
Black-Box Policy Optimization

Up to this point we have learned primarily about dynamic programming-
based approaches to control. These problems set up a Bellman equa-
tion which can be solved to discover an optimal or approximately
optimal controller. This lecture focuses on ways to avoid the Bellman
equation or, as Andrew More put it, how to not be “blinded by the
beauty of the Bellman equation.”

The following approaches will focus on finding a set of parameters
which defines a good controller. For example, in Tetris, we could
imagine defining a policy pq : x 7! a which is parameterized by q.
These parameters are weights on various features defined on state-
action pair (x, a), such as the maximum height of the board or the
number of holes of the resulting configuration. A policy under this
parameterization can be defined at every state x as,

pq(x) = argmin
a2A

(q1 ⇥ # of Holes(x, a) + q2 ⇥Height(x, a)) .

In general, we have

pq(x) = argmin
a2A

qT f (x, a),

where f (x, a) is a vector of features of the state-action pair (x, a).
Let x denote a trajectory of states and actions, x = (x0, a0, . . . , xT , aT).

We define the total reward of the trajectory x as,

R(x) =
T�1

Â
t=0

r(xt, at).

Our goal is to find the parameters that produce the policy that
maximizes the expected total reward of the trajectories,

J(q) = Ep(x|q)[R(x)] = Ep(x|q)

"
T�1

Â
t=0

r(xt, at)

#
,

where p(x|q) is the probability of the trajectory x given the policy
parameterized by q.

50 modern adaptive control and reinforcement learning

Pros of Policy Optimization with Parameterized Policies:

• No dependence on size of state space (directly)

• A policy can be much more simple than a value function. For
example, in the mountain car problem, the optimal policy
is simple to specify: move backwards until a certain point,
then move forwards. The value function for this problem,
however, is rather complex and requires much more storage
space to represent.

• Engineering knowledge about the domain can be put directly
into the policy by selecting good features.

• Only needs access to the reset model.

Cons of Policy Optimization with Parametrized Policies:

• Needs careful design of features. With poor features, no
amount of searching will find a good policy. Also, the fea-
tures need to have somewhat smooth gradients for this type
of gradient descent to be effective.

• Strong dependence on the number of parameters. Irrelevant
or redundant parameters make the problem much harder
(potentially exponentially harder).

How to find a good parameter set q?

Gradient Ascent/Descent

Perhaps the most obvious way to solve this problem would be to
use the gradient ascent algorithm. Gradient ascent starts at some
intial point, evaluates the gradient of the objective function J(q),
which is the expected total reward function in our case, and then
takes a step up the gradient (if we are maximizing). Gradient ascent
continues stepping in the direction of the gradient (the direction that
the function J has the greatest rate of increase) until it converges, i.e.,
the gradient is small enough.

Problem 1:

• J(q) may not be differentiable, i.e., changing q by a infinitesi-
mal small change d could cause J to jump substantially

• J(q) may be very hard to differentiate analytically

Idea: approximate the gradient using finite differences
For each parameter we could add a small scalar d to it and evalu-

ate the value of J at q + di, where di = (0, . . . , 0, d, 0, . . . , 0).

black-box policy optimization 51

Then, we can use the finite difference 1
d (J(q + di) � J(q)) to esti-

mate the derivative in the ith direction. The estimated gradient then
is

er =
1
d

·

2

664

J(q + d1)� J(q)
...

J(q + dn)� J(q)

3

775 .

Problem 2:

• We may not have access to the value of J(q), rather, we may
have a noisy sample J̃(q), which is case for the expected total
reward function.

Idea: estimate the gradient using the samples.
Similarly, we could add a small scalar d to each parameter and

take a single sample J̃(q + di) to estimate the derivative in the ith
direction. The estimated gradient is

er =
1
d

·

2

664

J̃(q + d1)� J̃(q)
...

J̃(q + dn)� J̃(q)

3

775 .

However, this estimate can be noisy. If we want a better estimate of
the gradient, we could sample multiple times and take an average. A
better way would be to use a linear least squares approach for a large
number of sample vectors. Specifically, we create tuples, {D(j), J̃(q +

D(j))� J̃(q)}N
j=1. Then, by the Taylor series expansion, we have,

J̃(q + D(j))� J̃(q) ⇡ (rq J)> D(j)

Then, the problem of estimating gradient can be interpreted as the
following linear least squares regression problem,

r̃ = argmin
r0

N

Â
j=1

���
�
r
0
�> D(j)

�

⇣
J̃(q + D(j))� J̃(q)

⌘ ���
2

.

In the next lecture, we will see other methods to estimate rq J
called the policy gradient methods.

In some domains, such as a deterministic simulator (although
the simulator may simulate randomness, it itself is deterministic,
such as Tetris), we can use the so called Pegasus [1] trick: simply fix
the random seed. This can be useful because it fixes a single (noisy)
estimate of the true gradient and helps keep the gradient consistent
and pointing in the correct direction. This can be dangerous because
it can drive q towards areas in which the estimate is very poor (and
low), since these will appear to be a minimum.

52 modern adaptive control and reinforcement learning

With the gradient estimate, we can update the parameter q:

q q + a er

where a is the step size or learning rate. In practice, for good conver-
gence we need a ⇡ 1p

T
where T is the time horizon of the problem.

Note, however, that poor gradient estimates can cause incorrect
behavior. In the worst case, the estimated gradient near an almost flat
section could be 0 in all directions.

Methods When We Don’t Have a Gradient

In addition to the algorithms covered in more detail below, it may be
worth considering:

• Simulated annealing. This method performs gradient descent like
updates (more precisely, hill-climing updates). At each iteration,
another set of parameters q + D is randomly generated with a
small D, if J(q + D) > J(q), we update the parameters q q +

D. Otherwise, we still accept the update q q + D with some
probability related to the “temperature” of the system. Initially, the
“temperature” is high which means the algorithm tends towards
random movement, i.e., even if the value is not better, we still
make the updates with high probability. As the search continues
the temperature decreases and the algorithm is more likely to
move in the ascent direction.

• Genetic Algorithms. These are generally a last resort. They eval-
uate a bunch of random parameters and then the best parameters
“survive” and “reproduce” with some “mutation” to create a new
set of parameters. This method is nice because it requires basi-
cally no knowledge of the problem and, when tuned properly, will
explore the space nicely, although it can be very difficult to tune
parameters such as the mutation rate.

• Q2. This method generates a bunch of samples and fits a quadratic,
then solves a quadratic program to optimize the weights. To avoid
running outside the region about which the algorithm “quadrati-
cized”, it applies linear constraints to bound the solution. It then
re-quadraticizes about the new estimate.

• Cat Swarm Optimization. This optimization technique leverages
swarm intelligence by using models of cat behavior.

• Coordinate Descent. In order to find a minimum, this algorithm
performs a line search along one coordinate direction at the cur-
rent point during each iteration. Different coordinate directions are
cycled through as the algorithm iterates.

black-box policy optimization 53

Nelder-Mead

(See the wikipedia article: http://en.wikipedia.org/wiki/Nelder%
E2%80%93Mead_method for more info and a nice animated gif)

The Nelder–Mead method was proposed by John Nelder and
Roger Mead, two English statisticians working at the National Veg-
etable Research Station6. Perhaps the best summary for the Nelder– 6 Nelder later notes that “Our address

(National Vegetable Research Station)
also caused surprise in one famous US
laboratory, whose staff clearly doubted if
turnipbashers could be numerate.” [3]

Mead method is what Nelder said himself during an interview [3]:

“There are occasions where it has been spectacularly good. . . Mathematicians
hate it because you can’t prove convergence; engineers seem to love it
because it often works.”

Nelder-Mead has many popular variants, one of which is the
default algorithm used in MATLAB’s fminsearch function. It does
not require any knowledge of the derivatives or the analytic form
of the function being optimized, but it does expect deterministic
functions.

Nelder-Mead works on an n-dimensional function by creating
a simplex of n + 1 points which it modifies to try to surround the
optimum. At each iteration, it evaluates the function at each of the
vertices of the simplex and follows some complicated rules to move
the points until it shrinks the simplex down on a local minima. The
original version of the algorithm is not guaranteed to converge.

The following is an overview of the rules used:

• Consider points along the line between the best point and the
(possibly weighted) average of the other points

• Try to reflect the best point about plane between other points

– If the reflected point is better than the second worst, but not
better than the best, replace the worst with the reflected point.

– If the reflected point is better than best point, compute a further
expanded point past the reflected point. If this point is better
than the reflection, replace the worst point with it, otherwise
replace the worst point with the reflection.

– If neither are better, consider contracting the simplex by short-
ening the distances between the best point and the other points

Note: you should really consult a better reference if you were
considering implementing this as there are many variants of this
algorithm.

Even though it may not have good theoretical properties, in prac-
tice this algorithm tends to be very effective. This approach can also
be extended to take 4 or 8 samples at each point on the simplex
instead of just sampling once. These methods (Nelder-Mead-4 /
Nelder-Mead-8) can potentially improve robustness to noise.

http://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method
http://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method

54 modern adaptive control and reinforcement learning

Cross-Entropy Method

Figure 0.0.20: The first iteration
of cross-entropy. The initial
distribution is a prior Gaussian
(blue) and the green Gaussian
is the one fitted to the elite set.

The Cross-Entropy Method samples from a distribution, and then
updates the distribution based on which samples scored the highest.
This method originated as an approach for importance sampling
and has impacts in queuing theory as well as being useful as an
optimization technique.

The method, shown in Algorithm 16 and illustrated in Figure
0.0.20 starts with a distribution over the parameter space, often a
Gaussian, but it can be any distribution. Then samples are taken
from the distribution as points at which to evaluate the function.
Typically about 100 samples are taken. Then the “elite set” is com-
puted, which is the top 1-5% of the samples. The parameters that
make up the elite set are then used to create a new distribution. The
actual values of the elite set are ignored, only their parameters are
used to train a new distribution. Then the new distribution is sam-
pled from and the process repeats until the distribution settles in on
a local optimum. The parameters returned could be the mean of the
final distribution, or one could track the best value overall and use
that as the final parameter set.

This method is guaranteed (probabilistically) to converge to a local
optimum, but it also has a nice exploration property since it samples
randomly at each step.

One possible modification is to mix the old and new distributions,
such as by linearly interpolating the mean and covariance in the case
of Gaussians. Typically the interpolation is weighted 70-90% in favor
of the new distribution. This modification is useful to help avoid
singular covariance matrices.

Another nice property of Cross-Entropy is that it can deal with ir-
relevant or noisy features. If two features are related, their covariance
in the distribution will be high.

There are, however, issues with these methods

black-box policy optimization 55

1: given: An initial distribution Dq over the set of parameters
2: outputs: A final set of parameters qn

3: while not converged do
4: for i = 1 to k do
5: sample qi from Dq

6: vi J(qi) {Run the simulator to obtain a value}
7: end for
8: E ∆
9: for j = 1 to e do

10: i argmaxi/2E vi
11: E E [qi {Find the e best values to create the elite set}
12: end for
13: Dq fit(E) {Fit a new distribution to the xj in the elite set}
14: end while

Algorithm 16: Cross entropy method

• Inaccuracies in modeling the true distribution. If the actual distri-
bution is multi modal, then that can cause the covariance to keep
growing to accommodate the bimodal nature of the underlying
distribution

• If the sampling is not done right, then there might be too few ele-
ments in the covariance matrix. To fix this, some people try to in-
crease the diagonals along the covariance by adding a ’regularizer’
term to the covariance matrix, i.e. a lI, or by linearly combining
the distributions as mentioned earlier.

• This method actually optimizes quantiles [2] rather than the ac-
tual expected values. Thus, if using a black box method, it will
converge, but if a stochastic policy method is used, it will not con-
verge because of noise.

Black box methods usually must evaluate J many times, and thus
work well when evaluating J is cheap. However, this is often not the
case in robotics.

Related Reading

[1] PEGASUS: A policy search method for large MDPs and POMDPs.
Ng, Andrew Y and Jordan, Michael

[2] The Cross-Entropy Method Optimizes for Quantiles. Goschin,
Weinstein and Littman

[3] Optimization stories. GrÃűtschel, Martin, ed. Dt. Mathematiker-
Vereinigung, 2012.

