Reinforcement Learning
Autumn 2024

Abhishek Gupta
TA: Jacob Berg

Preferred route Longer route

N

Ope‘n gate

SRR 2y 0y e

Class Structure

14

/—[Imitation Learning]\
/

4 Model-free Reinforcement Learning

~

Policy Gradient ADP Model-based Reinforcement Learning
J
\—[Unifying Perspectives on RL and IRL]—/
Frontiers A
Exploration Learning from Prior Data Learning across tasks
J

Previous Lecture Outline

The Anatomy of Model-Based Reinforcement Learning

l

Model based RL vO = random shooting + MPC

1

Model based RL v1 = MPPI + MPC

l

Model based RL v2 = uncertainty based models

1

Model based RL v3 = policy optimization with models

l

Model based RL v4 = latent space models with images

Model Based RL — A template

4)

-» Model Learning
/ \ y,
p

Data Collection

/
A 4

Planning

-

-

Model Based RL — Naive Algorithm (vO)

Data collected
from planner

-

(

Better than open loop
planning because of

feedback

_

—

Model Learning

\

_ Y,
Data Collection
J \ 4
kf ~N
Planning
_ Y,
T

<

arg max E r(8],al)

J

aoal aTt 0

3t+1 Nﬁg(.yéi,ag)

Maximum likelihood supervised Learning

max E(s,a,5')~D [log Po(s'|s, a)]

Planning with Shooting + MPC

Model Based RL — Better Sampling Methods (v1)

Data collected
from planner

4 p
/' Model Learning
r N - /
Data Collection
\ > v N
\ Planning

Maximum likelihood supervised Learning

m@ax]E(s,a,s’)ND [10g ﬁQ (S/ ‘ S, CL)]

Planning with MPPI + MPC

Better than random \)
shooting + MPC, since
lower variance!

T
arg max Y r(8,a])

J 43 J
Ay, A7 5-ees ar t—o

Aside: Can derive this update
trying to bring sampling
distribution close to optimal
distribution

§i+1 ~ 139(-’@27 a‘Z)

exp(2_; 7(se: ar))
Z

p(a) < p(a)

What is uncertainty?

Alleatoric Uncertainty Epistemic Uncertainty

(environment stochasticity) (Lack of data)

—— CrouRd THith Epistemic Uncertainty

- Bootstrap 1
-—— Bootstrap 2 ¥
x Training Data @

Easier, can use
stochastic models

More challenging, need
to compute posterior

Aleatoric uncertainty

Let’s largely focus on epistemic uncertainty

How might we measure uncertainty?

p(0|D) Difficult to estimate directly!

Learn an ensemble of models

1. Bayesian neural networks
2. Ensemble methods > ;-

9]
>
<
-
=
=1
a
=
p=3
m/'
£ ES
= S
5 3
c c
] 7]
3 3
©
. L) = =
I\ I\
[Q
>
rv?‘: f’J
-
-
>
a
c

Low data regime = high ensemble variance

Easier and more expressive than BNNs!

DA
3B
neay

e

E

g
>
:
5
c
v
o
=
9]
>
’U

Approximate posterior

Model Based RL — Learning Ensembles of Dynamics Models

Learn ensembles of dynamics models with MLE rather than a single model

] 5 .
> > Q>J\
3 3 B
5 5 5
= = =
> > >
Q Q o
g £ g
> > >
s} s} s}
o o n
Pl Pl Pl
> > >
< < <
5 5 5
c c p=
7 @ 7
TN S (XX) 2\
9] 5 .

> L g

o o< <
5 5 5

= cee = eee = cee
> > 3

Q Q Q
£ £ £

mQaXE(s,a,s’)ND [lOgﬁ9(8/|S, a)] mGaX]E(s,a,s’)ND [logﬁ9(5/|87 CZ)] meaX]E(s,a,s’)ND [lOgﬁ9(8,|S, CL)]

Learn ensembles by either subsampling the data or having different initializations

L ecture Outline

Model based RL v2 = uncertainty based models

l

Model based RL v3 = policy optimization with models

1

Model based RL v4 = latent space models with images

l

Inverse RL Problem Formulation

l

IRLv1 — max margin planning

1

IRLv2 — max entropy IRL

Model Based RL — Integrating Uncertainty into MBRL (v2)

Take expected value under the uncertain dynamics

Low uncertainty Expected value over ensemble

€ =~ =—= arg max Y > r((8]),al)
\\\@’ ~ _ ~. (CL%,CL{ CL?Z—. :;'Vzl i—=1 t=0
\ — ~ — L)) N .
- --@:D%@’_, (81,1) ~ o, (| (8], af)
/ '\ — -
P 4

High uncertainty Can also swap which ensemble

element is propagated at every step
or just pick randomly amongst them

Avoids overly OOD settings since the expected reward is affected by uncertainty

Model Based RL — Integrating Uncertainty into MBRL (v2)

Take pessimistic value under the uncertain dynamics

Low uncertainty Penalize ensemble variance

K 1 l
arg - max Y0y r((3)af) — AVar((8]))

High uncertainty

Avoids overly OOD settings since these states are explicitly penalized

Does this work?

How might we deal with compounding error?

Idea 3: Cast this as an imitation learning problem

> Reuse ideas from DAgger!

Compounding error

Synthetically generative

corrective labels 2 Ty
. ._-_.,.___ C?...___, o

Can help to correct model predictions with “feedback”

Can run into issues if the synthetic labels conflict with true data

L ecture Outline

Model based RL v2 - uncertainty based models

l

Model based RL v3 = policy optimization with models

1

Model based RL v4 = latent space models with images

1

Inverse RL Problem Formulation

l

IRLv1 — max margin planning

1

IRLv2 — max entropy IRL

What might be the issue?’

Huge number of samples
needed to reduce variance

%
\/

Extremely slow, hard to run in real time

Amortize planning
into a policy

Output Layer

Hidden Layers
N\

¥

Input Layer

Speeding Up Model-Based Planning

max IE N |[log D s a Use model(s) to generate data for
g (5:0:5) p [logpo(s']s, a)] policy optimization

Input Layer Hidden Layers Output Layer
¥ N
’J Agent ||

>< state| |reward action
S R, A,
] K i

t+1

S.. | Environment]<

<

Can use PG or off-policy!

Generating Data for Policy Optimization

Add Fake Sampled

Data to Buffer Policy Optimization

Learn models

Y
—

Train time

2
— D — mgnE(s,aﬁ/)ND “Qg(st, ag) — (r(se, ae) + {E?f [Q$<5t+1,at+1)])}]

N—

Rollout in environment

7TQ <

Test time

What matters in generating data from models?

~ - oy, /7

-_— e m L

Long horizon rollouts can deviate Short horizon rollouts deviate far less

Balance between off-policy coverage and compounding error

More at https://arxiv.org/abs/1906.08253

Model Based RL — Using Models for Policy Optimization (v3)

-

- ™
@ Data Collection
L y,
A
- N
Policy
Optimization

9 Y,

MNE 0 HQmst,aa (s,)+ s [Q s, 0010)])|]

-

Model Learning

~N

(

_

Generate Data

Maximum likelihood supervised Learning

mHaX]E(s,a,s’)ND [lOg ﬁQ (S/ ‘ S, CL)]

More expensive/harder at training time, faster at test time

Does this work?

L ecture Outline

Model based RL v2 - uncertainty based models

1

Model based RL v3 - policy optimization with models

1

Model based RL v4 = latent space models with images

1

Inverse RL Problem Formulation

1

IRLv1 — max margin planning

1

IRLv2 — max entropy IRL

What about images?

< .
B (o 318
S s
G A 1%
% | s, Dl !
LB w1259 Al
H . E | |
{ §

State based domains Image based domains

Why is learning from images hard?

Generative modeling is videos, challenging to model multimodal correlated predictions

Oouxr VAE ouxr GAN oux SAVP oux SAVP oux SAVP
invariant (best) (xandom) (woxrst)

Partially observable!

ouxr SAVP oux SAVP oux SAVP ouxr SAVP oux SAVP
(xandom) (xandom) (xandom) (xandom) (xandom)

Gd svZp time SV6&-FP ouxr ter- our AB ouxr ouxr VP our VP ouxr VP
txuth vayriant ministic (best) (xandom) (woxst)

Long horizon predictions in video space can be challenging!

~Model Based RL - Latent Space Models for Image Based RL (v4)

Fully observed — Markovian case Partially observed — Non-Markovian case

If we can infer latent state and learn dynamics,
then we can plan in a much smaller space

How do we infer latent state and learn dynamics in this space?

How do we train latent space models?

Learn latent encoder to infer latent state from observations 4¢ (St |01:t)
Learn action conditioned latent transition model pn(8t+1 \St, at)

log pr (g (St+1l01:6+1)[qg (st]01:t), at)

Learn latent decoder to reconstruct observations P (Ot |St)

log py (0¢|5¢)

Learn reward predictor from latent state P¢ (Tt ’St)

log p¢(re|qe(stlo1:e))

+

—— [

Can derive the whole thing from first principles using variational inference!

How do we use latent space models?

Plan - Apply any of the methods from this

3 lecture, just in latent space!

1. Avoids predicting image frames at
planning time

. Scales much better than image
prediction

. Allows for longer horizon predictions

Encode

HOE
®EE

Does this work?

Episode Return

12

Minecraft Diamond

L]
1/
1@ — Max
8

Mean

10K 100Kk 1M 10M 100M
Environment Steps

“"SDPreamerV3

~First.Diamond
from Scratch

Does this work?

. o

A1 Quadruped UR5 Multi-Object XArm Visual Pick Sphero Ollie Visual
Walking Visual Pick Place and Place Navigation

Training from images in < 1 hour!

L ecture Outline

Model based RL v2 - uncertainty based models

1

Model based RL v3 - policy optimization with models

1

Model based RL v4 - latent space models with images

l

Inverse RL Problem Formulation

1

IRLv1 — max margin planning

1

IRLv2 — max entropy IRL

Why should you care?

Model based RL may be a much more practical path to real world robotics

Transfer/Adaptive

N
Nj

A

0‘6/

-7.5

—10.0

—-12.5

—15.0

-17.5

-20.0

—22.5

—25.0

—-27.5

Efficiency Simplicity

Handwriting: Arbitrary Trajectories

SGD
Momentum
NAG
Adagrad
Adadelta
Rmsprop

G505
= AT
2 = qb&@l@;‘,’:}%
L LATIKEINNK)
90.90.9%0,
%

— SAC
—— NPG
—— PDDM (Ours)

1.0

0.0 0.1 0.2 0.3 0.4
Number of datapoints (M)

Likely to be the most future proof one!

Are models really that different than Q-functions?

Models

Q-functions

Similar)

1. Off-policy

2. Models the future

Very different than PG methods = on-policy, models current given future

J

4 Different N (

1. 1-step modeling

2. Models states

3. Can evaluate arbitrary policies

4. Parametric storage of training data

1. Cumulative modeling

2. Models returns

3. Can evaluate only policy

4. Non-parametric storage of data

\

J

Ok let’s switch gears to inverse reinforcement
earning

Let’s revisit the premise of reinforcement learning

¥

:[Agent}
state| |reward action We studied a bunch of different
S R, A, algorithms to solve this
E Rt+l 4
- :
< Environment

Model-based RL Policy gradients

Actor-critic

E [Zr@t,at) + H(q<.|st)>] But they all operate under the same assumption:

reward is known!

so~p(so)
atNQ(Gt |8t)
St+1 Np(8t+1 \St ,at)

Reinforcement Learning requires Task Specification

state reward action

Manual state estimation/perception
:[Agent
-

. | Environment
\ Complex reward specification

v Name Reward | Heroes | Description
Win 5 Team
. . . Hero Death -1 Solo
Does not magically appear in most settings Cogirbutn | 2| T
XP Gained 0.002 Solo
Gold Gained 0.006 Solo | For each unit of gold gained. Reward is not lost
when the gold is spent or lost.
Gold Spent 0.0006 Solo | Per unit of gold spent on items without using
courier.
Health Changed 2 Solo | Measured as a fraction of hero’s max health.
Mana Changed 0.75 Solo | Measured as a fraction of hero’s max mana.
Killed Hero -0.6 Solo | For killing an enemy hero. The gold and expe-

rience reward is very high, so this reduces the
total reward for killing enemies.

Last Hit -0.16 Solo | The gold and experience reward is very high, so
this reduces the total reward for last hit to ~ 0.4.

. ° Deny 0.15 Solo

Has to be manually specified e (=
u y p Ancient HP Change 5 Team | Measured as a fraction of ancient’s max health.

Megas Unlocked 4 Team

T1 Tower™ 2.25 Team

T2 Tower" 3 Team

T3 Tower™ 4.5 Team

T4 Tower” 2.25 Team

Shrine” 2.25 Team

Barracks” 6 Team

9 Ca n We d O b ett e r? Lane Assign' -0.15 | Solo | Per second in wrong lane.

* For buildings, two-thirds of the reward is earned linearly as the building loses health, and
one-third is earned as a lump sum when it dies.

1 See item 0.2.

 Hero’s health is quartically interpolated between 0 (dead) and 1 (full health); health at
fraction @ of full health is worth (z + 1 — (1 —z)*) /2. This function was not tuned; it was
set once and then untouched for the duration of the project.

Table 6: Shaped Reward Weights

Learning from Demonstrations

Avoid manual reward specification by learning from demos of optimal behavior

- > " Agent ———
o A state reward action
1 1 \
D = {807a07317a17'"9ST7aT}7j:1 S’ R’ Ar
1 i Rt+1 (
Demos of expert behavior = S i
— U < l Environment]<
4)
Infer rewards from demonstrations of
Inverse Reinforcement optimal behavior
Leammg -> Optimal behavior optimizes some
_) reward via RL, so the RL process must be

"inverted” to find the reward

But haven't we already learned from demonstrations?

Imitation learning via Behavior Cloning (L2)

arg max E (s« a*)~p log mo(a™|s™)] Main difference between BC and IRL:

— froining tr 1. BClearns policies, IRL learns rewards
2. BC assumes no environment access, IRL
typically assumes either known model or
sampling access

Why does this matter?

Zooming out — why do we care about imitation?

Imitation learning is all about generalization

Generalization across states Generalization across dynamics

,.
e

([
’I
© \ O 4

[

Covariate shift is just a manifestation of generalization

What if learning something else generalized better than policies?

Cross-Embodiment/Dynamics Transtfer

Rewards may allow for cross dynamics transfer

o

o gl
) 4

” S

Can all share the same reward, even with different dynamics!

4

Policies and Q/V functions entangle dynamics, rewards do not

Addressing Compounding Error

Reward can avoid covariate shift issues with forward KL

Imitation Learning via BC Reinforcement Learning with Inferred Reward
- _
L t=0 _
Sampling from expert Sampling from policy

Dx1,(p™||ps) What we care about >»Dxr(pol|lp™)

Learning Rewards from Human Data

4 R 4)
"&, Imitation Learning | 7T i “M| i Inverse RL Reward
_ J _ J
- \
- -
- - \
- \
-
:{Agent)v—’ \
- \
state reward -~ d
g R PR - action max ETNT('Q Z St, CLt
. : a” A t=0
o

| R,
- ,
L S l Environment]4

Use human provided data to infer a reward function

How can we learn rewards?

We must make some assumptions on the expert provided data

4)
T

maxETNm [Zr St, Q)
t=0

g J

Din(r || 77) <e Og

Experts are assumed to be “noisily” optimal

Why is this “inverse” reinforcement learning?

’_l Agent l
state | |reward action
S, | IR A

E Rt+1 (

& :

<] Environment }47
\

RL: Rewards generate trajectories |IRL: Expert trajectories generate rewards

G G
G G

Is this well defined?

IRL problem statement + assumptions

Reinforcement Learning

State: Known
Action: Known

Transition Dynamics: Unknown but can sample

Reward: Known

Expert policy: Unknown
Expert traces: Unknown

Inverse Reinforcement Learning

State: Known

Action: Known

Transition Dynamics: Unknown but can sample
Reward: Unknown

Expert policy: Unknown

Expert traces: Known

Find r that explains the demonstrator behavior as noisily optimal

&.

Inverse RL

Reward
ro(s,a)

4)

Reinforcement Policy

-

Learning W(G‘S)
\ J

New dynamics/state

Inverse RL Applications

Velodyne laser Applanix INS
Riegl laser SICK LMS laser

:-.».H-*ﬂ u kb

g odbdd T U Wi
aBm::i
&+

Bosch Radar

DMI)
IBEO laser SICK LDRS laser

Inverse RL Applications

Why is this hard?

Find r that explains the demonstrator behavior as noisily optimal

‘fm.

Challenging for a variety of reasons:

r ~N 1. Inherently underspecified
2. Rand m both unknown
R, @ Inverse RL 3. Difficult optimization with T unknown.
L G y 4. Distributions/comparison metrics unknown

Reward Function
ro(s,a)

Can be parameterized by arbitrary function approximator

L ecture Outline

Model based RL v2 - uncertainty based models

1

Model based RL v3 - policy optimization with models

l

Model based RL v4 - latent space models with images

l

Inverse RL Problem Formulation

1

IRLv1 — max margin planning

1

IRLv2 — max entropy IRL

A Formula for Inverse Reinforcement Learning

How do we instantiate?

4)
Propose a reward function
re(s,a)
- J
4) 4)
Compare to expert traces Optimize policy against
T re(s,a)

- J - J

IRL vO — Assumptions

4 ™ re(s,a) = w' ¢(s, a)
Propose a reward function | Linear
re(s,a)
_ J

Known dynamics

— L B

Compare to expert traces Optimize policy against
T T r¢(37 a)
- / - /

777 ——

IRL vO — What is a good reward function?

A good reward would evaluate optimal data higher than all other data

V™ (s) > V7™ (s) Vr,Vs

Low reward

a

High reward

Find

E,-

E,-

T
w* " E -

Z ’Vt/r(stv at)
t

Z ’ytw*Tgb(Sta at) Z ET(‘
t i

w* such that (s, a) = w** ¢(s, a)
thr(st, at)] , Vm
'

Z ’th*Tqb(Stv at)]) v
t

> Ky

Z /Vt(b(sh G,t) Z w*TEW
t i

Z Vt(b(sta at)]) v
t

pw(m*, @) pu(m, @)

Underdefined, w* = 0 trivially satisfies!

IRL vO — What is a good reward function?

How do we tackle ambiguity?

W Ere [6(s,0)] > w Exe [6(s,a)] ¥, Vs

4

st wiy™ >wly™ +m,Vrell

max m
w,m

A

Positively sampled
labels

Separating
Hyperplane

Negatively sampled
labels

|

Find rewards which maximize the gap between the expert and all other policies

IRL v1 — Max Margin Feature Matching

Choose w such that “margin” is maximized

maxim

st wly™ >wly™ +m,Vr ell

Looks a lot like an SVM! ﬂ

min [[wl]z

s.t ’wTu”* > wl ™ +1,¥r e 11

What might the issues be =
1. Uniform gap across all i, m*
2. Noisily optimal may compromise the optimization

https://cs229.stanford.edu/lectures-spring2022/main_notes.pdf

IRL v1 = (Fancy) Max Margin Feature Matching

Maximum margin > Structured Max-Margin + Slack

min ||w||2

st wly™ >wly™+1,Vr ell

Bigger for more different policies
min |||z + C¢ |
st wly™ >wly™ + D(m, 7)) — ¢, Vr eIl

Slack allows for noisy optimality

IRL v1 — Max Margin Feature Matching

min [|w||2 + C¢

st wly™ >wly™ + D(r,n*) — ¢, Vr el

Solve Max-Margin Planning

-

_

\

Com pare to expert traces

T Tt

s ~N
Propose a reward function |
re(s,a)
_ Y

re(s,a) = w! ¢ (s, a)

Linear

Known dynamics

B

Optimize policy against

J

re(s,a)

- J

IRL v1 — Max Margin Feature Matching

1. Start with a random policy m,
— 2. Find the w that optimizes

mi?Hsz + C(¢
st wl ™ >wly™ + D(m,7*) = (,Vm € {mg,71,...,7;}

3. Solve for the optimal policy against 7(s,a) = w®" ¢(s, a)
Ti+1 — Opt(re(s,a),T)

—— 4. Add to constraint set and repeat

ﬂ > Output the optimal reward function w*

Max Margin Feature Matching in Action

L ecture Outline

Model based RL v2 - uncertainty based models

1

Model based RL v3 - policy optimization with models

l

Model based RL v4 - latent space models with images

1

Inverse RL Problem Formulation

1

IRLv1 - max margin planning

1

IRLv2 — max entropy IRL

IRL v1 — Why this may not be

enough?

min ||wl|o + C¢

st wly™ >wl'y™ + D(n,n*) — (,¥r el

May not be able to deal with scenario where
true margin is quite small for some policies

Not clear if this is a good way
to deal with suboptimality

Constrained optimization is tough to optimize
for non-linear functions

Can we do better?

Aside: Feature Matching

Instead of focusing on the reward function, focus on the feature expectations

IA

<

K-

—E.

Z ’ytr(stv at)] |

Z/Y%%St? a’t)
t

> (s, at)] |

> 2 (s, at)] —w' En
t

w' p(m") — w p(m)

wll2 (™) = p()]l2 lwllz <1 (™) — ()2 <e

€ => If average feature expectations are close, then values are close

Abbeel, Ng ‘04

Intuition on Feature Matching

Let’s provide some intuition

Features - distance to object
’ end effector position

Q’ I object orientation

(a_c
— / Matching features probably means that

behavior is roughly similar

From max margin to max-ent |RL

Two key ideas in maximum-entropy IRL:

‘/—' Feature matching
1. Prefer good trajectories

2. Weight other trajectories equally to deal with ambiguity

\ .
— Maximum entropy

Notation:

Trajectory distribution - p(7)

Feature expectations:

max H(p(7)) = — /p 7)log p(7)dT Max-entro
Policy ,LL(]?) :Ep(T) nyt(,b(st;at)] D (()) () () Py
! wu(p) = p(m™) Match features

Expert pu(7") = Epe Z’Y%(&ﬂt)] /p(T) =1 Be a probability
t

Let’s simplity

max H(p(T)) = —/p(T) log p(7)dr Max-entropy
wu(p) = p(m™) Match features
/p(7> =1 Be a probability

Set up the Lagrangian

—+ maxmin H(p(r)) + w” (u(p) — p(m*)) — A(/ p(r)dr — 1)

P w,A

min max H(p(r)) + w? (u(p) — p(m*)) — Al / p(r)dr — 1)

w,\ P

Solve wrt p
Solve wrt w, A

Connect the dots!

Let’s simplify — solve for p

Set up the Lagrangian

s macmin H(p(r)) + 0 (u(p) - (")) = AC[p(r)dr ~ 1)

P w,A

mmmwawv»+wﬂmm—u@ﬂ»nx/Mﬂm—1>

w,\A P

Solve wrt p
Vp [’H(p(T)) +w! (u(p) — p(7™)) = A / p(r)dr — 1)] =0

\

- /p(T) log p(T)dr + wT(/p(T)M(T)dT — (")) — A(/p(T)dT - 1)] =0

—logp(r) = 1+ w'u(r) = A =0
p(1) = exp(—1+w’ p(1) — A)

Intuition: p(t) is proportional to the exponential reward of a trajectory w' u(7)

Let’s simplity — solve for 4

Valexp(—=1 =N Z —wlp(7m*) + A| =

minmax H(p(r)) + w7 (4(p) ~ p(r*)) = X [p(r)dr ~ 1)
p(r) = exp(—1 + wTu(r) — A)

ll
mm /) log p(7)d7 + w? / T)dT — 1)

T)dT — 1t
mm 1—|—% /(QT—FUJ //{ T)dT — 1t /pAdT—l)

IB1/I\1/ T)dr — w! p(nw -
miilfexp(—l +wl (1) = Ndr — wh p(n*) + X /r\lexp(1— A)/exp(wT,u(T))dT —w? p(m*) + A

U

1 min 1 — w’ pu(7*) + X

— exp(—1—M\) = 7

= mui)n log Z — w! p(n*)

Ok — let's unpack what we have so far

max H(p(T)) = —/p(T) logp(T)dr Max-entropy
wu(p) = p(m™) Match features
/p(T) =1 Be a probability

Solve wrt p

p(1) = exp(—1 +w’ p(r) — A)
Solve wrt A

1 . *
7 = /exp(wT,u(T))dT exp(—1—\) = - Objective reduces to min log Z — w” p(m*)

g

Solve wrt w Find reward function!

Turns out this has nice intuitive properties

max H(p(7)) = —/p(T) log p(7)dr Max-entropy
p
w(p) = p(m™) Match features
/p(T) =1 Be a probability

Objective reduces to min log Z —w p(m™*)
Z = /exp(wT,u(T))dT

J

L expwTu(r)
w log [exp(wT u(7))dr

Maximum likelihood with
exponential family

exp(w’ p(7*))
[exp(wT p(7))dr

= max K, pe [log

Intuition: trajectories are chosen proportional to their reward

Turns out this has nice intuitive properties

max H(p(71)) = —/p(T) logp(T)dr Max-entropy

w(p) = p(m™) Match features

R=60
/p(T) =1 Be a probability P=0.65 ,7‘
@ R=30 1/ N
P=0.25 /
r =+

Maximum likelihood with maxE o exp(wl u(r*))] R=10
exponential family w TP [T exp(w? u(7))dr || Hard to estimate | (0 / P=0.1
Intuition: trajectories are chosen proportional to their reward S

U

Let’s solve with gradient descent! Has a nice tractable form

Maximum likelihood estimation of w

exp(w’ ()

i
[exp(w? p(r))dr

max K« pe llog

J() = Ererpe [T p(r*)] - log / exp(w” u(7))dr

Gradient has a much nicer form @ Painful to estimate log integral

VJ(w) = VyEreupe [w! p(7)] =V log/exp(wT,u(T))dT

T T
B [Vl ()] [exp(w' u(7))Vypw! pw(r)dr
VJ(w) pe [Vaw” (7)) [exp(wT u(T))dr Soft optimal policy for
.) . ru (st ar) = w' ¢(se, ar)
VJ(w) = Er«upe [wa p(r)} — /pw(T)Vw’w pu(T)dr exp(w? p(r))
o . 2ol = T ep () 7
VJ(w) = Erenpe [V u(77)] = Erpe (1) [Vwo” u(7)]

Push up on data Push down on policy

IRLV2 — Maximum Entropy Inverse RL

Soft optimal policy for
VJ(UJ) = E «pe [waT,LL(T*)} —]ETNP’{U () [waT,u(T)} T (8¢, a) = w? o(s¢, ay)

Push up on data Push down on policy exp(w’ (7))

PulD) = Jexp(wTu(r)dr

Solve mt to soft-optimal on current r;,

Update
reward w

IRL v2 — Max-Ent IRL — Put it together

Maximum Entropy

> A b(st, at)]
—Ep,, (r) [Z SRCHE atT)]

Vwﬁ - Eﬂ-*

4)

Com pare to expert traces

T Tt

re(s,a) = w! ¢ (s, a)

Linear

s ~N
Propose a reward function |
re(s,a)
_ Y

Known dynamics

B

Optimize policy against

- J

re(s,a)

- J

IRL v2 —Max-Entropy Inverse RL (Pseudocode)

1. Start with a random policy myand weight vector w
—— 2. Find the “soft” optimal policy under w — P, (7)
3. Take a gradient step onw

Vol =E;-

27t¢(3t7 @t)

— Ky, 0 [Z Vt¢(3t77 GZ)]
¢

L 4. Repeat

|-| > Output the optimal reward function w*

Max-Ent IRL in Action

L ecture Outline

Model based RL v2 - uncertainty based models

1

Model based RL v3 - policy optimization with models

l

Model based RL v4 - latent space models with images

1

Inverse RL Problem Formulation

1

IRLv1 - max margin planning

1

IRLv2 - max entropy IRL

Class Structure

14

4 Model-free Reinforcement Learning

Policy Gradient

ADP

\

J -

Imitation Learning]\
/

Model-based
Reinforcement Learning

Unifying Perspectives on RL and IRL

—

Exploration

Frontiers

Learning from Prior Data

Learning across tasks

