Iterative Learning Control

(This lecture is related to the paper Using Inaccurate Models in
Reinforcement Learning [1]. Reading the paper first is helpful in
understanding the material).

In the previous lectures, we have been looking into using policy
gradient methods to find a good policy. The main advantage of pol-
icy gradient methods is that they require us to know very little about
the problem we are solving — we don’t need to know the transition
model, and we don’t need to know the reward function either. All
we need to do is collect a number of roll-out trajectories and estimate
the policy gradient based on that. As a result of that, however, policy
gradient methods have their natural limitation that they generally
require a large number of trajectories to work reasonably well and they
sometimes suffer from high variance in their gradient estimates.

In this lecture, we take a different path by assuming that we know
something about the particular problem we are solving. In particular,
we assume that we have a possibly inaccurate but hopefully helpful
model of the system and we know the reward function. We will see
how we can approach the reinforcement learning problem differently
with this additional knowledge.

Model-based Reinforcement Learning

One straightforward way to solve this problem is to find an optimal
policy with respect to the (possibly inaccurate) model that we have.
This idea lays the foundation of model-based reinforcement learning
and optimal control. In fact, we have seen an example of model-
based reinforcement learning techniques earlier in this class — LQR.
It solves for the optimal policy for a linear model and a quadratic
reward function — although any practical systems are hardly truly
linear.

Given a (possibly time-varying) deterministic model f; : S x
A — Sand areward functionr : S x A — R, there is a slightly
more general way to find a good policy: solve for the policy gradient

through back-propagation'”. 7 Or the adjoint method if you are an
optimal controls person.

88 MODERN ADAPTIVE CONTROL AND REINFORCEMENT LEARNING

Assume that we parameterize our policy 71y with parameter 6.
Then, we can represent the model-based reinforcement learning as a

block diagram:
£=0,....,T~1 E Figure 0.0.30: The block di-
S0 St ft (8¢, &) St41i agram representation of a
i i model-based RL problem using
6 R | -
7o (5¢) by i an approximated model.

T—1 A
> Zt:o T(St,at)_’

Note that we are using 3, 4; and J here because they are not the
actual state, action and total reward we would get from running
the actual system, rather, they are just what we get from simulating
through our approximated model f;. Note, however, that s is not
approximated because we assume that we start from a fixed state.

Recall from the earlier lecture that we can optimize the policy
through the “forward-propagation, back-propagation, gradient as-
cent” scheme. We initialize our parameter at some arbitrary 6(0). At
i-th iteration, we do:

1. Forward-propagation: Forward simulate 77, using the approxi-
mated model f; and observe the simulated trajectory {so, ag)}, {S?EZ),ﬁgz) JYRRREE
along with the approximated total reward .

2. Back-propagation: Compute the approximated policy gradient
V] (8) along the trajectory {sq, a(()l)}, {sAgl),ﬁgl)}, e {§§~l),ﬁ§~l)} using
back-propagation.

3. Gradient-Ascent: Update the parameter §(1) = 0() 4 aV,](6).

Note that the approximated policy gradient Vf(6) we used here
is fundamentally different from the estimated policy gradient V4] (6)
we used for the policy gradient methods. Here we use V4J(8), which
is the exact gradient of the approximated total reward function, while
Vo] (0) is the estimated gradient for the exact total reward function.

Iterative Learning Control

A typical problem in model-based reinforcement learning is that no
matter how well you try to model the system dynamics, there are
always unmodeled errors that can easily throw your controller off
course. A concrete example is given in the above paper, where the

authors want to control an RC car to follow some trajectory. It is
shown that the carpet threading is enough to cause their linearized
system to drift away from the planned trajectory.

In contrast, it is against our human intuition that a super sophis-
ticated model is required to perform many tasks such as steering a
car. A young adult who only has a crude idea of how a car steers can
learn to make good turns after a few trials: if the turn is too wide,
steer more next time; if the turn is too tight, steer less next time. This
idea is also illustrate in the target example in Fig 0.0.31.

(a) Initial shot is off (b) Aim at E; instead of Eq

Thus the key idea of Iterative Learning Control is (as the authors
state): “...to use a real world trial to evaluate a policy but then use
the simulator (or model) to estimate the derivative of the evaluation
with respect to the policy parameters.” In other words, we can use the
actual system to do forward propagation and then use our crude model for
back propagation.

The Algorithm

Consider an approximated MDP problem (approximated in a sense

that the model isn’t very accurate but still informative) (S, A, ft, S0, 1),

where S is the set of all possible states, A is the set of all actions, f; :
S x A — S is the (possibly time-varying) deterministic approximated
transition model, s is the initial state and 7 : 5 — R is the reward
function’®. Assume both the system and the policy are deterministic
and the policy is parameterized by 6. We initialize our parameter at
6(0), the solution to the model-based reinforcement learning problem
we saw in the previous part. Then the i-th iteration of the policy
gradient proceeds as follows:

1. Execute the current policy 77, on the real system and observe the

actual trajectory {sp, aéi)}, {sgi),ag") 3, {S(Ti)/ “(Ti)}-

2. Augment the model by adding a (time-dependent) bias term to

ITERATIVE LEARNING CONTROL 89

(c) Aim at E3 and hit the bull’s eye

Figure 0.0.31: The target exam-
ple: (a) Initially we aim at the
bull’s eye(E;) but due to wind
or miscalibrated sight we end
up at x1. (b) Instead of aiming
at E; which will end up at x,
we aim at E; which hopefully
will end up at E;. (c) Continue
updating the offset until we hit
the bull’s eye.

¥ Note that here that we assume that
we know the frue reward function. Note
also that the reward is only defined on
states in this paper, but one can also
define it as a function of both states and
actions.

90 MODERN ADAPTIVE CONTROL AND REINFORCEMENT LEARNING

the original model at every time step t: ft(iﬂ) (s,a) = fi(s,a) +

(50, At).

3. Compute policy gradient V] (6) using back-propagation with the
updated model and then update the parameter 8(+1) = §(i) 4
aVo](0).

In each iteration i, adding the time-dependent bias terms corrects
the old model so that if we re-run it with 77, and FED(s,a) we

would get the exact same state-action sequence {s, a(()i)}, {sgi),agi) J {sgf), a(Ti>}.

" o Figure 0.0.32: At each itera-
5y St41 .
St o tion, we augment the model

i (e, a) by adding a (time-dependent)
bias term to the original model

so that we would get the same
trajectory.

(a) The original model ;. (b) The augmented model th(t+1)'

Therefore when updating the parameters 6 in step 3, the correct
trajectory is used for computing the policy gradient. In most non-
linear control systems, this means using the actual trajectory for the
linearization points though the derivatives are computed using the
old model (bias terms do not affect derivatives) at these correct trajec-
tory points.

The Theory

Once again we assume the system is deterministic and assume our
policy is parameterized by 6. Define the following function s; =

ht(So, 9):
h1(s0,0) = s1 = fo(so, e (50)) (0.0.116)
he(so,0) = fr-1(st—1, 79 (s1-1)) (0.0.117)
= fr-1(hi-1(50,0), 7o (ht-1(s0,0))) (0.0.118)

In other words, h;(sg, 0) is the real world state at time f if we start
at 59 and follow the policy 7. Similarly we can define §; = f¢(so,0)
which is the state at time ¢ using the approximated model and fol-
lowing 7ty.

ITERATIVE LEARNING CONTROL 91

Let sg,s1, - - - st be the real world state sequence obtained when
executing the policy 77y. Then the true policy gradient is given by:

dht

V@] szt St dG 051571

(0.0.119)
Note here that the derivatives % are total derivatives since #; is
dependent on 6 through all previous time steps ' = 0,...,t — 1. The
chain rule (back-propagation) is applied to every term in % by the

definition of Eq. 0.0.118.

Similarly we can define the approximated policy gradient as fol-
lows:

dht

VQI Z vst d9

(0.0.120)

50,51, 81—

Two sources of error make Eq. 0.0.120 differ from the the true
policy gradient in Eq. 0.0.119:

1. The derivative in % is based on an inaccurate model.

2. The derivatives in both V,r(8;) and % are evaluated along the
wrong trajectory.

What ILC does is that although we cannot deal with the first
source of error, we can at least run the system to get the actual tra-
jectory instead of using the wrong one predicted by our approximate
model. The resulting gradient is thus:

dht

(0.0.121)

Brief Proof of Convergence and Optimality

It has been proved that if the model isn’t too bad and the problem is

well-behaved enough' then following the gradient will converge to a 19 Certain boundedness and smoothness

neighborhood of a local optimum. More formally: conditions hold for the true MDP.

dft dft

< e and <e=||Vof — VoJ||, < Ke,

2

44|

(0.0.122)
where K is a constant related to the properties of the problem, such
as the dimensionality of the problem, upper bound for reward, hori-
zon of the problem, etc.

Further, if an exact line search is done for each gradient ascent
step (every gradient ascent step updates the parameter to the best

92 MODERN ADAPTIVE CONTROL AND REINFORCEMENT LEARNING

parameter along the gradient direction), the algorithm converges to a
region of local optimality,

[VoIll, < V2Ke. (0.0.123)

The above theorem guarantees that ILC converges to a region of
local optimality. On the other hand, in practice when the policy is
close the true optimal policy, it tends to oscillate without actually
converging to the optimum.

Related Reading

[1] Abbeel, P, Quigley, M. and Ng, A.Y., Using inaccurate models in
reinforcement learning., ICML 2006.

