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Melanoma

● Melanoma is the most aggressive type of skin cancer

● One of the most diagnosed cancers in the US

● Gold standard for diagnosis → visual assessment of skin biopsy by pathologists



Histology Examination



Digitized Whole slide Images (WSI)

Multiple tissues



Difficulties in diagnosis
Mixed normal and cancerous tissue

?



Difficulties in learning to diagnose
Mixed normal and cancerous tissue Feature is dependent on resolution



Difficulties in learning to diagnose
Mixed normal and cancerous tissue Feature is dependent on resolution

Dataset



Dataset

TABLE 1: Statistics of skin biopsy whole slide 
image (WSI) dataset. The average WSI size is 
computed at a magnification factor of x10. 
Diagnostic terms for the dataset used in this
study are as follows: mild and moderate dysplastic 
nevi (MMD), melanoma in situ (MIS), invasive 
melanoma stage pT1a (pT1a), invasive melanoma 
stage ≥ pT1b (pT1b).

Multiple tissues



Dataset



Key Idea

● Self-attention-based framework for classifying WSIs at multiple input scales

● A soft label assignment method to reduce ambiguities



Transformer Unit
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Soft labels



Soft labels



Baseline Methods

● Patch-based classification

● Weighted feature aggregation

● ChikonMIL

● MS-DA-MIL

● Streaming CNN



Experimental Result: baseline methods



Experimental Result: baseline methods



Experimental Result: soft label

Comparison of the performance of different labeling methods. 



Experimental  Result: single vs. multiple input scales



Experimental Result: pathologists performance

Comparison of ScAtNet with pathologists’ (PG) performance.



Discussion

● Limited study on whole slide skin biopsy images (lack of public datasets)

● Limited in-house dataset size

● Mostly binary classification
○ This study covers the full spectrum of melanocytic skin biopsy

● Small test set
○ We have independent test set of 115 WSIs  (50%)

● Saliency analysis shows that different input results in different attentions







Future Work

● Other types of image and cancer

● Learnable scale

● Wider range of scales

● Interpreting choice of scale, class and diagnosis accuracy

● Comparing viewing behavior with pathologists
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