]$$

Often approximate generator loss as:

$$\min_{G} \mathbb{E}_{z \sim p(z)} \left[\log(1 - D(G(z))) \right] - \mathbb{E}_{z \sim p(z)} \left[\log(D(G(z))) \right]$$

Can inverse RL be considered a GAN?

Generator = policy Discriminator = reward (kinda)

Find a policy which makes a discriminator unable to tell if the samples came from the policy or the demos

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\tau \sim p_{\text{demo}}(\tau)} \left[\log D(\tau) \right] + \mathbb{E}_{\tau \sim \pi} \left[\log(1 - D(\tau)) \right]$$

Push up real data

Push down policy data

Discriminator trained with classification between expert/non-expert

Generator trained to max log D with RL

Generative Adversarial Imitation Learning

Challenge: only policy, not really a reward

Jonathan Ho
Stanford University
hoj@cs.stanford.edu

Stefano Ermon Stanford University ermon@cs.stanford.edu

Tweaking GAIL to connect with IRL

We can make simple tweaks to GAIL to get back to max-ent IRL

Optimal discriminator

$$D^*(x) = \frac{p(x)}{p(x) + q(x)}$$

Choose a particular form of discriminator

Policy informed discriminator

$$D_{\theta}(\tau) = \frac{\frac{1}{Z} \exp(r_{\theta}(\tau))}{\frac{1}{Z} \exp(r_{\theta}(\tau)) + q(\tau)}$$

s Discriminator $\sigma(o)$ p(true/false)

 τ Discriminator $r(\tau)$ - σ $\log Z$ p(true/false)

Recasting GAIL as an IRL method

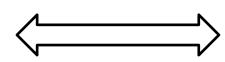
For a particular parameterization of the discriminator, we can show that GAN = max-ent IRL

Max-Ent Inverse RL

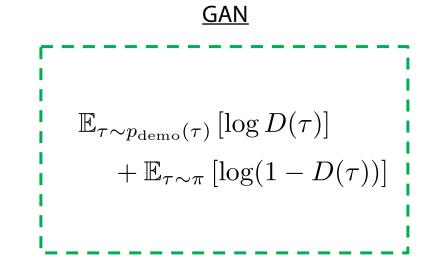
$$\mathbb{E}_{\pi^*} \left[\sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right]$$

$$-\mathbb{E}_{q} \left[\frac{p_w(\tau)}{q(\tau)} \sum_{t} \gamma^t \nabla_{\theta} r_{\theta}(s_t, a_t) \right]$$

Push up demos, push down policy



With some massaging



Push up real data, push down generated

$$D_{\theta}(\tau) = \frac{\frac{1}{Z} \exp(r_{\theta}(\tau))}{\frac{1}{Z} \exp(r_{\theta}(\tau)) + \Pi_{t} \pi_{\theta}(a_{t}|s_{t})}$$

Generator Optimization as Max-Ent RL

$$\min_{G} \mathbb{E}_{z \sim p(z)} \left[\log(1 - D(G(z))) \right] - \mathbb{E}_{z \sim p(z)} \left[\log(D(G(z))) \right]$$

$$D_{\theta}(\tau) = \frac{\frac{1}{Z} \exp(r_{\theta}(\tau))}{\frac{1}{Z} \exp(r_{\theta}(\tau)) + q(\tau)}$$

$$\sqrt{ }$$

$$\min \mathbb{E}_{\tau \sim q(\tau)} \left[\log \frac{q(\tau)}{\frac{1}{Z} \exp(r_{\theta}(\tau)) + q(\tau)} - \log \frac{\frac{1}{Z} \exp(r_{\theta}(\tau))}{\frac{1}{Z} \exp(r_{\theta}(\tau)) + q(\tau)} \right]$$

$$\max \mathbb{E}_{\tau \sim q(\tau)} \left[r_{\theta}(\tau) - \log Z - \log q(\tau) \right]$$

Maximum entropy RL with current reward!

Similar proof holds for the discriminator optimization – refer to https://arxiv.org/pdf/1611.03852

Adversarial IRL in Action





Lecture Outline

```
Recap – IRL formulation

IRLv1 – max margin planning

IRLv2 – max entropy IRL

IRL as a GAN
```