3D Meshes

Shu Liang

Marching Cubes

- Goal: Extracting a polygon mesh of an isosurface from discrete voxels.

Edge index
Vertex index

Marching Cubes

- For example: vertex 3 is below the isosurface value and all the other vertices are above the value.

Vertex 3 inside (or outside) the volume

Isosurface facet

- 256 possible intersection combinations.

Marching Cubes

- Edge Table

Uertex 3 inside (or outside) the volume

Isosurface facet

8bit cubeindex: 00001000 edgeTable[8] = 100000001100

Marching Cubes

- Intersection Point:
- $\mathrm{P}=\mathrm{P}_{1}+\left(\right.$ isovalue $\left.-\mathrm{V}_{1}\right)\left(\mathrm{P}_{2}-\mathrm{P}_{1}\right) /\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)$

Vertex 3 inside (or outside) the volume

Isosurface facet

Reference: http://paulbourke.net/geometry/polygonise/

3dMD Face Dataset

- 3dMD face scans of our group

3dMD Face Dataset

mean shape

3dMD Face Dataset

mean shape

$+1^{\text {st }} \mathrm{PC}$

$-1^{\text {st }} \mathrm{PC}$

3dMD Face Dataset

mean shape

$+2^{\text {nd }} P C$

$-1^{\text {nd }} P C$

3dMD Face Dataset

mean shape

$+3^{\text {rd }} \mathrm{PC}$

$-3^{\text {rd }}$ PC

3dMD Face Dataset

mean shape

$+4^{\text {th }} \mathrm{PC}$

$-4^{\text {th }}$ PC

3dMD Face Dataset

mean shape

$+5^{\text {th }} \mathrm{PC}$

$-5^{\text {th }} P C$

3D Morphable Model

- Any person's face can be expressed as the linear combination of the PCs

