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PET-CT Image Registration in the Chest
Using Free-form Deformations

David Mattes, David R. Haynor, Hubert Vesselle, Thomas K. Lewellen, and William Eubank

Abstract—We have implemented and validated an algorithm
for three-dimensional positron emission tomography transmis-
sion-to-computed tomography registration in the chest, using
mutual information as a similarity criterion. Inherent differences
in the two imaging protocols produce significant nonrigid motion
between the two acquisitions. A rigid body deformation combined
with localized cubic B-splines is used to capture this motion. The
deformation is defined on a regular grid and is parameterized
by potentially several thousand coefficients. Together with a
spline-based continuous representation of images and Parzen
histogram estimates, our deformation model allows closed-form
expressions for the criterion and its gradient. A limited-memory
quasi-Newton optimization algorithm is used in a hierarchical
multiresolution framework to automatically align the images.
To characterize the performance of the method, 27 scans from
patients involved in routine lung cancer staging were used in
a validation study. The registrations were assessed visually by
two expert observers in specific anatomic locations using a split
window validation technique. The visually reported errors are in
the 0- to 6-mm range and the average computation time is 100 min
on a moderate-performance workstation.

Index Terms—Computed tomography (CT), deformation,
multimodality, multiresolution, mutual information, nonlinear,
nonrigid, positron emission tomography (PET), registration,
validation.

I. INTRODUCTION

G IVEN two image sets acquired from the same patient but
at different times or with different devices, image reg-

istration is the process of finding a geometric transformation
between the two respective image-based coordinate systems

that maps a point in the first image set to the point in
the second set that has the same patient-based coordinates, i.e.
represents the same anatomic location. This notion presupposes
that the anatomy is the same in the two image sets, an assump-
tion that may not be precisely true if, for example, the patient
has had a surgical resection between the two acquisitions. The
situation becomes more complicated if two image sets that re-
flect different tissue characteristics [e.g. computed tomography
(CT) and positron emission tomography (PET)] are to be regis-
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tered. The idea can still be used that, if a candidate registration
matches a set of similar features in the first image to a set of

features in the second image that are also mutually similar, it is
probably correct [23]. For example, according to the principle of
mutual information, homogeneous regions of the first image set
should generally map into homogeneous regions in the second
set [1], [2]. The utility of information theoretic measures arises
from the fact that they make no assumptions about the actual
intensity values in the images, but instead measure statistical
relationships between the two images [24]. Rather than mea-
sure correlation of intensity values in corresponding regions of
the two images, which may be low or negative, mutual informa-
tion measures statistical dependence of intensities in these re-
gions. The mutual information metric has been effective in var-
ious applications where the requisite transformations are linear
[2], [3] and more recently in cases involving nonlinear motion
descriptions [4], [7].

We have concentrated our efforts on PET-to-CT image reg-
istration in the chest, where we attempt to fuse images from a
modality with high anatomic detail (CT) with images from a
modality delineating biological function (PET). Although PET
is a functional imaging modality, a transmission (TR) image is
acquired immediately before acquisition of the emission image
and is, therefore, in near-perfect registration with the functional
scan. The TR image is similar to a CT attenuation map but it
uses a higher energy radiation beam, resulting in less soft-tissue
detail than the CT, and detector configuration limits its spatial
resolution. Once the TR and CT images are registered, the re-
sulting transformation can be applied to the emission or standard
uptake value (SUV) image for improved PET image interpreta-
tion. Our intentions are to provide a deformation that aligns the
TR image with the CT image and to present the visually assessed
accuracy achievable by this method.

Patient and anatomic motion during acquisition blurs the im-
ages. The sharpness of boundaries in CT scans is obtained by
having the patient maintain maximum inspiration during the
30 s required for acquisition. To avoid attenuation of the X-ray
beam by the arms, the patient also holds the arms overhead.
Anatomically, this pose causes expansion of the arm muscles.
Also, the expansion of the lungs and chest wall due to the breath
hold cause descent of the diaphragm and abdominal organs.
Most patients cannot endure an arms-up posture for the dura-
tion of a PET scan, which can last up to 30 min, and will, of
course, be engaged in normal tidal breathing. As a result, PET
scans show an average of the anatomy over the respiratory cycle.
Clearly, a linear transformation model will not be sufficient to
match anatomic regions under these significantly different con-
ditions. We present a nonparametric deformation model capable
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(c) (d)

Fig. 1. Sample CT and TR images illustrating the necessity for nonrigid
registration. (a) Axial and (b) coronal views of a typical CT dataset. (c) Axial
and (d) coronal views of a TR scan from the same patient.

of recovering nonlinear deformations due to anatomic motion
that occurs in CT images at maximum inspiration and PET TR
images that are an average image of tidal breathing. Our work
does not include a model of the respiratory process itself, or the
resulting blurring that occurs in the TR images. Some sample
images of the relevant anatomy are shown in Fig. 1.

II. A LGORITHM DESIGN AND IMPLEMENTATION

Let be a test image we want to register to a reference
image . We assume that and are defined on the
continuous domains and , respectively, according to the
image model presented in the Section II-A. The transformation

describes the deformation from to , where is a
set of transformation parameters to be determined. We pose the
task of medical image registration as an optimization problem.
To align the reference image with the transformed test
image , we seek the set of transformation parameters

that minimizes an image discrepancy function

(1)

Values for the transformation parametersare iteratively
chosen to reduce the discrepancy. In our implementation,
the negative of mutual information is used to measure image
discrepancy. We hypothesize that the set of transformation
parameters that minimizes the discrepancy function also
brings the transformed test image into best registration (as
defined above) with the reference image.

Mutual information is an entropy-based measure of image
alignment derived from probabilistic measures of image in-
tensity values [1], [2], [21]. Because a large number of image
samples are used to estimate image statistics, the effects of
image noise on the metric are attenuated. Mutual information
is also robust under varying amounts of image overlap as
the test image moves with respect to the reference, although

normalized mutual information may be more robust [22]. The
deformation model we propose is parameterized by a large
number of coefficients. Under this condition the optimization
of mutual information is facilitated by a formulation that is
explicitly differentiable. The requirement of differentiability
in the cost function in turn means that both the deformations
and the similarity criterion must be differentiable. This is
accomplished by using a B-Spline basis to represent the test
image and model deformations and by estimating the joint
probability distribution between the test and reference images
with a Parzen window. We draw on the work of Thevenaz
and Unser [3] for the mathematical development. We now
describe the nonlinear transformation model which is used to
incorporate deformations into the geometric manipulation of
the test image.

A. Image Representation

We assume an image is described by a set of samples
, defined on a Cartesian grid with integer

spacing. The calculation of at points not on the grid re-
quires an interpolation method based on the samplesand their
locations . We utilize an interpolation scheme that represents
the underlying continuous image by a B-Spline basis. The
expansion coefficients of the basis are computed from the
image samples through an efficient recursive filtering algo-
rithm [5]. Values of that do not lie on the lattice can then
be interpolated [3]

(2)

where is any real-valued voxel location in the
volume, is the coordinate vector of a lat-
tice point, and is a separable
convolution kernel. The argument of the spline window is the
sampled cubic B-Spline

(3)

The gradient of the interpolated image at any location may
be calculated in a similar manner, but a derivative operator is
applied to the convolution. This is simply the derivative of the
spline window in the respective dimension of each gradient
component

(4)

with similar formulas for and . The cubic spline
window can be differentiated explicitly, and after simpli-
fication reduces to the difference of two shifted second-order
splines

(5)

B. Image Statistics

Let and be specified numbers of uniformly sized bins
along the respective dimensions of the joint histogram of the
reference and test images. The histogram bins are indexed by
integer values , and , and, in
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general, correspond to linearly scaled ranges in intensity values.
Scaling the data provides a method of binning data with arbi-
trary magnitude and dynamic range such that any contribution to
the histogram will fall into a valid bin. We form a histogram by
determining the appropriate bin for a set of paired image values
and totalling the contributions in each of the bins. When we nor-
malize the histogram it behaves like a traditional probability dis-
tribution. A Parzen window is used to generate continuous es-
timates of the underlying image distributions, thereby reducing
the effects of quantization from interpolation and discretization
from binning the data [3].

The calculation of mutual information requires estimates of
the marginal and joint probability distributions of the intensity
values of the reference and test images. Letbe a cubic spline
Parzen window and be a zero-order spline Parzen window
(centered unit pulse), both of which satisfy the partition of unity
constraint [3]. The smoothed joint histogram of (, ) is
given by

(6)

where is a normalization factor that ensures ,
and and are samples of the reference and
interpolated test images, respectively. Each contributing image
value is normalized by the minimum intensity value,or ,
and the intensity range of each bin, or , to fit into the
specified number of bins ( or ) in the intensity distribu-
tion. The summation range is over a subset of voxel locations
in that contribute to the distribution, i.e. is the intersection
of transformed voxels chosen from that map into .

The marginal smoothed histogram for the test image is com-
puted from the joint histogram

(7)

The marginal probability for the reference image can be com-
puted independently of the transformation parameters by noting
that the B-Spline Parzen window satisfies the partition of unity
constraint. The reference marginal smoothed histogram is com-
puted as

(8)

where is the constant in (6).

C. Mutual Information

The image discrepancy measure we use is the negative of mu-
tual information. The negative of mutual informationbetween
the reference image and the transformed test image is expressed
as a function of the transformation parameters[3]

(9)

where , , and are the joint, marginal test, and marginal
reference probability distributions, respectively.

Calculation of the gradient of the cost function is necessary
for its efficient and robust minimization. For—a set of -in-
dependent parameters—the gradient of mutual information is
given as

(10)

A single component of the gradient is found by differentiating
(9) with respect to a transformation parameter (as given in [3]),
and requires differentiation of the joint distribution in (6). After
successive applications of the chain rule, the ipartial deriva-
tive of the joint distribution is given as

(11)

where is the number of voxels used in the summation, the
image gradient is calculated as in (4), and the various spline
derivatives ( , ) are computed using (5).

The final term to discuss from (11) is the expression for the
partial derivatives of the transformation . This is
the variation in the deformation at a pointdue to a variation
in the transformation parameters, and depends on geometry and
the transformation model. As will be described briefly in the
Section II-D, the linearity of the expression of the transforma-
tion makes the differentiation straightforward.

D. Deformations

An important aspect of our algorithm is the expression for
the nonrigid transformation of image coordinates. We model de-
formations on cubic B-splines, because of their computational
efficiency (separability in multiple dimensions, calculation via
filtering), smoothness, and local control. The description of a
deformation is similar to that of the images; however, the de-
formation is defined on a much coarser grid. A deformation is
defined on a sparse, regular grid of control pointsplaced
over the test image and is then varied by defining the motion

of each control point. Using a spline interpolation kernel
to compute the deformation values between the control points
produces a locally controlled, globally smooth transformation.
The spline deformation model is differentiable with respect to
both the deformation parameters (necessary for computing the
gradient of mutual information) and spatial coordinates (useful
in other applications, for example estimating inverse coordinate
mappings).

The resolution of the deformation deter-
mines the spacing of the grid and can be anisotropic. The set of
control points is a regular grid with spacings

(12)

where , , and are the dimensions of the test image. Given
the grid spacing, we can compute the coordinates of the control
points. The ( , , ) coordinates of the control points are stored
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in separate three–dimensional (3-D) matrices. Any
element of these matrices has a location in the test image given
by . Each control point has an
associated three-element deformation coefficient, describing
the x-, y-, and z-components of the deformation. For a give
there will be deformation coefficients.

The deformation at any point in the test image
is interpolated using a cubic B-Spline convolution kernel

(13)

where is a separable cubic
B-spline convolution kernel. Only thosecorresponding to the
64 control points nearest contribute to this sum. When we
differentiate (13) with respect to a deformation coefficient the
parameter appears only once in the summation, resulting in a
single nonzero term. The derivative with respect to a x compo-
nent deformation coefficient is (the y and z components follow
similarly)

x
(14)

The transformation of the test image is specified by mapping
reference image coordinates according to a locally perturbed
rigid body transformation. Given a 33 homogeneous rotation
matrix , a three-element transformation vector, and a defor-
mation term , we can apply nonlinear transformations to
the test image

(15)

where is the location of the center
of the test volume and is any voxel location in
the reference image. With this transformation model, the set of
transformation parameters becomes

(16)

where are the Roll-Pitch-Yaw (RPY) Euler angles of
the rotation matrix , , is the translation vector,
and is the set of deformation coefficients. In the application
described here, the set of deformation coefficients contained up
to 2200 members.

E. Multiresolution Optimization Strategy

The registration process is automated by varying the defor-
mation in the test image until the discrepancy between the two
images is minimized. The alignment process is divided into two
registrations by separating (15) into a term containing only rigid
body parameters and a second with only deformation parame-
ters. We use L-BFGS-B [6], a limited-memory, quasi-Newton
minimization package, to reduce the cost function in (9) until
termination criteria are satisfied. The limited-memory method
is useful here because of the high dimensionality of the param-
eter space. Instead of estimating the entire Hessian during mini-
mization, only a low-rank approximation is calculated, allowing
linear or super-linear convergence rates. L-BFGS-B provides an
additional advantage in that it allows bound constraints on the
independent variables.

Fig. 2. The registration algorithm in a multiresolution framework. The area
enclosed in a dashed line is the algorithmic core for computing and optimizing
mutual information for a single resolution step.f and f are the test and
reference images, respectively.x is any geometric location in the reference
image,� is the set of transformation parameters.p, p , p , andrp are the
joint, marginal test, marginal reference, and derivative of the joint distribution,
respectively.S andrS are the values of mutual information and its gradient,
respectively, between the two images. L-BFGS-B is an optimization package
that searches the parameter space of�.

In order to avoid local minima, and to decrease computa-
tion time, we use a hierarchical multiresolution optimization
scheme. A flowchart of the algorithm in the multiresolution con-
text is shown in Fig. 2. We initially optimize for a deformation
to recover the gross motion of the patient and large anatomic
structures. As we increase the resolution, we recover increas-
ingly fine misalignments. To simplify the transition between
multiresolution steps, the size of the image volume remains the
same while other parameters vary. According to an empirically
determined schedule, we maintain control over the resolution
of the deformation, the number of image samples used to mea-
sure mutual information, the degree of Gaussian image blurring,
and the optimizer’s termination criterion. The resolution steps
are denoted as , where is the number of multires-
olution steps (typically ). The optimum set of transfor-
mation parameters at a coarser resolution level is upsampled to
become the starting point for the next resolution level.

If specifies the resolution of the deforma-
tion, and are the deformation resolutions for each of
the multiresolution steps, then we proceed from resolution
to resolution as follows. Starting at current deforma-
tion resolution with deformation coefficients and grid
spacing , we first place a deformation grid over the volume
at higher resolution . The deformation at resolution is
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TABLE I
MULTIRESOLUTION PARAMETERS USED FORREGISTERING THE27 DATASETS

computed for each of the control point locations for res-
olution

(17)

Then the deformation coefficients are the spline coefficients
of the new grid of deformation values

(18)

where is the recursive filter used to compute a spline basis of
the test image [5].

In addition to varying the deformation resolution, Gaussian
blurring is applied to the images with a kernel that narrows
as multiresolution proceeds. Smoothing the images tends to
smooth the mutual information cost function, thereby avoiding
local maxima. Because the image (and the cost function) is
smoothed we can use fewer samples to estimate the joint
distributions, which is an alternative to constructing an image
pyramid. We follow the general rule that the number of data
points at resolution level should be proportional to the
number of independent parameters for which we are trying to
solve

(19)

where is the number of voxels in the volume,
is the number of deformation coefficients,

and is a proportionality constant. Finally, the optimizer’s ter-
mination criterion is varied. The iteration terminates when the
change in the objective function between consecutive iterations
falls below a specified value. At coarse resolutions, this cri-
terion can be relaxed, however, it is set more strictly with in-
creasing resolution.

The alignment process is divided into two registrations: a
rigid body (6 parameters, )followed by a deformation
( parameters, ) recovery. Each registration pro-
ceeds from coarse to fine resolution in four steps. The rigid body
parameters are recovered first and then fixed for the deformation
recovery; the flowchart in Fig. 2 is used for both recoveries. The
separation in recovery stages is needed because redundancy in
the independent variables can cause competition during mini-
mization. For the registrations presented in this paper, the mul-
tiresolution parameter settings for the deformation recovery are
summarized in Table I. For rigid body recovery,and follow
the same schedules given in Table I, while the number of pa-
rameters and (and, consequently, ) are fixed at 6 and 0.05,

respectively. In all cases, the number of bins and used
to compute the joint histogram are both fixed at 50, a number
established empirically by ourselves and others [22]. Computa-
tion time is most strongly affected by the number of transforma-
tion parameters and the number of voxels used to estimate
mutual information (and, consequently, the voxel sampling
proportionality constant).

III. V ALIDATION

Validating the performance of an image registration algo-
rithm with real images is not straightforward. The lack of a gold
standard complicates matters and prevents any automated as-
sessment of registration accuracy. Even if individuals trained
to interpret medical images are involved in a validation experi-
ment, providing a method for consistently assessing individual
images is difficult. There is a tradeoff between the number of
images that can be assessed and the time required to assess each
one, a situation that often forces researchers to validate algo-
rithms based on a limited sample size.

For algorithms with linear/global transformation models, ret-
rospective validation can be performed if fiducial markers are in
place at the time the scan is performed [9]. This method would
not be appropriate here as the imaged anatomy is subject to non-
rigid motion between examinations or due to physiological ef-
fects such as breathing. In cases where placing fiducial markers
is impractical or impossible, researchers often conduct valida-
tion experiments using simulated data, generated with a physical
or simulated [29] phantom. Such studies provide insight into
the performance range of the algorithm but still mean little in
terms of performance on real data. Landmark identification is
another common method of validation, and was considered for
our validation experiments. A difficulty with this technique is
that there are few (if any) point landmarks in the anatomy. Struc-
tures like the carina, which shows the split in the trachea and is
well-defined in the test and reference images, do not terminate at
a single three-dimensional (3-D) coordinate, but are distributed
over a surface. There will always be some degree of error in the
selection of corresponding points.

We would like to avoid the pitfalls in landmark identifica-
tion, but the capacity of the human eye to rapidly and accurately
(albeit only qualitatively) determine the quality of a registra-
tion should not be underestimated. While validation methods
involving human assessment will be prone to error, bias, and
inconsistencies, if two images are presented in a user-friendly
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manner, experienced physicians can rapidly assess the “gestalt”
quality of the registration in a short amount of time. Further-
more, they havea priori knowledge of where in the anatomy
the quality of the registration should be high and where these
requirements can be relaxed. Our aim with the experiment was
to assess the algorithm only in anatomically relevant areas. We
took seven images from each patient set: five axial slices (four
regularly spaced through the lungs, and one in the upper ab-
domen), one coronal slice at the carina, and one sagittal midline
slice. Additionally, we included 10% duplicate slices to measure
intraobserver consistency.

We created a user interface for validation that allows rapid
visual assessment of registered images. To provide a measure
of consistency between multiple observers, we allowed only
two-dimensional (2-D) image navigation, and presented only
specific images for assessment. The interface is based on a split
window, a display technique that fixes one image over another
and allows the user to vary the lines of transition from the top
image to the image below. The images are stationary, but with
the mouse button held the vertical and horizontal lines of tran-
sition move with the mouse cursor. To quantify the perceived
error, a ruler is placed over the image and fixed to the mouse
cursor. A set of error bars physically sized according to the
ruler divisions is used to assess the registration accuracy for
the given image pair. The observer makes two error assessments
for each image pair: overall, or “representative,” error and max-
imum error. Using this method, the two strongest visual tests
will be the presence/absence of similar anatomic structures and
the magnitude of discontinuities in tissue boundaries. The vali-
dation technique will measure errors in translation (both locally
and globally) but will not assess rotation errors. Since both im-
ages contain similar anatomic information, we found the split
window display technique preferable to a pseudocolor image
overlay for validation.

Since the intensity values for CT and TR scans are not in the
8-bit display range, window and level functionality is necessary
for rendering specific anatomic structure. Image interpretation
is sensitive to the display parameters, in that if the anatomy is not
rendered at similar window and level settings, feature bound-
aries can significantly vary. Therefore, some form of display
normalization is required to provide consistency in the images
presented in the validation experiment. Window and level set-
tings for CT images are standardized in Hounsfield units so we
estimated the intensity transformation for attenuation values to
Hounsfield units using the joint histogram from a single reg-
istered image set. Averaging along the CT Hounsfield (refer-
ence) and PET attenuation (test) dimensions produces several
datapoints that are fit with the third-order polynomial shown in
Fig. 3. As shown in Taiet al. the intensity transformation from
CT to TR values is nonlinear due to scattering, and they gen-
erate a figure similar to Fig. 3 [8].

During validation the intensity values of the TR slices are
transformed using a lookup table generated from the polyno-
mial fit. We should note that the intensity transformation applied
to the TR slices discussed here is used for validation only and
not during the registration process. Standard window and level
settings are applied to both the TR and CT slices for improved
consistency during image interpretation. The physicians were

Fig. 3. A third-order polynomial is used to map PET attenuation values to CT
Hounsfield units.

requested to use only the provided presets when measuring reg-
istration accuracy.

IV. DATA

The image sets used for the validation study consist of
FDG-PET and CT scans of the chest in 28 patients. Each set
contains an FDG-PET scan and a chest CT scan performed on a
patient undergoing initial staging for nonsmall cell lung cancer.
These scans were all performed at the University of Washington
Medical Center. The chest CT scan was performed with spiral
technique and bolus intravenous contrast administration, using
a variety of GE CT scanners (and with varying collimation
and pitch) with submillimeter intrinsic spatial resolution. The
imaging protocol specified an arms-up position and breath-hold
at maximum inspiration. PET imaging was performed on a
GE Advance Scanner with measured isotropic resolution of
approximately 5 mm in air (which decreases due to scattering)
[31]. For the FDG PET scan, emission imaging was performed
from the neck to the pelvis. Transmission imaging (15 min
with a 511-keV energy beam) of the thorax and upper abdomen
was also performed for the purpose of attenuation correction.
Therefore, emission images spanning from the neck to pelvis,
transmission and attenuation-corrected images of the thorax
and upper abdomen were available for testing our image fusion
approach.

All patients received both scans within at most two months of
each other, and did not have surgical resection or major tumor
growth between acquisitions. The TR scans are exported from
the PET station as a single 3-D floating-point data set of size

. The TR voxels have a physical size of
mm ; therefore, each TR scan axially images 437.75

mm in its field-of-view (FOV). The CT scans are acquired ax-
ially with slice thicknesses that vary from 2–7 mm. Once the
patient scan is acquired, the in-plane voxel size is set to mag-
nify the patient anatomy as much as possible, within the range
of 0.7–1.1 mm. The CT FOV varies across patients and is gen-
erally smaller than that of the TR scan (a typical CT FOV covers
350 mm of axial anatomy). For the data presented here, the PET
TR scan is the test image and the CT scan is the reference
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. We should note that theoretically either scan can be the test
or reference, but we have consistently used the CT scan as the
reference image. In the one case we did juxtapose the relation-
ship, a poor registration resulted.

Several preprocessing steps are performed before registering
the images. The images are filtered with a Gaussian blur (
voxel), the TR image is resliced to have isotropic voxels, and
using cubic B-Spline interpolation the spatial resolution of the
CT is reduced to match that of the TR. All the images pre-
sented in the validation experiment have an isotropic voxel size
of 4.29 mm for the registration. As explained in the introduc-
tion the arms are present in the PET images and are extraneous
features for which there is no correspondence in the CT. With
the aid of a simple graphical user interface, manually placed
polygons in several axial slices are extended through the PET
volume to exclude the arms. The voxels within this volume [
in (11)] represent the set of image samples from which mutual
information is computed. No other cropping or masking is per-
formed on the images. A final postprocessing step zooms the
selected slices of the TR and CT volumes for validation, pro-
ducing 2-D images of size 384384 with mm pixel
dimensions. In some cases, the rigid body registration required
a manual initialization along the z axis.

V. RESULTS

Twenty-eight patient sets were registered for the validation
experiment, with one failing due to a limited CT FOV. All data
presented is for the 27 patients successfully registered, with no
gross misregistrations being the only criteria for a successful
registration. Alignment was assessed by two radiologists with
experience interpreting both PET and CT images. Registration
was performed on a DEC Alpha RS6000 (dual 375-MHz
processors, 1.2-GB RAM) workstation running Compaq Tru64
Unix. The algorithm is implemented as a library of C modules
and compiled on both the Windows 98 and Unix platforms
using Microsoft Visual C 6.0 (Microsoft Corp., Redmond,
WA) and gcc (Gnu C compiler), respectively. L-BFGS-B is a
library of routines written in Fortran 77 [20]. The Interactive
Data Language (IDL, Research Systems Inc., Boulder, CO)
was used to manage program execution by allocating memory,
loading and calling library modules, and interfacing with
L-BFGS-B. IDL is also used for the graphical user interfaces
for manual segmentation, dual image viewing, and validation.

Using the DEC Alpha workstation, an average of100 min
( 10 min for rigid body, 90 min for deformable) was re-
quired to register each dataset. Example images from a regis-
tered dataset are shown in Fig. 4 with a locked cursor, while
Fig. 5 shows sample images from the validation user interface.
The validation experiment was conducted on a Macintosh G4
400-MHz desktop computer. The 205 slices used in the ex-
periment were divided into four sets, each of which required

1.5 h for an observer to assess. The observers scored the accu-
racy of the registration by selecting the appropriate error range
(Table II) based on the on-screen error bars, and the observers’
selections were recorded by the validation software. At the time
the validation experiments were conducted, we did not feel it

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Sample images from a registered TR-CT pair. (a) Axial and (b) coronal
views of the CT. (c) Axial and (d) coronal views of the transformed TR image.
The crosshairs are at the same image coordinates in both CT and TR volumes.
Approximately corresponding (e) axial and (f) coronal (f) slices from the
unregistered TR volume are shown for comparison.

was possible for the observers to determine an exact error mea-
sure, especially for the maximum assessed error. In future work,
we will experiment with a method of estimating the error on a
continuous domain.

The means, medians, and standard deviations of the overall
and maximum assessed errors for both observers are given
in Table III. Although the median error index is zero for the
“overall” assessments, remember that the error index of zero
corresponds to a mm-equivalent as given in Table II. We can
also group the results by anatomic region and compare errors
in all patients for a given region and for all the anatomy. The
assessed error by anatomy is shown in Fig. 6. The errors in
axial slices in the upper lung regions are small, while the
poorest performance is in the abdomen. As shown in Fig. 6 the
sagittal and coronal slices were also assessed as being less well
registered than the lung regions shown in axial slices. There
is some tendency for observer 2 to grade more harshly than
observer 1 in the “overall” category, but their choices agree
fairly well . Perhaps because the maximum error can
be assessed more objectively, the observers tend to agree more
in this error category . Intraobserver consistency
was measured from the assessments of 21 duplicate slice
presentations. Observer 1 ( for “overall,”
for “maximum”) tended to be more consistent than observer
2 ( for “overall”, for “maximum”). Given
the nature of the validation experiment, only translation errors
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Fig. 5. Sample images from the seven anatomic locations considered in the validation experiment, as presented to the observers with the split window viewer.
Images are rendered using lung window/level unless noted otherwise. (top row from left to right) Lower lung, mid-lower lung, mid-upper lung, and upper lung.
(bottom row from left to right) Abdomen (mediastinal window), carina, midline (mediastinal window), and midline (repeat in lung window).

TABLE II
ERRORINDEX RECORDED BY THEVALIDATION USERINTERFACECORRESPOND

TO ERRORRANGES IN PIXELS AND MILLIMETERS

are measurable and we can make no claims about the rotational
accuracy of the results.

VI. DISCUSSION ANDCONCLUSION

The results of the validation study indicate that the algorithm
is capable of accurate registrations in the thorax, and the radi-
ologists who validated the results felt the errors were generally
within clinically acceptable ranges. We have identified regions
in the anatomy for which the algorithm succeeds in varying de-
grees. According to visual assessments of 27 patient datasets by
two observers, the overall error in the considered anatomy has
an error index of 0.54, which is in the 0- to 6-mm error range
(recall that the original PET voxel size is4.3 mm on a side).
The mid to upper lung regions are registered the most accurately
with a mean overall assessed error index of 0.24, which is also
in the 0–6 mm error range. The assessed performance in the ab-
domen is the worst in general with a mean overall assessed error
index of 1.37, which is in the 6- to 11-mm error range.

The algorithm produces registrations with relatively large as-
sessed error in the coronal and sagittal planes. This is partic-
ularly true at the lung-diaphragm interface since more surface
area of the diaphragm is imaged on coronal or sagital slices
compared to the axial plane, and the diaphragm is not expected
to be in the same location due to the differences in image ac-
quisition (breath-hold vs non breath-hold). Additionally, larger

TABLE III
GLOBAL STATISTICS FORVALIDATION EXPERIMENT

Fig. 6. Mean overall and maximum assessed errors by anatomy for both
observers for the 27 patient datasets. The average performance for all the
images is given in the last data series.

lung and soft tissue regions are perhaps driving the deforma-
tion, and the smaller airway anatomy is moved along with them.
Increasing the deformation resolution in these dimensions may
yield better results. Using a mathematical phantom such as the
MCAT phantom would allow us to characterize the algorithm
when a respiratory model is included in the image data [29].
The registration accuracy in the smaller anatomic regions (such
as along the trachea) can likely benefit from some form of clus-
tering of deformation control points. This highlights the prin-
cipal limitation of the algorithm: the inability to use a nonuni-
form grid of sampling points in the test image. Future work will
address this limitation.
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From the validation study, we notice a poor assessment in the
abdomen. At 511 keV, the TR scan shows little intensity differ-
ences between fat, muscle, and soft tissue, resulting in a uniform
image in the abdomen (except for gas bubbles). At 140 keV, the
CT scan of the abdomen, on the other hand, shows clear delin-
eation of the anatomy. Since there are few shared structures in
the TR and CT scan of the abdomen on which the algorithm can
anchor, a poor registration results. In this case, the PET emission
or SUV scan may be a better candidate for alignment with CT.
An alternative approach includes using attenuation and emission
values simultaneously, which may improve the overall accuracy
in the torso.

In addition to the question of how fine a grid do we need
to represent a given set of deformations, we must also decide
how fine a deformation grid we can effectively use. The coarse-
ness of the grid effectively regularizes the deformation and pre-
vents violent local deformations. This may impose an upper
limit on grid fineness, unless additional regularization terms are
included in the cost function.

We have validated the algorithm only for the TR to CT
matching problem. It is natural to question if it will work well
for other inter- or intra-modality image pairs. PET images
are among the worst (after single photon emission computed
tomography) of the 3-D imaging modalities in terms of tissue
delineation and signal to noise ratio. We believe that given the
success of the TR-CT registration problem, the other modality
combinations will be no more difficult or significantly easier.
Clinical studies are currently underway for assessing the
utility of the registration method described here for improved
PET image interpretation, assessment of response to therapy,
studying tumor biology, and image-guided therapy applications.
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