A Similarity Retrieval System for Multimodal Functional Brain Images

Rosalia F. Tungaraza Advisor: Prof. Linda G. Shapiro

Ph.D. Defense

Computer Science & Engineering University of Washington

Functional Brain Imaging

- Study how the brain works
- Imaging while subject performs a task
- Image represents some aspect of the brain e.g.
 - fMRI: brain blood oxygen level
 - **ERP**: scalp electric activity

Motivation

Given a database of functional brain images from various subjects, cognitive tasks, and image modality.

> Database users need to retrieve similar images

A system that can automatically perform this retrieval will reduce amount of time and effort users spend during this task

Contributions

- 1. Created a similarity retrieval system for multimodal brain images
 - I. fMRI, ERP, and combined fMRI-ERP
 - II. User interface
- 2. Developed feature extraction methods for fMRI and ERP data
- 3. Developed pair-wise similarity metrics
- 4. Simulated human expert similarity scores

Outline

- Background
 - ≻ fMRI
 - > ERP

Existing Similarity Retrieval Systems for these modalities

- Feature Extraction Process
- Similarity Metric
- User Interface
- Retrieval Performance
- Simulate Human Expert

Functional Magnetic Resonance Imaging (fMRI)

- A non-invasive brain imaging technique
- Records blood oxygen level in brain
- > While imaging, subject performs a task

fMRI Statistical Images

Statistical Analysis

Voxel Thresholding

Event-Related Potentials (ERP)

@ 2004 by Nucleus Communications, Inc.

A non-invasive brain imaging technique

- Records electric activity along scalp
- > While imaging, subject performs a task

ERP Source Localization

Researchers want to identify the electric activity and its source for each electrode

But, multiple sources for each electrode

LORETA approximates anatomic locations of sources

Comparison of fMRI and ERP Data

	fMRI	ERP
Spatial resolution	Good (in mm)	undefined/poor
Temporal resolution	Poor (in sec)	Excellent (in msec)

Similarity Retrieval Systems for fMRI Images

Retain "Most Important" Voxels Whole Brain Similarity Region of Interest Similarity Feature Selection

Our System	Codebook	Wavelet	Bipartite	RV-Coefficient	Correspondence
Yes	No	No	Yes	No	Yes
Yes	Yes	Yes	Yes	Yes	No
Yes	No	No	No	No	Yes
Yes	No	No	No	No	No

Similarity Retrieval Systems for ERP Images

No relevant literature found

Similarity Retrieval Systems for Combined fMRI-ERP Images

No relevant literature found

Outline

Background

Feature Extraction Process FMRI features

- TIVIRI features
- ERP features
- Similarity Metric
- User Interface
- Retrieval Performance
- Simulate Human Expert

fMRI Feature Extraction

ERP Feature Extraction

Outline

- Background
- Feature Extraction Process

Similarity Metric Summed Minimum Distance Similarity Score for Combined fMRI-ERP Images

- User Interface
- Retrieval Performance
- Simulate Human Expert

Summed Minimum Distance (SMD) for fMRI and ERP Images

Subject Q

Subject T

Q2T =
$$\frac{\sum_{r \in Q} \min_{s \in T} d_E(r, s)}{N_Q}$$

SMD = (Q2T+T2Q) / 2

Sample SMD Scores

similarityRetrievalGUI_2

1		0.00	
ו ר		11.00	· · · · · ·
2		15.02	
о Л		15.33	
ч 5	HealthyAOD_13	16.29	
0 6		16.30	
7	HealthyAOD 12	10.47	
, 8	HealthyAOD_12 HealthyAOD_4	21 21	
g	HealthyAOD 3	21.31	
10	HealthyAOD 5	21.52	
11	HealthyAODMean con	21.00	
12	HealthyAOD 15	24 43	
13	FaceUnVsEixation 14	25.91	
14	HealthyAOD 7	26.83	
15	HealthvAOD 10	27.44	
16	FaceUpVsFixation 4	27.98	
17	FaceUpVsFixation 9	28.18	
18	FaceUpVsFixation 20	28.21	
19	FaceUpVsFixation 3	28.50	
20	FaceUpVsFixation_19	28.59	
			*
	D	one	

Similarity Score for Combined fMRI-ERP Images

$SIM(i,j) = \alpha SMD_{fMRI}(i,j) + (1-\alpha)SMD_{ERP}(i,j)$

Outline

- Background
- Feature Extraction Process
- Similarity Metric

User Interface

- Retrieval Performance
- Simulate Human Expert

GUI: Front Page

Similarity Retrieval Tool for Multimodal Brain Images

	Choose Modality 💿 fMRI	○ ERP ○ Both	
		1	
IMRI Infeshola	0.01	fMRI Feature Weights	
ERP Threshold	10	Cluster Centroid	< b 1
Scope	⊚ Global ○ ROI	Cluster Area	4
ERP Timeframe	TF1 101 TF2 121	Voxel Mean Distance to Centroid	4
Alpha	< > 0	Voxel Mean Activation Value	4 F
	Upload Database	Variance of Voxel Activation Values	4
Q		Variance of Voxel Distances to Centroid	x >
Query Brain	HealthyAODMean_con		
Query Brain Viewer		Detun Ten 15	
Slices	-26:6:26 Or All Slices		matches
Axial	Coronal Sagittal	Get Matches	

GUI: Retrievals with SMD Scores

🔸 similarityRetrievalGUI_2

1	HealthyAOD 11	0.00	^
2	HealthyAOD 8	11.82	
3	HealthyAOD_1	15.33	
4	HealthyAOD_13	15.47	
5	HealthyAOD_6	16.38	
6	HealthyAOD_9	16.47	
7	HealthyAOD_12	19.01	
8	HealthyAOD_4	21.31	
9	HealthyAOD_3	21.32	
10	HealthyAOD_5	21.53	
11	HealthyAODMean_con	22.98	
12	HealthyAOD_15	24.43	
13	FaceUpVsFixation_14	25.91	
14	HealthyAOD_7	26.83	
15	HealthyAOD_10	27.44	
16	FaceUpVsFixation_4	27.98	
17	FaceUpVsFixation_9	28.18	
18	FaceUpVsFixation_20	28.21	
19	FaceUpVsFixation_3	28.50	
20	FaceUpVsFixation_19	28.59	
			~
	D.		

23

GUI: Query-Target Activations (fMRI)

Target Image

GUI: Query-Target Activations (ERP)

Charles

Target Image

Outline

- Background
- Feature Extraction Process
- Similarity Metric
- User Interface
- Retrieval Performance
 - Data Sets
 - FMRI Retrieval Performance
 - ERP Retrieval Performance
 - Combined fMRI-ERP Retrieval Performance
- Simulate Human Expert

Data Sets for fMRI Retrievals

Checkerboard -- 12 subjects (Face Recognition)

Central-Cross -- 24 subjects (Face Recognition)

SB -- 15 subjects (Memorization)

AOD -- 15 subjects (Sound Recognition)

Data Set for ERP Retrievals

View Human Faces (Face Up) -- 15 subjects View Houses (House Up) -- 15 subjects

Data Set for Combined fMRI-ERP Retrievals

> ERP: same data set as used in ERP retrieval

- ≻ fMRI:
 - Task: Face recognition using a house up background
 - Same subjects and images as data set for ERP retrieval

fMRI Retrieval Performance

1. RFX Retrievals

2. Individual Brain Retrieval

3. Testing Group Homogeneity

4. Feature Selection

fMRI Retrieval Score

Retrieval Score =
$$\frac{1}{N \times N_{rel}} \left(\sum_{i=1}^{N_{rel}} R_i - \frac{N_{rel}(N_{rel}+1)}{2} \right)$$

Perfect score :Retrieval Score = 0Random score:Retrieval Score ~ 0.5Worst score:Retrieval Score = 1

fMRI Individual Brain Retrievals

Use individual brain as query

Mean Retrieval Scores (Top 6% activated voxels)

Checkerboard SB Central-Cross

AOD

(1000) activated voxels)	
0.09	
0.16	
0.21	
0.26	

Testing Group Homogeneity for fMRI

ERP Retrieval Performance

Subject #8 Retrievals

Top Retrievals

Bottom Retrievals

Subject 8	Subject 12	Subject 14	Subject 13	Subject 10
0.00	0.11	0.23	0.25	0.26

Subject 9	Subject 4	Subject 5	Subject 15	Subject 3
0.70	0.75	0.78	0.91	0.95

Combined fMRI-ERP Retrieval

 $SIM(i,j) = \alpha SMD_{fMRI}(i,j) + (1-\alpha)SMD_{ERP}(i,j)$

Outline

- Background
- Feature Extraction Process
- Similarity Metric
- User Interface
- Retrieval Performance
- Simulate Human Expert
 - Simulation Method
 - Data Set
 - Testing Function Performance

Simulate Human Expert

Current retrieval system requires some expert knowledge

	Centroid Only	Centroid and	Average Activation
		Average Activation	Value Only
		Value Only	
Correlation	0.60	0.64	0.52
Coefficients			

Estimate a function to generate similarity scores with high correlation to expert scores

Simulation Method

- 1. Uniform feature representation: create codebook and encode each subject
- 2. Concatenate the codebook features for each pair of subjects
- 3. Create eigenfeatures
- 4. Estimate a function
- 5. Test function performance

1. Uniform Feature Representation

2. Concatenate Codebook Features

3. Create Eigenfeatures

Use PCA to project each feature onto N principal components. Here N=1.

4. Estimate a Function

Linear function using linear regression

Non-linear function using generalized regression neural networks (GRNN)

5. Test Function Performance

The Pearson Correlation Coefficient (CC)

$$\frac{\sum_{i=1}^{n} \left(\widehat{y}_{i} - \mu_{\widehat{y}}\right) \left(y_{i} - \mu_{y}\right)}{\left(n-1\right) s_{\widehat{y}} s_{y}}$$

The Average Absolute Error (A-ABSE)

$$\sum_{i=1}^{n} \left[y_i - \hat{y}_i \right]$$

n

The Root Mean Square Error (RMSE)

$$\sqrt{\frac{\sum_{i=1}^{n} \left[y_i - \widehat{y}_i\right]^2}{n}}$$

Data Set

fMRI data (Central-Cross)

- -- 23 subjects
- -- Face Recognition task

Human Expert Generated Pairwise Similarity Matrix

Overall Function Performance

		Original Codebook Features		Eigenfeatures	
		Linear	Non-Linear	Linear	Non-Linear
		Function	Function	Function	Function
Training	A-ABSE	1.82	0	2.11	0.58
	RMSE	2.25	0	2.57	0.82
	CC	0.52	1	0.35	0.96
Testing	A-ABSE	2.26	1.74	2.18	1.36
	RMSE	2.83	2.32	2.67	1.77
	CC	0.23	0.59	0.25	0.76
	-				

Feature Selection

Contributions

- 1. Created a similarity retrieval system for multimodal brain images
 - I. fMRI, ERP, and combined fMRI-ERP
 - II. User interface
- 2. Developed feature extraction methods for fMRI and ERP data
- 3. Developed pair-wise similarity metrics
- 4. Simulated human expert similarity scores

Future Direction

- > Add more modalities to the system
- Obtain more expert scores for function estimation
- Obtain more data

Develop similarity metrics other than SMD

Acknowledgements

Prof. Linda Shapiro

Prof. James Brinkley

Prof. Jeffrey Ojemann

Prof. John Kramlich

NSF grant number DBI-0543631

Computer Vision Lab

Collaborators in Radiology department

Practice-talk participants