

Radiogenomic modeling predicts survivalassociated prognostic groups in glioblastoma

Nicholas Nuechterlein 10/25/2021

The University of Washington
Paul G. Allen School of Computer Science & Engineering

- Most common and aggressive primary adult malignant brain tumor
- Median survival of 15 months
- Incurable because
 - Extremely heterogeneous
 - Blood brain barrier
- Last approved therapeutic agent was in 2005

- Most common and aggressive primary adult malignant brain tumor
- Median survival of 15 months
- Incurable because
 - Extremely heterogeneous
 - Blood brain barrier
- Last approved therapeutic agent was in 2005

- Most common and aggressive primary adult malignant brain tumor
- Median survival of 15 months
- Incurable because
 - Extremely heterogeneous
 - Blood brain barrier
- Last approved therapeutic agent was in 2005

- Most common and aggressive primary adult malignant brain tumor
- Median survival of 15 months
- Incurable because
 - Extremely heterogeneous
 - Blood brain barrier
- Last approved therapeutic agent was in 2005

Report from the FDA

Food and Drug Administration Drug Approval Summary: Temozolomide Plus Radiation Therapy for the Treatment of Newly Diagnosed Glioblastoma Multiforme

Martin H. Cohen, John R. Johnson, and Richard Pazdur

Patient Clinical Course

Motivation for predicting short-term survivors

- Better for patients
 - Poor survivors have the most to gain from upfront trials
- Better for trials
 - Identifying poor survivors upfront can help balance clinical trial arms
 - Trials will run faster with poor survivors

But we need to know who the poor survivors are upfront

Data

• MRI

- Rich, global representation of tumor
- Cheap, fast, non-invasive, repeatable
- Volumetric
 - 255 x 255 x 155 x 4
 - (> 50 M voxels)

• Our data

 46 TCIA preoperative glioblastomas MRI with T1ce, FLAIR, T2, T1

Copy Number

- Captures DNA structure
- Unlike MRI: invasive, expensive, not repeatable
- 23,000 x 1 (gene-level)
- Values in $\{-2, -1, 0, 1, 2\}$

Poor survivor definition Glioblastoma patients who undergo second resections live longer

No 2nd Resection

Methods

- Radiogenomics/radiomics
 - An evolving field in medical imaging that strives to equate quantitative image features with the genomic profile of pictured tissues
- Pipelines
 - Image acquisition
 - Image normalization
 - Feature extraction
 - Feature selection
 - Prediction using ML models
 - (Or end-to-end deep learning models)
- Novelty
 - Feature selection method
 - Unique clinical application

derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma

Nabil Elshafeey¹, Aikaterini Kotrotsou^{1,2}, Ahmed Hassan¹, Nancy Elshafei^{2,3}, Islam Hassan², Sara Ahmed²,

Radiomics: Images Are More than

Pictures, They Are Data¹

Multicenter study demonstrates radiomic features

Arita, Hideyuki, et al., Scientific reports (2018)

Fukuma, Ryohei, et al., *Scientific reports* (2019) Matsui, Yutaka, et al., *Journal of neuro-oncology* (2020)

Radiomic subtyping imp

beyond key molecular, c

characteristics in patient

Prediction of IDH and TERT promoter mutations in low-grade glioma from magnetic resonance images using a convolutional neural network

Ryohei Fukuma^{1,2}, Takufumi Yanagisawa^{1,2,3*}, Manabu Kinoshita^{1*}, Takashi Shinozaki^{4,22},

Method

Preprocessing

- 1. DICOM -> NIfTI
 - dcm2niix
- 2. Skull-strip
 - The Brain Extraction Tool (BET)
- 3. Co-register same-subject MRI sequences
 - FMRIB's Linear Image Registration Tool (FLIRT) from the FMRIB Software Library (FSL)
- 4. Normalize/bias correct
 - N4 Bias Field Correction

Li, et al., J Neurosci Methods (2016) Jenkinson et al. Med Image Anal (2001) Jenkinson et al. Neuroimage (2002) Tustison NJ, Avants BB, et al. IEEE Trans Med Imaging (2010)

Segmentation

- U-net based architecture
- Used ESP blocks

Segmentation Results

Image filters / transformations

- Identity
- Laplacian of Gaussian (LoG)
- Wavelet
- Local binary patterns (LBP)
- Exponential, logarithm, square, square root

LoG

Zhang, et al. Math. Biosci. Eng (2020)

Texture analysis

- Image texture gives us information about the spatial arrangement of color or *intensities* in an image
- Example: Grey-level co-occurrence matrix (GLCM)

GLCM

Prepare GLCM matrix: values are descriptions of GLCM values

i/j	0	1	2	3
0	(0,0)	(0,1)	(0,2)	(0,3)
1	(1,0)	(1,1)	(1,2)	(1,3)
2	(2,0)	(2,1)	(2,2)	(2,3)
3	(3,0)	(3,1)	(3,2)	(3,3)

Values are counts of frequencies of the neighboring pairs of image pixel values

2	2	1	0
0	2	0	0
0	0	3	1
0	0	0	1

The diagonal elements all represent pixel pairs with no grey level difference

Feature Extraction

- Histogram
 - Percentile, energy, entropy, kurtosis, skewness, uniformity, etc.
- Texture
 - GLCM (Gray Level Co-occurrence Matrix)
 - Contrast, correlation, etc.
 - GLRLM (Grey-Level Run Length Matrix)
 - GLSZM (Gray Level Size Zone Matrix)
 - GLDM (Gray Level Dependence Matrix)
 - NGTDM (Neighboring Gray Tone Difference Matrix)
- Implementation
 - pyradiomics

Feature = $\{m, c, t, e, f\}$

Putting it all together

Feature selection

- Feature set is far too large for modeling a few number of samples
- Feature selection overfits
 - Recursive feature elimination
 - Variance thresholding
 - LASSO feature selection

We want to leverage the structure of our features

- Stage 1
 - Aggregate a bag B of LASSO-selected features, including duplicates, by training LASSO models on random subsets of the training data

- Stage 2 & 3
 - Use B to determine which feature components (C) are most relevant to the classification task
 - Generate the set of 288 features whose components were determined from the set C
 - Use PCA to further reduce the dimensionality of our feature set to 15

Modeling

- 15 PCA Features
- Collection of small machine learning models
- Cross validation

Machine Learning

Prediction

Results

Results

Discussion

- AUC > 0.80
- Attributes Not Selected
 - Enhancing tumor!
 - Identity transformation
- Attributes Selected
 - Laplacian of Gaussian transform (edge detector)
 - T2 Abnormality on FLAIR

Imaging Summary

- Developed a custom feature selection method that allows for the prediction of poor surviving glioblastoma patients, but leaves room for improvement
- Imaging limitations
 - Until scanner protocol is standardized, noise will interfere with model reliability
 - Low sample counts
 - Patients almost always get first resections, thus the fact that MRI is cheap and non-invasive is not necessarily an advantage in the upfront setting

Acknowledgments

University of Washington, Seattle, WA

- Linda Shapiro, PhD
- Beibin Li
- Mehmet Saygin Seyfioğlu
- Sachin Mehta, PhD
- Shima Nofallah

University of Washington, Seattle, WA

- PJ Cimino, MD, PhD
- Michelle Casad, PhD
- James Fink, MD
- David Haynor, MD, PhD

Fred Hutch Cancer Research Center, Seattle, WA

- Eric Holland, MD, PhD
- Sonali Arora

Funding Sources

