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What is Glioblastoma?

* Most common and
aggressive primary adult
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malignant brain tumor
* Median survival of 15 —{
months

* Incurable because
e Extremely heterogeneous
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 Last approved therapeutic
agent was in 2005 .

/RepartfmmﬂmFDA

Food and Drug Administration Drug Approval Summary:
Temozolomide Plus Radiation Therapy for the Treatment
of Newly Diagnosed Glioblastoma Multiforme

\Manin H. Cohen, John R. Johnson, and Richard Pazdur J




Patient Clinical Course

6 weeks

m 12+ Months

Responders

Headaches, seizures

Surgery +
Radiation +
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Motivation for predicting short-term survivors

 Better for patients
* Poor survivors have the most to gain from upfront trials

e Better for trials

* |dentifying poor survivors upfront can help balance clinical trial
arms

 Trials will run faster with poor survivors

* But we need to know who the poor survivors are upfront



Magnetic Resonance Imaging (MRI)

* Rich, global
representation of tumor

* Cheap, fast, non-invasive,
repeatable

e \Volumetric
e 255 x255x155x4
e (>50 M voxels)

* Our data (o / .. ’_
* 46 TCIA preoperative *‘-’F\H w \ E r\ NATIONAL CANCER INSTITUTE
glioblastomas MRI with IMAGING ARCHIVE THE CANCER GENOME ATLAS

Tlce, FLAIR, T2, T1



Copy Number

Homozygous
» Captures DNA structure peletion
e Unlike MRI: invasive, “

expensive, not repeatable
* 23,000 x 1 (gene-level)
* Valuesin {—2,—-1,0,1,2}

Single Copy Diploid Normal Gain Amplification
Loss (Intact)

TN

NATIONAL CANCER INSTITUTE

THE CANCER GENOME ATLAS



Poor survivor definition
Glioblastoma patients who undergo second resections live longer

Astrocytoma, B .
IDH-mutant Longer term survivors
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PJ Cimino " Cimino, et al. Neuro-oncology (2018)
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Methods

* Radiogenomics/radiomics

* An evolving field in medical imaging that strives to equate quantitative image
features with the genomic profile of pictured tissues

* Pipelines

Multicenter study demonstrates radiomic features
derived from magnetic resonance perfusion images
identify pseudoprogression in glioblastoma

' Neu ro_ Oncolog Nabil Elshafeey!, Aikaterini Kotrotsou® "2, Ahmed Hassan', Nancy Elshafei23, Islam Hassan?, Sara Ahmed?,

* |mage acquisition
* Image normalization

i Featu re EXtraC.tIOn 20(6), 848-857, 2018 | doi-10.1093/neuonc/nox188 | Radiomics: |mageS Are More J[hal’]
* Feature selection R des Pictures, They Are Data’
* Prediction using ML models pb———

Prediction of IDH and TERT
promoter mutations in low-grade
glioma from magnetic resonance
images using a convolutional neural
network

Ryohei Fukuma'?, Takufumi Yanagisawa'>*, Mai

Philipp Kickingereder, Ulf Neuberger, David Bonekamp, Paula L. Piechotta, Michael Gotz

e (Or end-to-end deep learning models)
Li, Qihua, et al., Scientific reports (2017)

* Novelty
. Arita, Hideyuki, et al., Scientific reports (2018)
i Featu re Se | ectl O n m eth Od Fukuma, R):/ohei, et al., Scientific :)eports (2019) ( )
Matsui, Yutaka, et al., Journal of neuro-oncology (2020
* Unique clinical application




Method
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Nuechterlein, et al. Neuro-oncology advances (2021)



Preprocessing

Preprocess

1. DICOM -> NIfTI

e dcm2niix

2. Skull-strip
* The Brain Extraction Tool (BET)

3. Co-register same-subject MRI sequences

* FMRIB’s Linear Image Registration Tool (FLIRT) from the FMRIB
Software Library (FSL)

4. Normalize/bias correct
* N4 Bias Field Correction

Li, et al., ] Neurosci Methods (2016)

Jenkinson et al. Med Image Anal (2001)

Jenkinson et al. Neuroimage (2002)

Tustison NJ, Avants BB, et al. IEEE Trans Med Imaging (2010)



_Jim Fink

Segmentation

e U-net based architecture
e Used ESP blocks

Preprocess Segment

Nuechterlein, et al., International MICCAI Brainlesion Workshop (2018)
Mehta et al., ECCV (2018)
Ronneberger et al., MICCAI (2015)



Segmentation Results

Raw MR Prediction Ground Truth Raw MR Prediction Ground Truth




Image filters / transformations

Segment Transform

Laplacian of Gaussian
x10”

* |dentity

 Laplacian of Gaussian (LoG)
* Wavelet

Wavelet

* Local binary patterns (LBP)
* Exponential, logarithm, square , square root

LoG

LBP

Zhang, et al. Math. Biosci. Eng (2020)




Texture analysis

* Image texture gives us information about the spatial arrangement of
color or intensities in an image

* Example: Grey-level co-occurrence matrix (GLCM)




GLCM

Prepare GLCM matrix: values Values are counts of

Values are image are descriptions of GLCM values frequencies of the neighboring
pairs of image pixel values

Image

grey levels (GLs)

i/j 0 1 2 3

0T0-+1—T1

0 (0,0) | (0,1) | (0,2) | (0,3)

0-—0—+1—1

1 (1,0) | (1,2) | (1,2) | (1,3)

2 (2,0) | (2,2) | (2,2) | (2,3)

3 (3,0) | (3,2) | (3,2) | (3,3)

The diagonal elements all represent pixel pairs with no grey level difference



Feature Extraction

Transform Features
Laplacian of Gaussian Metadata
* Histogram ' o
* Percentile, energy, entropy, kurtosis, skewness, L g
uniformity, etc. e
* Texture
* GLCM (Gray Level Co-occurrence Matrix) ; .
e Contrast, correlation, etc. } | { > Histogram
* GLRLM (Grey-Level Run Length Matrix) 4 o % 1
* GLSZM (Gray Level Size Zone Matrix)
* GLDM (Gray Level Dependence Matrix) b Texture
« NGTDM (Neighboring Gray Tone Difference Matrix) Bl E,EH
* Implementation e

* pyradiomics

Griethuysen, et al. Cancer research (2017)



|Feature ={m, c, t, e, f}l

Putting it all together

MR Modality Tumor compartments Image Transformations

FLAIR . L0G

= Sl

Necrotic > -

Tlce ol S g
enhancement

tissue

Feature
: 5 Extraction
FLAIR, T2 Ab., LoG  FLAIR, Enhancement, T2, Necrotic, LBP Texture Features Methods
Al Tlets PN 0.41 0.53 0.81 0.44 0.67 ... <{_histogram
a N/ I o I
0.31 0.52 0.54 0.21 0.93 ... < GLCM
0.09 0.27 0.75 0.18 0.46 ... < GLSZM
\ J 0.65 0.26 0.17 0.95 0.07 ... <

\_ 35,000+ features per patient )




F e at u re S e | e Ct I O n Features Feature Selection

LA
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Metadata
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* Feature set is far too large for modeling a few
number of samples

* Feature selection overfits
e Recursive feature elimination
* Variance thresholding
e LASSO feature selection Histogram

Overfitting? Overfitting? % 1

Texture
by

Feature Selection Model Training

levels  Co-occurrence Malrix

a)
Graylevellmage  Numeric Gray.
_ Megrbor Pl Vaks )
»|:]:] &~ é i
Silo 1
|
Salol2]2
2 3 3 1 H
£ )0
al»|s|a| & 1
Haralick texture features

* We want to leverage the structure of our
features



Feature Selection

* Stage 1

* Aggregate a bag B of LASSO-selected features, including duplicates, by
training LASSO models on random subsets of the training data

/ - Feature Selection \

MRI Sequences

bag-of-features
(n =~ 2350)
35,340 | 23 feature 288 15

g features e | Select frequent | comPonents| Genarate features | | cores PCA | caures
. | | feature components from components

Random 80% subsets of training set

Stage 1 Stage 2 Stage 3

/




Feature Selection

Example #1

Example #2

MRI
Modality

Semi-Automati|
Tumor
Segmentation

Tumor
Region
Isolation

Image
ansformation

Voxel Count

Voxel Count

Histogram

Feature Extraction

90th
percentile

Intensity

Tice, whole tumor
Tlce, enhancement
Tlce, abnormality
Tilce, necrotic
Tice, tumor core
FLAIR, whole tumor
FLAIR, enhancement
FLAIR, abnormality
FLAIR necrotic
FLAIR, tumor core
T2, whole tumor
T2, enhancement
T2, abnormality
T2, necrotic

T2, tumor core

T1, whole tur ur
T1, enhancr nent
T1_='lormality
T1, necrotic

T1, tumor core

2

=1

LoG, sigma

LoG, sigma=3

=5

LoG, sigma

avelet-LLH
wavelet-LHL
avelet-LHH

\

wavelet-HLL

wavelet-HLH

wavelet-HHL

wavelet-HHH

wavelet-LLL

LBP 3D-m1

LBP 3D-m2

LBP 3D-k

squared

sqrt

log

exp

- 0.05

Percentage of aggregated LASSO features



Feature Selection

e Stage 2 & 3

* Use B to determine which feature components (C) are most relevant to the classification task
* Generate the set of 288 features whose components were determined from the set C
e Use PCA to further reduce the dimensionality of our feature set to 15

/ Feature Selection \

MRI Sequences
bag-of-features
(n =~ 2350)
35,340 > 23 feature 288 15
features Select frequent components| Ganerate features features PCA features
—— || LAssO |- — -
A . || feature components from components
Random 80% subsets of training set
Stage 1 Stage 2 Stage 3

/




Modeling

* 15 PCA Features
* Collection of small machine learning models
* Cross validation

Feature Selection

.’
L

Machine Learning

o

v

Prediction

2,




Results

Model Inputs

Il |ogistic Regression

Il SVM I MLP I XGBoost I Random Forest

True Positive Rate

1.0

0.8

0.6

0.4

0.2

0.0

ROC Curve Averaged Over 100 Trials

- mmmm Logistic Regression ROC (AUC = 0.80 = 0.03)
LASSO ROC (AUC = 0.78 = 0.04)

SVM ROC (AUC = 0.76 = 0.05)

MLP ROC (AUC = 0.74 + 0.05)

XGBoost ROC (AUC = 0.72 + 0.05)

Random Forest ROC (AUC = 0.65 + 0.06)

0.2 0.4 0.6 0.8 1.0

False Positive Rate




Results

Group 1 Group 2

FLAIR Tlce FLAIR Tlce




Discussion

e AUC>0.80

e Attributes Not Selected

* Enhancing tumor!
* |dentity transformation

* Attributes Selected
 Laplacian of Gaussian transform (edge detector)
* T2 Abnormality on FLAIR



Imaging Summary

* Developed a custom feature selection method that allows for the
prediction of poor surviving glioblastoma patients, but leaves room
for improvement

* Imaging limitations
* Until scanner protocol is standardized, noise will interfere with model
reliability
* Low sample counts

* Patients almost always get first resections, thus the fact that MRl is cheap and
non-invasive is not necessarily an advantage in the upfront setting
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