Morphometric Analysis of Biomedical Images

Sara Rolfe 10/9/17

Morphometric Analysis of Biomedical Images

Quantification and Description of Morphological Differences

- Trend towards increased use of biomedical imaging in craniofacial medicine
- Increased need for tools enabling assessment of biomedical images.
- Identify optimal treatment strategies
- Quantify genetic and epigenetic impact on phenotypes.

Two developmental stages of a chick embryo

Left and right mouse hemi-mandibles

Challenges in Quantifying 3D Shape Change

Traditional methods rely on landmark points

- Tedious and subject to variability
- Require locations where landmarks can be reliably placed

Embryonic growth

- Spatially sparse

Alternative analysis technique is needed

High Resolution 3D Scan Data

2D image slices

Low quality image

Low quality image

Low quality image

Low quality image

Preprocessing: 3D Surface Generation

Geodesic Active Contours

- Method for detecting image boundaries
- Start with contour approximating image boundary
- Initial contour evolved over time according to "forces" calculated from image

Snakes: Active contour models, Kass, M. and Witkin, A. and Terzopoulos, D.

Steps for Geodesic Active Contour Algorithm

- 1. Model the shape with an estimated surface
- Define energy function for surface as:
 E = Internal energy (curvature) + external energy (image edges)
- 3. Derive curve to minimize energy
- 4. Propagate curve using level set to attain minimum energy

Geodesic Active Contour Implementation

Geodesic Active Contour Implementation

2D Example

3D Surface Generation

Deformable Registration

- Dense field of vectors describes transformation at each point
- Essentially provides continuous landmark data

Overlay of two objects

Reducing Data Dimensionality

- High resolution images can have over a million surface points
- Need to reduce this number to track meaningful differences

Displaying 500,000 vectors

Overview of Base Methodology

Overview of Base Methodology

Low-Level Features

- Magnitude: Vector length
- Normal angle: Cosine distance from normal angle
- Reference vector angle: Cosine distance from reference vector

Spatiograms for Identifying Regions

position of values

Calculating the Spatiogram Distance Metric

- Based on the Bhattacharya coefficient: measures overlap between statistical samples
- Spatiograms represented as histograms with an added dimension

$$ho(h,h')=\sum_{b=1}^{|B|}\Psi_b\sqrt{n_bn_b'}$$

B = number of bins, n_b = value of bin b

 Ψ_b = spatial weighting term expressing similarity of distributions

Chick Embryo Developmental Sequence

Developmental Growth Sequence

- •16 specimens
- •5 developmental stages

Application to Developmental Sequence

Retrieval of Similar Growth Trajectories

Normal Angle

Magnitude

Query feature heat maps

Heat maps of top 3 ranked results

Similarity Scores: Growth Trajectory

Average Score: 0.049 Close to the ideal score of 0

Developmental Stage

e		HH 24	HH 24.5	HH 25	HH 26
Templat	HH 19.5	0.087	0.018	0.156	0.020
	HH 24	x	0.017	0.021	0.045
	HH 24.5	0.044	x	0.008	0.069
	HH 25	0.007	0.100	x	0.072
	HH 26	0.030	0.067	0.045	Х

Morphological Shape Change: Characterizing Asymmetry

Assessing Mouse Mandible Symmetry

Assessing Mouse Mandible Symmetry

- Tool for characterizing and quantifying the asymmetry in bilaterally paired structures.
- Applied it to the two sides of the mandible of the mouse.
- Asymmetry scores compared to human expert

Correlation Coefficient = .92

Rolfe, S. M., Camci, E. D., Mercan, E., Shapiro, L. G., & Cox, T. C. "A New Tool for Quantifying and Characterizing Asymmetry in Bilaterally Paired Structures." IEEE EMBS '13 Jul 2013.

Retrieval of Specimen with Similar Morphological Shape Differences

Correlation between distance from most asymmetric and expert asymmetry ranking = 0.91

Rolfe, S. M., Camci, E. D., Mercan, E., Shapiro, L. G., & Cox, T. C. "A New Tool for Quantifying and Characterizing Asymmetry in Bilaterally Paired Structures." IEEE EMBS '13 Jul 2013.

Morphological Shape Change: Additional Applications

Magnitude Heat Maps – Mouse Skull

Questions?

