Multi-Modal Deep Learning Architectures for Detecting Alzheimer's Disease Stages

Mehmet Saygin Seyfioglu 10/25/2021

UNIVERSITY of WASHINGTON

Alzheimer's Disease (AD)

Taken from [1]

Alzheimer's Disease (Cont'd)

Disease progression

Biomarkers to Detect the Alzheimer's Disease

- > Magnetic Resonance Imaging (MRI) provides anatomical brain structure information
- > Positron Emission Tomography (PET) provides functional brain information

Taken from [2]

- Single Nucleotide Polymorphism (SNP) provides congenital disease risk information
- > There are also Spinal Taps that measure the amount of amyloid and tau and Cognitive Tests measure memory and cognition
 - Hard to detect MCI!

Motivation and Problem

- > Detect the MCI stage to slow down the AD progression!
 - Exploiting complementary information from MRI, PET and SNP data could enhance prediction performance on AD stage detection
 - > Humans are not good at analyzing higher order correlations between biomarkers
 - Suitable task for Deep Neural Networks (DNNs)!
- > However, it is not straightforward to use multi modal data in training DNNs.
 - Hard to generalize using a small amount of training sample data
 - Not straightforward to exploit complementary information between biomarkers

Data

- > The Alzheimer's Disease Neuroimaging Initiative (ADNI)
 - A global longitudinal initiative consists cognitive, imaging, biochemical and genetic biomarkers
- > Labels for CN, MCI and AD
- > MRI
 - Structural MRI, 3D T1 Scans
- > PET
 - Fludeoxyglucose (FDG) Pet
- > Genetic
 - Genome-wide Association Studies (GWAS) Data including 620k SNPs overall

Modality	MRI	ΡΕΤ	SNP	MRI & PET	MRI & SNP	PET&SNP	ALL
# of Patients	805	360	867	360	737	360	360

From 360 Patients, we have 1296 visits for all 3 modalities distributed roughly balanced between the 3 classes.

Preprocessing

- > MRI Preprocessing
- > **PET Preprocessing**
- > SNP Preprocessing

MRI and Pet Preprocessing Pipeline

SNP Preprocessing Pipeline

- > We first performed SNP quality control filtering.
- > The International Genomics of Alzheimer's Project (IGAP) is then used to obtain the AD-related genes SNPs.
- > Then the Genotype Matrix is generated by mapping genotypes to numbers based on allele combinations.

Baseline Model

> To show that multi modality networks outperform the single modality approach, we built a simple baseline network that uses four layers of 3D CNNs.

SNP

4 layers

Impact of Modality Combinations

How to Improve

- > Baseline shows that multi modality approach works!
- > However, the baseline model is quite simplistic because it does not
 - Exploit the complementary nature between the modalities.
 - Uses a very shallow model

Transfer Learning from MedNet

- > The volume of training samples dramatically affects the performance of deep models, and this is especially the case for 3D CNNs.
- > We added their convolutional backbone to our model and freeze all layers except for the final convolutional layer

Transfer Learning and Complementary Attention

Comprehensive Baseline [7]

Results

Models	Class	Precision	Recall	F1-score
	CN	0.686	0.649	0.667
Joint Baseline	MCI	0.483	0.452	0.467
	AD	0.714	0.806	0.758
	CN	0.667	0.684	0.693
Zhang el al. [7]	MCI	0.600	0.469	0.526
	AD	0.700	0.875	0.778
	CN	0.735	0.694	0.714
Ours	MCI	0.633	0.613	0.623
	AD	0.750	0.828	0.787

Individual Contributions of CA and Transfer Learning

Model	Baseline	Transfer Learning	Attention	Transfer Learning and Attention
Average F1 Score	0.630	0.693	0.669	0.708

W

Discussion

- > We conclude that using multi-modality data in detecting AD is beneficial even on the simplest baselines.
 - MRI seems to be the most "representative" modality
 - SNP is the least important modality
- > We outperformed both simple and comprehensive baselines, especially in detecting MCI.
 - Transfer learning and Complementary Attention modules both help greatly!

References

[1] De Loof, Arnold, and Liliane Schoofs. "Alzheimer's disease: Is a dysfunctional mevalonate biosynthetic pathway the master-inducer of deleterious changes in cell physiology?." *OBM Neurobiology* 3.4 (2019).

[2] T. Thientunyakit, C. Sethanandha, W. Muangpaisan, O. Chawalparit, K. Arunrungvichian, T. Siriprapa, Y. Vichianin, S. Kamal, C. Suppasilp, T. Thongpraparn et al., "Relationships between amyloid levels, glucose metabolism, morphologic changes in the brain and clinical status of patients with alzheimer's disease," Annals of nuclear medicine, pp. 1– 12, 2020.

[3] S. Chen, K. Ma, and Y. Zheng, "Med3d: Transfer learning for 3d medical image analysis," arXiv preprint arXiv:1904.00625, 2019.
[4] Fu, Jun, et al. "Dual attention network for scene segmentation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.

[5] T. Zhang and M. Shi, "Multi-modal neuroimaging feature fusion for diagnosis of alzheimer's disease," Journal of Neuroscience Methods, vol. 341, p. 108795, 2020

[6] Chen, Sihong, Kai Ma, and Yefeng Zheng. "Med3d: Transfer learning for 3d medical image analysis." arXiv preprint arXiv:1904.00625 (2019)

[7] T. Zhang and M. Shi, "Multi-modal neuroimaging feature fusion for diagnosis of alzheimer's disease," Journal of Neuroscience Methods, vol. 341, p. 108795, 2020.

Thank you for your attention!

Supplemental Slides - Transfer Learning from MedNet

Supplemental Slides - Visualization

> Qualitatively analysis is done over the model, found out that model focusing on inferior and middle temporal gyrus of the brain, which are known to be involved in AD.

Supplemental Slides, Self-Attention

Channel Attention [4]

Supplemental Slides, Self-Attention for 2d Case

- **Given A** $\in \mathbb{R}^{CXHXW}$, B and C are obtained by feeding A into convolutional layers:
- > $B, C \in \mathbb{R}^{CXHXW}$. Then, they reshaped in \mathbb{R}^{CXN} , where N = H x W (n of pixels)
- > Then Transpose(C) x B is fed in the Softmax function to obtain: $S \in \mathbb{R}^{NXN}$ as

> $s_{ji} = \frac{exp(B_i,C_j)}{\sum_{i=1}^{N} exp(B_i,C_j)}$, where s_{ji} measures the *i*th position's impact on *j*th position.

- > Lastly, D is obtained in the same way and reshaped into \mathbb{R}^{CXN} and a D x Transpose(S) is calculated and reshaped in \mathbb{R}^{CXHXW} .
- > Finally, it multiplied with a scale parameter to obtain the final output:
- $> E_j = \alpha \sum_{i=1}^N (s_{ij}D_i) + A_j$

> Resulting feature E is a weighted sum of the features across all positions and original features. Therefore, it encodes the global contextual view.

Supplemental Slides, Self-Attention for 3d Case

> On 3d case, only the reshaping part changes, rest stays the same!

Supplemental Slides, Statistical Tests

- > We used Friedman test to validate that our results are statistically significant on Baseline model to measure the effect of different modalities
- > We also calculated p-value on the final models on average recall rate

