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Motivation and Goals



What is Cancer?

Cancer is a disease in which some of the body’s cells grow 
uncontrollably and spread to other parts of the body. 

Figures are from National Institute of  Cancer website.



What is Melanoma?

Ø Melanoma is the most aggressive type of  skin cancer.
Ø Pathologists look at a skin biopsy slide and determine if  its overall 

structure is normal, abnormal, or malignant.
Ø Diagnostic errors are much more frequently than in other tissues and 

can lead to under- and over-diagnosis of  cancer.
Ø Deep learning image analysis methods may improve and complement 

current diagnostic and prognostic capabilities.

An example of  an Invasive Melanoma T1b in M-Path dataset. 



Related Work

Ø There is various work related to the diagnosis of  biopsy images of  
other types of  cancers than melanoma, especially on breast 
histopathological Whole Slide Images (WSI) [1,2].

Ø Related work for melanoma diagnosis using skin biopsy WSI is very 
limited. There are works on staining other than H&E, such as Ki-67 
stain [3].

Ø Most existing work on melanoma diagnosis are either binary 
classification system or on not very challenging categories to 
distinguish [4,5,6,7].



Melanoma Diagnosis

Diagnoses:
Mild Dysplastic

Moderate Dysplastic
Melanoma in situ

Invasive T1a
Invasive T1b

Cellular entities:

- Nuclei
- Melanocyte

- Mitosis

Structural entities:

- Dermis
- Epidermis

- Nests

Raw WSI
Diagnosis model



Dataset



Dataset

Our dataset comes from 240 H&E stained slides of skin biopsy images, acquired 
by the University of Washington School of Medicine in the MPATH study (R01 
CA151306).



Dataset

Ø Each class varies in structure of  tissues.
Ø Ground truth comes from 3 expert pathologists.
Ø For each WSI, we have one rectangular Region of  Interest (ROI).

Figure3. Examples of  Skin Biopsies with Different Diagnosis. Top Left: Benign. 
Top Right: Atypia. Bottom Left: Melanoma in Situ. Bottom Right: Invasive Melanoma (T1a).



1. Mitosis Classification 

*Published in the journal of  Computerized Medical Imaging and Graphics
https://doi.org/10.1016/j.compmedimag.2020.101832

Paper: Machine Learning Techniques for Mitoses Classification*



Related Work

Ø Among the independent predictors of melanoma-specific 
survival, mitotic rate is the strongest prognostic factor after 
tumor thickness [8].

Ø Various approaches have been applied to detect mitotic figures. 
Probability based methods [9], graph-based multi-resolution 
approach [10], used morphological features [11], and CNN-
based method [12] are some of the approaches in detection of 
mitosis in biopsy images. 

Ø Most of these methods have been applied on breast biopsy 
images.



Dataset

Positive samples – class Mitosis
Ø About 600 mitoses marked by our expert pathologist (Dr. Knezevich).
Ø We cropped each mitosis in a 101*101 patch centered on the dot placing 

on the mitotic figure.

Example of  expert pathologist markings of  mitoses (Left) and sampled mitoses (Right)



Dataset

Negative samples – class NonMitosis
Ø Distinguishing mitoses from normal nuclei is a challenge.

Mitosis

Nuclei



Dataset

Negative samples – class NonMitosis
Ø We used a feature-based nuclei detector to find nuclei.
Ø We sampled them as negative cases for our dataset.

Examples of  applying the nuclei segmentation on a crop of  skin biopsy image 
(a) original crop (b) nuclei segmentation result. Two mitoses that are present in 
the original crop are marked with red dots for Visualization.



Preprocessing

> Data augmentation:
– Rotations of  45, 90, 135 or 225 degrees. 
– Mirroring horizontal and vertical.

> The final dataset: 
– 4364 mitosis samples.
– 12640 non-mitosis samples. 

> Dataset randomly split:
– Training: 60%
– Validation:     20%
– Testing: 20% 



Method and Model



Method and Model

Ø In recent years, with the development of  fast and accessible 
GPUs, Convolutional Neural Networks (CNNs) have 
dominated computer vision research due to their impressive 
performance, and mitosis detection is not an exception. 

Ø We ran two separate experiments on two well-designed CNNs 
and compared their results: 
1. Efficient Spatial Pyramid of  Dilated Convolutions (ESPNet) [13]

• A light model developed and published by a member of  our group.

2. Densely Connected Convolutional Networks (DenseNet161) [14]
• One of  the well-known model in Deep Learning literature. 



Results



Method and Model

> Hyperparameters
– Adam optimizers.
– learning rate decay schedule with step size = 5 and 𝛄 = 0.1.
– 20 epochs.
– cross-entropy loss function.

> Evaluation Metrics
– Accuracy = (TP+TN)/(TP+FP+FN+TN) 
– Precision = TP / (TP + FP)
– Recall = TP / (TP + FN)

– F1 score = 2× (Precision × Recall)
Precision + Recall

– Sensitivity = TP / (TP + FN)
– Specificity = TN / (TN + FP)



Results

Evaluation results of  ESPNet and DenseNet161 on Melanoma



Results

> Supplementary Dataset
– There is not a public marked dataset of  mitoses in skin biopsies.
– Therefore, we used the MITOS dataset which is a public mitosis dataset 

of  breast biopsies.
Ø The MITOS dataset contains 50 images stained with Hematoxylin & Eosin.
Ø A total of  800 mitoses are visible in MITOS

Examples of  Mitoses in MITOS public dataset of  breast biopsy images.



Results

Ø To generalize on a public dataset, we used MITOS dataset from 
ICPR12 challenge, which is a breast biopsy dataset for mitosis.

Evaluation results of ESPNet and DenseNet161 on MITOS



Discussion



Discussion

Ø We achieved very high scores in both of  our experiments.
Ø Melanoma:

– DenseNet161 performed slightly better than ESPNet.
– Training time of  ESPNet is significantly less than Densenet161.

Ø MITOS:
– Both of  ESPNet and DenseNet performed significantly better than the 

classifier of  ICPR12 winner with significance level of  0.01.
– DenseNet161 is significantly better than the classifier of  the out-

performer at significance level of  0.05.
– ESPNet is not significantly better than the out-performer.



2. Segmentation using Coarse and Sparse Annotation

*Submitted to the Journal of  Digital Imaging

Paper: Segmenting Skin Biopsy Images with Coarse and Sparse 
Annotations using U-Net*



Related Work

Various approaches have been developed to overcome imperfect 
and limited data annotation and vary with the specific challenges 
posed by the specific dataset on which they were developed.
Ø When a small portion of an image is fully annotated, different 

methods of augmentation have proven to be helpful [15,16].
Ø Active learning is another popular method in the case of limited 

annotation [17,18,19].
Ø Changing loss function, or using external data also generated 

promising segmentation result.



Dataset

Ø We obtained coarse and sparse 
annotations only on the ROI 
images by an expert 
pathologist (Dr. Mokhtari).

Ø Not only are the annotations 
not on the full WSI, but they 
are also sparse within the 
annotated ROI.

Ø Moreover, the annotations are 
coarse, i.e., they are not pixel-
level accurate.



Dataset

Labels and colors:
• Corneum (COR)
• Epidermis (EP)
• Epidermal Nests (EPN)
• Dermis (DE)
• Dermal Nests (DMN)
• Background (BG)
• Unlabeled (UL)



Method and Model



Method and Model

Two stage method: first big tissue structures, then smaller tissue structures.



Results



Results

Ø Evaluation of  the segmentation model on ROI testing set.



Results - ROI testing set



Results - Generating WSI Segmentation Masks



Subjective Assessment with Pathologists

Qualitatively evaluation the WSI segmentation, with these questions:
• Q1: How much of  the tissue/area that is present in the corresponding WSI has 

been correctly identified by the model? Rate Low, Medium, or High.

• Q2: How much of  the label identified by the model is the correct tissue/area? 
Rate Low, Medium, or High.



Discussion



Discussion

Ø Training a segmentation model generally requires a large, high-quality 
annotated ground-truth. However, medical datasets require expert-
level annotation as ground-truth.

Ø Our system was able to generate segmentation masks for both 
epidermis/dermis and nests with high-quality performance, 
indicating that having sparse annotation on important tissues has the 
potential for producing a useful segmentation model. 

Ø Our results suggest that both the DMN and EPN can be over-labeled 
by the model, highlighting the problems that coarse annotation can 
cause for the system, especially on a small dataset in which the 
ground-truth did not clearly distinguish.

Ø Sparse, but fine, annotation on a small region of  the WSI may be 
enough for training a better segmentation model.



Future Work
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