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Biomarkers to Detect the Alzheimer’s Disease

> Magnetic Resonance Imaging (MRI) provides anatomical brain structure
information

> Positron Emission Tomography (PET) provides functional brain information
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PET

> Single Nucleotide Polymorphism (SNP) provides congenital disease risk
information
> There are also Spinal Taps that measure the amount of amyloid and tau and

Cognitive Tests measure memory and cognition
— Hard to detect MCI!




Motivation and Problem

> Detect the MCI stage to slow down the AD progression!

— Exploiting complementary information from MRI, PET and SNP data could enhance
prediction performance on AD stage detection
> Humans are not good at analyzing higher order correlations between biomarkers
— Suitable task for Deep Neural Networks (DNNs)!
> However, it is not straightforward to use multi modal data in training

DNNs.

— Hard to generalize using a small amount of training sample data

— Not straightforward to exploit complementary information between
biomarkers




Data

> The Alzheimer’s Disease Neuroimaging Initiative (ADNI)
— A global longitudinal initiative consists cognitive, imaging, biochemical and genetic

biomarkers
> Labels for CN, MCI and AD
> MRI
— Structural MRI, 3D T1 Scans
> PET
— Fludeoxyglucose (FDG) Pet
> Genetic

— Genome-wide Association Studies (GWAS) Data including 620k SNPs overall
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> From 360 Patients, we have 1296 visits for all 3 modalities distributed roughly balanced
between the 3 classes.




Preprocessing

> MRI Preprocessing
> PET Preprocessing
> SNP Preprocessing




MRI and Pet Preprocessing Pipeline

Registration Skull Stripping Bias Field Correction

The final image is 180x180x180




SNP Preprocessing Pipeline

> We first performed SNP quality control filtering.

> The International Genomics of Alzheimer’s Project (IGAP) is then used
to obtain the AD-related genes SNPs.

> Then the Genotype Matrix is generated by mapping genotypes to
numbers based on allele combinations.
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Baseline Model

4 layers
> To show that multi modality
networks outperform the CNN
single modality approach, FC
we built a simple baseline
network that uses four
layers of 3D CNNs.
CNN FC Concat |—= FC [—= Softmax
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Impact of Modality Combinations

MRI+PET MRI+SNP PET+SNP
Modality
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How to Improve

> Baseline shows that multi modality approach works!

> However, the baseline model is quite simplistic
because it does not
— Exploit the complementary nature between the modalities.
— Uses a very shallow model
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Transfer Learning from MedNet

> The volume of training samples dramatically affects the performance of deep models, and
this is especially the case for 3D CNNs.

> We added their convolutional backbone to our model and freeze all layers except for the
final convolutional layer

Input Coarse Segmentation Coarse Segmentation Result

Med3D Backbone:

| Decoder
1 Il | H Interpolation

Taken from [6]

_______________________________

Crop

Refine Segmentation —— Refine Segmentation Result

U Nedib ackbone} | pConatl
i e —
: - ' ‘

13



Transfer Learning and Complementary Attention

{U*fl*(-A\)‘Ff]

T Sy gy

ResNet‘lBi Attentlon Layer Tl ,'
MRI @—— oca
@‘ MedNet "H f2 @ : 2 I—‘ CNN —| Fc Concat  [— Softmax

‘-\_\_\

m -~ Spatial Attention

SMNP {HxW ) HoeW )

CxHxW
reshape reshape
CHNN 2
CrHx'W

2 < sum fusion Dual Attention module [4]

h reshape
NN @ reshape ? E}—br

CxHxW

CxHxW
CxC
Channel Attention

14



Comprehensive Baseline [7]
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Results

CN 0.686 0.649 0.667
Joint Baseline = MCI 0.483 0.452 0.467
AD 0.714 0.806 0.758
CN 0.667 0.684 0.693
Zhang el al. [7]  MCI 0.600 0.469 0.526
AD 0.700 0.875 0.778

CN 0.735 0.694 0.714
Ours MCI 0.633 0.613 0.623

AD 0.750 0.828 0.787
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Individual Contributions of CA and Transfer

Learning
Model Baseline Transfer Attention Transfer
Learning Learning and
Attention
Average F1 0.630 0.693 0.669 0.708
Score




Discussion

> We conclude that using multi-modality data in detecting AD is
beneficial even on the simplest baselines.
— MRI seems to be the most “representative” modality
— SNP is the least important modality

> We outperformed both simple and comprehensive baselines,
especially in detecting MCI.

— Transfer learning and Complementary Attention modules both help greatly!
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Thank you for your attention!
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Supplemental Slides - Transfer Learning from
MedNet

ResNet18 1 layer

MedNet —= CNN ——— EC
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Supplemental Slides - Visualization

> Qualitatively analysis is done over the
model, found out that model focusing on
inferior and middle temporal gyrus of the

brain, which are known to be involved in
AD.
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Supplemental Slides, Self-Attention
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Spatial Attention [4]

Channel Attention [4]




Supplemental Slides, Self-Attention for 2d Case

> > reshape & transpaose
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> Given A € R¢XHXW B and C are obtained by feeding A into convolutional layers:

> B,C € RXHXW Then, they reshaped in RN, where N = H x W (n of pixels)

> Then Transpose(C) x B is fed in the Softmax function to obtain: S € RVXV as
exp(B;.Cj

> SjE ZIiV:1Z7(CP(Bi]-)Cj)'

> Lastly, D is obtained in the same way and reshaped into R‘*N and a D x

Transpose(S) is calculated and reshaped in RCXHXW,

> Finally, it multiplied with a scale parameter to obtain the final output:

> Ej =a)l 1(SUD)+A

> Resulting feature E is a weighted sum of the features across all

positions and original features. Therefore, it encodes the global

contextual view.

where s;; measures the ith position’s impact on j* position.
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Supplemental Slides, Self-Attention for 3d Case
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> On 3d case, only the reshaping part changes, rest stays the same!
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Supplemental Slides, Statistical Tests

> We used Friedman test to validate that our results
are statistically significant on Baseline model to
measure the effect of different modalities

> We also calculated p-value on the final models on
average recall rate

W



