
Common Low-level Operations
for Processing & Enhancement
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Histogram Equalization

• A histogram of image I is a data structure h
in which h(i) is the number of pixels in I that
have value i. Usually 0 <= i <= 255.

• A normalized histogram is a histogram in which
each value is divided by the total number of 
pixels in the image. These normalized values
are often thought of as probabilities Pr(i) of the
different pixel values. 
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Example of Normalization
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0    1    2    3    4 0    1    2    3    4

1                                                               .1

2     2          2                                            .2    .2        .2

3                                                                                                                            .3

original histogram                                  normalized histogram
5 gray tones, 10 pixels                          probability of each gray tone

What’s the probability of a pixel having value 3 in the image?



Histogram Equalization Operator
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• Goal: transform the gray tones of the image so that
they are all approximately equally likely

• Method: use a transformation function T(r) to
transform each gray tone r of the L gray tones.

T(r) = (L – 1)  Pr(w)         discrete form we use

T(r) = (L – 1)     Pr(w) dw continous form (CDF)  
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Small Example
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0     1      2                      L = 3 graytones

1

2

3

.33

.5

.17

T(0) = 2(.33) = .66                          = 1
T(1) = 2(.33 + .5) = 1.66                = 2
T(2) = 2(.33 + .5 + .17) = 2.0         = 2

Why is the new histogram not a perfect uniform distribution?



CT  Abdomen Image Example

original image              equalized image
and histogram              and histogram
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Images and Histograms*

  

  

CT                                   MRI

*from Medical Image Analysis by Dhawan
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Histogram Equalization
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Image Averaging and Subtraction
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• If images are noisy, multiple images may be taken and
averaged to produce a new image that is smoothed.

• Image subtraction to show differences over time or
with and without a dye or tracer.

two separate images                                               subtraction



Image Averaging Masks
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For each pixel of the input, the output is the mean of the pixels in
its 4-neighborhood or 8-neighborhood.
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Weighted Image Averaging
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original image f                     output image g
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Median Filter
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Laplacian: Second Order Gradient for 
Edge Detection
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Image Sharpening with Laplacian
-1 -1 -1

-1 9 -1

-1 -1 -1

 

Apply a Laplacian and
add it to the original
image to enhance the
edges.
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Micro-calcification Enhancement*

 

* Using adaptive neighborhood processing, from Dhawan book.

original mammogram                      enhancement                        histogram equalization
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Frequency-Domain Methods

• Convert the image from the spatial domain to the
frequency domain via a Fourier Transform

• Apply filters in the frequency domain

• Convert back to the spatial domain

• Used to emphasize or de-emphasize specified frequency
components
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Fourier Transform Basics
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• complex numbers
• complex exponentials
• Euler’s formula
• nth roots of unity
• orthogonal basis
• 1D discrete Fourier transform
• 2D discrete Fourier transform
• examples



Complex Numbers (Review)
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• Some equations have no real roots:   x2 = -1

• Mathematicians handle this by defining an
imaginary number i which is the square root of -1

• Complex numbers are of the form a + bi, where a and b are real

• Complex numbers may be added and multiplied

• The complex number a + bi can be viewed as a 2D vector [a,b]

• Complex numbers are used heavily in physics and EE.



Complex Exponentials
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• Euler’s Formula: ei = cos  + i sin 

• Thus raising e to a power corresponds to taking 
the sine and cosine of an angle

• ei is a periodic function; when  = 0 or multiples
of 2, it has value 1.

•  = e-2 i/n is an n-th root of one for any integer n
Example with n = 8

• 0 = (e-2 i/8)0 = 1
• 1 = (e-2 i/8)1 = e(-/4)i = cos(-/4) + isin(-/4) = 

sqrt(2)/2 – sqrt(2)/2i
• 2 = (e-2 i/8)2 = e(-/2)i = cos(-/2) + isin(-/2) = -i
• etc.



nth roots of unity for n = 8
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0 = 1

1

2 = -i

3

4 = -1

5

6 = i

7

Generated from the principal root  = e-2 i/n



Orthogonal Basis
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• Start with the first root (1) and take its first n powers to
get the n-dimensional vector [1, 1, 1, ... , 1] 

• Repeat with each of the other roots for a given n. The
second root  gives the vector [1, , 2, ..., n-1].

• For the example n=8, there are 8 orthogonal vectors:
• [1, 1, 1, 1, 1, 1, 1, 1]
• [1, , 2, ..., 7]
• [1, 2, 4, ..., 14]
• [1, 3, 6, ..., 21]
• ...
• [1, 7, 14, ..., 49]



1D Discrete Fourier Transform
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original 
vectorbasis as a matrix

Fourier
coefficients



2D Discrete Fourier Transform
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• Detect the frequency components of the image in both the
horizontal and vertical directions

• First apply the 1D discrete Fourier transform to each row of
the image, producing an intermediate image or row transforms

• Then apply the 1D discrete Fourier transform to each column
of the intermediate image

• The result is the 2D discrete Fourier transform of the image,
which is an image in the frequency domain.



Filtering with the Fourier Transform
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1. Compute the 2D discrete Fourier transform of the image

2. Apply an image operator to the transformed image

3. Computer the inverse 2D discrete Fourier transform of
the result of the image operator

Two most common filters:
1. low-pass filtering zeroes out the frequency

components above a threshold 
2. high-pass filtering zeroes out the frequency

components below a threshold
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Example from Steve Tanimoto’s Book
Low-Pass Filter: Smooths



26

High-Pass Filter: Finds Edges



Low-Pass Filtering

 

 

 
 

low-pass filter H(u,v) in the                        filtered MRI brain image
frequency domain                  

Fourier transform of  original   image            Fourier transform of filtered image
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High-Pass Filtering

 

 

 

high-pass filter                                      filtered image

Fourier transform of filtered image
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Wavelet Transform
 Fourier Transform only provides frequency 

information. 

 Wavelet Transform is a method for complete 
time-frequency localization for signal analysis 
and characterization.

 Wavelet Transform : works like a microscope 
focusing on finer time resolution as the scale 
becomes small to see how the impulse gets 
better localized at higher frequency 
permitting a local characterization
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Basics of Wavelets*
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• Wavelets are a mathematical tool for hierarchically 
decomposing functions.

• They allow a function to be described in terms of
a coarse overall shape, plus details than range from
narrow to broad.

• Wavelets represent the signal or image as a linear
combination of basis functions.

• The simplest basis is the Haar wavelet basis.

* Material from Stollnitz et al., Wavelets for Computer Graphics: A Primer Part 1.



How the Haar Wavelet Transform 
Works in 1D
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• Image Pyramid
level 2: original signal with 4 pixels:          [9 7 3 5]
level 1: averaged image with 2 pixels:       [  8    4 ]
level 0: averaged image with 1 pixel:         [     6    ]

• To recover the original four pixels in level 2 from the two
pixels at level 1, use two detail coefficients +1 and -1. 

9 = 8 + (+1)
7 = 8 – (+1)
3 = 4 + (-1)
5 = 4 – (-1)
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level 2: [9 7 3 5]
level 1: [  8    4 ]
level 0: [     6    ]

• To recover the two pixels in level 1 from the one
pixels at level 0, use one detail coefficient of 2.

8 = 6 + 2
4 = 6 - 2 

• The wavelet transform of the original 4-pixel image is
[ 6  2  1  -1 ]

• It has the same number of coefficients as the original
image, but it lets us reconstruct the image at any resolution.



Idea of the Wavelet Hierarchy
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level 4

level 3

level 2

level 1

level 0 



Haar Wavelet Decomposition 
of [9 7 3 5]
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[9 7 3 5]



Two-Dimensional Haar Wavelet 
Transform: Standard Decomposition
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• First apply the 1D wavelet transform to each row of pixel values

• This gives an average value along with detail coefficients for 
each row

• Next treat these transformed rows as an image and apply the 
1D transform to each column

• The resulting values are all detail coefficients except for the 
single overall average coefficient 



Wavelet Decomposition of MRI Brain 
Image
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the original MRI image

3 –level decomposition



Binary Image Analysis
• used in a variety of applications: 

part inspection
riveting
fish counting
document processing

• consists of a set of image analysis operations
that are used to produce or process binary
images, usually images of 0’s and 1’s.

00010010001000
00011110001000
00010010001000
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Example: red blood cell image

• Many blood cells are 
separate objects

• Many touch – bad!

• Salt and pepper noise from 
thresholding

• What operations are 

needed to clean it up?
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Results of analysis

• 63 separate 
objects 
detected

• Single cells have 
area about 50

• Noise spots

• Gobs of cells



Useful Operations

1. Thresholding a gray-tone image

2. Determining good thresholds 

3. Filtering with mathematical morphology

4. Connected components analysis

5. Numeric feature extraction

• location features
• gray-tone features
• shape features ...
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Thresholding

• Background is black

• Healthy cherry is bright

• Bruise is medium dark

• Histogram shows two 
cherry regions (black 
background has been 
removed)

gray-tone values

pixel
counts

0 256
41
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Histogram-Directed Thresholding

How can we use a histogram to separate an
image into 2 (or several) different regions?

Is there a single clear threshold? 2? 3?
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Automatic Thresholding: Otsu’s Method

Assumption: the histogram is bimodal

t

Method: find the threshold t that minimizes
the weighted sum of within-group variances
for the two groups that result from separating
the gray tones at value t.

Grp 1   Grp 2
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Computing Within-Group Variance

t

See S&S text (Section 3.8) for the efficient recurrence relations;
in practice, this operator works very well for true bimodal 
distributions and not too badly for others, but not the CTs.

Grp 1   Grp 2
• For each possible threshold t
• For each group i (1 and 2)

• compute the variance of its gray tones i
2(t)

• compute its weight qi(t) =  P() 

where P() is the normalized histogram value for
gray tone , normalized by sum of all gray tones
in the image and called the probability of .

• Within-group variance  = q1(t) 1
2(t) + q2(t) 2

2(t)

 in Grp i 0                   255



Thresholding Example

original image                        pixels above threshold
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Dilation expands the connected sets of 1s of a binary image.

It can be used for 

1. growing features

2. filling holes and gaps

Mathematical Morphology
(Dilation, Erosion, Closing, Opening)

• Dilation
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• Erosion

Erosion shrinks the connected sets of 1s of a binary image.

It can be used for 

1. shrinking features

2. Removing bridges, branches and small protrusions
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Structuring Elements

A structuring element is a shape mask used in
the basic morphological operations.

They can be any shape and size that is
digitally representable, and each has an origin.

box
hexagon disk

something

box(length,width)               disk(diameter)
48



Dilation with Structuring Elements

The arguments to dilation and erosion are

1. a binary image B
2. a structuring element S

dilate(B,S) takes binary image B, places the origin
of structuring element S over each 1-pixel, and ORs
the structuring element S into the output image at
the corresponding position.

0 0 0 0
0 1 1 0
0 0 0 0

1
1 1

0 1 1 0
0 1 1 1
0 0 0 0

originB
S

dilate

B  S
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Erosion with Structuring Elements

erode(B,S) takes a binary image B, places the origin 
of structuring element S over every pixel position, and
ORs a binary 1 into that position of the output image only if
every position of S (with a 1) covers a 1 in B.

0 0 1 1 0
0 0 1 1 0
0 0 1 1 0
1 1 1 1 1

1
1
1

0 0 0 0 0
0 0 1 1 0
0 0 1 1 0
0 0 0 0 0

B S

origin

erode

B     S 
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Opening and Closing

• Closing is the compound operation of dilation followed
by erosion (with the same structuring element)

• Opening is the compound operation of erosion followed
by dilation (with the same structuring element)
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Connected Components Labeling

Once you have a binary image, you can identify and 
then analyze each connected set of pixels.

The connected components operation takes in a binary image 
and produces a labeled image in which each pixel has the 
integer label of either the background (0) or a component.

original           thresholded          opening+closing    components
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Methods for CC Analysis

1. Recursive Tracking (almost never used)

2. Parallel Growing (needs parallel hardware)

3. Row-by-Row (most common)

a. propagate labels down to the bottom,
recording equivalences

b. Compute equivalence classes

c. Replace each labeled pixel with the
label of its equivalence class.
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Equivalent Labels

0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1
0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1
0 0 0 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1
0 0 0 1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

Original Binary Image
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Equivalent Labels

0 0 0 1 1 1 0 0 0 0 2 2 2 2 0 0 0 0 3
0 0 0 1 1 1 1 0 0 0 2 2 2 2 0 0 0 3 3
0 0 0 1 1 1 1 1 0 0 2 2 2 2 0 0 3 3 3
0 0 0 1 1 1 1 1 1 0 2 2 2 2 0 0 3 3 3
0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 3 3 3
0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 3 3 3
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

The Labeling Process: 
Left to Right, Top to Bottom

1  2
1  3
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Labeling shown as Pseudo-Color

connected
components
of 1’s from
thresholded
image

connected
components
of cluster
labels



Matlab Exercise
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original image kidney.jpg
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result of thresholding pixels > 128
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result of opening with a disk of radius 8
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and closing with a disk of radius 1
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result of connected components labeling
and coloring the labels.


