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Abstract-This paper describes a new knowledge-based procedure for identifying and extracting organs 
from normal CT imagery. Our procedure differs from previous attempts in its use of a wide variety of 
knowledge about both the anatomy and the image processing operations. The system features the use of 
constraint-based dynamic thresholding, negative-shape constraints to rapidly rule out infeasible segmenta- 
tions, and progressive landmarking that takes advantage of the different degrees of certainty of successful 
identification of each organ. The results of a series of tests on training data of 100 images from five patients 
plus additional test data of 75 images from three more patients indicate that the knowledge-based approach 
is promising. 
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1. INTRODUCTION 

Patients who are scheduled to receive radiation treat- 
ment for cancer undergo CT scans which produce a 
sequence of images, each representing one slice through 
the three-dimensional (3D) organs and vessels being 
scanned. From this sequence of 2D images, it is possible 
to estimate the 3D structures through which the slices 
were taken and, if the estimate is good, to determine 
their approximate locations and volumes. This extrac- 
tion of structures from parallel CT images of the patients 
is an important first step in the creation of patient- 
specific models that can be used by treatment planning 
programs to deliver maximum dosage to the tumor 
and minimum dosage to critical anatomical structures. 
Currently this step is performed manually by technic- 
ians called dosimetrists who use an interactive device, 
such as a mouse, to trace the contours of each organ 
of each image of a patient data set. Although many 
attempts have been made to automate the extraction 
of anatomy, no techniques have been successful 
enough to replace the current manual methods. Since 
these methods take up to half the planning time, there 
remains a great need to speed up, if not completely 
automate the process. 

boundaries are located in some images. Standard tech- 
niques such as absolute thresholds, edge-finding, or 
region growing acting blindly on the gray tones of an 
image are not powerful enough. Instead the system 
needs a knowledge-based control structure that can 
use standard techniques in a goal-directed and in- 
formed manner and can evaluate its own success or 
failure. 

Automatic segmentation of CT images is a challeng- 
ing problem in computer vision. While the positions 
of the organs within each slice can be predicted the 
organs are flexible and the 2D contours they exhibit 
can vary. Furthermore, the boundaries separating 
organs from their surroundings are not always clear; 
even humans have to guess where some portions of 

The goal of our work is to develop a knowledge- 
based recognition system that utilizes knowledge of 
anatomy, knowledge of the imaging process, and 
knowledge of the effects of various image processing 
operators to extract the organs from parallel CT images. 
To this effect we have developed an experimental system 
that locates the major organs in sets of images through 
the abdomen. The major features of our system include 
(1) dynamic thresholding controlled by feedback in- 
formation on various properties of image regions, (2) 
the use of negative shape constraints (constraints that 
rule out certain impossible shapes), and (3) progressive 
landmarking that extracts organs in order of predicted 
success and uses already-found organs to help locate 
other organs. This paper describes the knowledge- 
based system we have implemented. Section 2 describes 
the characteristics of the problem. Section 3 sum- 
marizes the related literature on the knowledge-based 
approach. Section 4 indicates the knowledge used by 
our system. Section 5 discusses the algorithms we 
developed, and Section 6 describes the performance of 
the system. 

2. CHARACTERISTICS OF THE PROBLEM 

*All correspondence to: Prof. Linda G. Shapiro, Depart- 
ment of Computer Science and Engineering, FR-35, University 
of Washington, Seattle, Washington 98195, U.S.A. 

Our task of constructing an automated dosimetry 
system is equivalent to producing a definition in com- 
putable terms for each organ as a homogeneous region 
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distinguishable from other organs/tissues in CT images 
and implementing a segmentation according to that 
definition in a computerized image processing system. 
Although the history of CT imaging is decades old, 
consistent definitions for each organ in precise, com- 
putable terms do not exist. However, physicians are 
able to recognize real organs easily and fairly accurately. 
Since physicians’ jargon is not necessarily convertible 
to precise and computable terms, our first step is to 
construct computable definitions of the organs. 

Secondly, we must consider the mapping done by 
the CT imaging process whose domain is the real 
human body and whose range is the CT image. CT 
imaging transforms real 3D objects into 2D gray tone 
images of their slices. The transformation is not straight- 
forward in that the anatomical classifications of organs/ 
tissues do not precisely correspond to simple segmenta- 
tions based on gray tone similarities in CT images. In 
reducing our task to the above two steps, we encounter 
the following difficulties: 

(1) Standard gray-tone-based segmentation pro- 
cedures do not necessarily produce regions correspond- 
ing to organs; 

(2) There are very few shape invariants; 
(3) The absolute gray tone levels observed in each 

organ vary widely with the instance of observation; 
(4) There is no precise and objective ground rule for 

performance evaluation. 

The first difficulty is due to the fact that two different 
organs can have the same or very close gray tones in 
CT images. Some organs have wide ranges of internal 
gray tone variations, while others have narrow ranges 
of variation. CT images can also have some aberration 
due to the limitations of the individual CT scanner. 
Our system cannot produce a segmentation when two 
different organs having the same gray tone are adjacent. 
This shortcoming is present even in human work, since 
humans do some intelligent guess work in such cases. 

The second difficulty prohibits an approach that 
tries to find shape invariants for each organ. Unlike 
the rigid objects that are employed in many computer 
vision studies, most human organs have few computable 
and stable invariants. Although physicians may claim 
that they can identify organs by their shapes, what they 
may describe as invariants are lacking in computa- 
tional feasibility and stability. (There are a few excep- 

Fig. 1. Various shapes of kidney. 

Fig. 2. Concept of negative shape constraints. Clearly these shapes are not of kidney’s, Each of the above 
three shapes is formed by connecting a kidney with other organs/tissues. Such connections take place if 

two low a threshold is used in thresholding. 
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tions such as the eye sockets and the aorta, whose 
shapes are nearly perfect circles.) Figure 1 illustrates 
the variety of shapes that can exist for a single organ 
(the left kidney). In our system this problem is over- 
come by the principle of “avoiding positive shape 
commitment”. 

landmarking, which reduces the search space efficiently. 
The sixth advantage is the existence of some stable 
landmarks, such as the spine and the aorta. 

The third difficulty rules out the possibility of using 
a simple thresholding technique. The absolute gray 
tones of each organ depend on the individual instances. 
The same organ can display different gray tones if the 
setup of the CT scanner is different and/or a different 
scanner is used. This variation of gray tone is also 
caused by differences in the chemical contents of each 
organ, which depend on patients as well as on their 
physical conditions. Normalizing the gray tone level 
is one way to get around this problem. However, it 
does not always give satisfactory results, since for some 
organs even the normalized gray tone level has a wide 
enough range to confuse the identity of the organ. This 
problem is overcome in our system by taking advantage 
of a more stable property, the ordering of gray tone 
levels of organs. In the case where two organs have 
very close gray tones, other properties are used to 
distinguish one from the other. 

Finally, there are some useful shape constraints. 
There are few stable positive shape constraints: cir- 
cularity for eye sockets and aorta, symmetry for the 
spine. On the other hand all organs have negative 
shape constraints (i.e., constraints on what shape an 
organ does not take). This is a constraint that defines 
only extremely abnormal shapes as impossible for each 
organ. Therefore, its reliability is high. Negative shape 
constraints are useful when used with repeated incre- 
mental thresholding, since when the threshold goes 
below an acceptable level, the shape of the region of 
the organ usually becomes extremely abnormal due to 
being connected to other organ/tissue. Figure 2 illus- 
trates the concept of negative shape constraints. 

3. RELATED RESEARCH 

Finally, just as the definition of each organ in the 
CT image is very difficult to formulate in computa- 
tional terms, the performance of the system is difficult 
to measure objectively. One method of evaluation is to 
compare the results against the work of human dosi- 
metrists. However this still has a problem in evaluating 
the degree of misidentification. Simply counting the 
number of mismatched pixels does not make a con- 
sistent and reasonable measurement, since qualitative 
differences in mismatch cannot be reflected this way. 
We used conservative subjective evaluation with three 
ranks for the results of our system as explained in 
Section 6. 

Medical image analysis is one of the areas of com- 
puter vision where domain knowledge plays a very 
important role, because localized pixel information 
obtained from CT images is often ambiguous and 
unreliable. Therefore, many systems, including the 
one described in this paper, use a knowledge-based 
approach. 

To solve the above problems, several properties of 
organs and images are used. First, each organ has 
a fairly stable vertical and horizontal location and 
adjacency with other organs. Secondly, the ordering of 
organs by their gray tones is fairly stable, even though 
their absolute gray tones vary widely. Thirdly, each 
biological substance has a relatively narrow range of 
gray tones.(‘) This property is used to determine a 
termination point in repeated feedback thresholding. 
Fourth, analysis of CT images is simpler than the usual 
3D natural object recognition, because in the CT image 
analysis no complications are added by shading, range 
measurement, light sources, or reflection. The seg- 
mentation of each object in a CT image is similar to 
extracting a region of quasi-homogeneous particular 
gray tone range that reflects the electron density of 
the organ of interest. (‘) This property justifies the 
basic approach of the proposed system, dynamic 
thresholding. 

The history ofknowledge-based medical image ana- 
lysis is older than the history of practical usage of 
CT imaging. One of the early studies in knowledge- 
based medical image analysis was done by Harlow and 
Eisenbeisc3) on radiographic image segmentation, when 
CT imaging was not yet available in hospitals. They 
proposed a top-down control system using a tree- 
structured model description containing knowledge 
about locations and spatial relations of parts/organs 
of the human body. In his thesis work, Selfridgec4) 
discussed image understanding systems in general and 
divided the causes of difficulties into problems of model 
selection, segmentation techniques, and parameter 
setting. In earlier work c5) he proposed an algorithm 
for detecting contours of the kidney and stressed the 
importance of domain knowledge for further enhance- 
ment of his system. 

Shiraic6) developed a method for extraction of stom- 
ach regions from radiographs. He used a combined 
thresholding and edge-finding method to extract the 
stomach region with initial thresholds determined from 
analysis of the histogram of the intensity values over 
the image and knowledge of the usual size of the 
stomach. When a candidate region has been extracted, 
it is tested for size, position, and abnormal extension. 
If the region fails, the thresholds are changed in a feed- 
back loop. This approach is very much in the spirit of 
our own, but is specific to a single organ and does not 
use as many different kinds of knowledge as we do. 

The fifth advantage is that there are relatively small More recently, the research conducted by 
numbers of objects to be recognized in a single CT Karssemeijer et ~1.~~) made effective use of domain 
image in our task. Therefore, the difficulty of the task knowledge incorporated in a semantic network of spa- 
can be substantially reduced by the use of progressive tial relations among organs. This system has some 
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similarities to our system in the following respects: (1) 
it advocates the integration of the segmentation process 
with the recognition process, (2) it uses mathematical 
morphology operators effectively, and (3) the target 
slices are of the human abdomen, although their system 
is only for recognizing the spleen. 

Bright proposed an interesting algorithm for seg- 
menting objects in micrographs.“) He used multiple 
thresholds to take advantage of the difference in gray 
tone between target objects and their background. 
Despite its computational expensiveness, this system 
was robust in applications concerning ambiguous and 
flexible objects such as biological cells and human 
organs. It is similar to the dynamic thresholding of our 
system with respect to its use of multiple thresholds to 
separate target objects from the other regions. A major 
difference is that our dynamic thresholding is controlled 
by feedback information on various properties of the 
focused regions, while Bright’s method does not use a 
knowledge-based feedback loop. 

in others. Most shape properties were discarded by this 
principle. Secondly, the system’s capacity to discri- 
minate one organ from others is enhanced by increasing 
the number of loosely constraining properties, rather 
than by using probabilistic refinement or setting precise 
constraints on a small number of properties. This 
principle is justified by the fact that no small number 
of properties can unmistakably distinguish an organ 
from others and that precise constraints on any pro- 
perty reduce the tolerance of the system to wide 
variations of instances. Thus, the modeling is done by 
describing each organ with a number of properties, 
each of which imposes very loose constraints. The 
specific properties used by our system to describe an 
organ include: 

(1) Position in the ordering of gray tone levels among 
the organs. For example, bones have the highest gray 
tones. 

Brinkleycg) uses a geometric constraint network 
approach to segmentation of CT images. He models 
the flexible two-dimensional shapes of organ contours 
by the allowable ranges of the lengths of radials from 
the centroid of the organ to points at evenly-spaced 
intervals around the boundary. He then uses a relax- 
ation algorithm to compute the boundary points of the 
shape at each radial. His algorithm combines prior 
knowledge of organ shape with dynamic edge detection 
along the selected radials. 

(2) Relevant gray tone range. The relevant range is 
the range of gray tones containing the threshold that 
segments the organ correctly. 

Finally, a promising approach to medical image 
analysis, although expensive in terms of data acquisition, 
was proposed by Chen et ~l.(‘~’ whose system pro- 
cesses multi-modal imaging data. It employs images 
made by CT (computed tomography), MRI (magnetic 
resonance imaging), and PET (positron emission tomo- 
graphy) together with various domain knowledge and 
the knowledge of the correlation between biological 
substance and imaging results. A blackboard archi- 
tecture is used to handle all the different types of 
knowledge. 

(3) Height of gray tone cliff. Suppose there is a gray 
tone that can be used as a threshold to make the whole 
contour of a target organ show up. (Every organ has 
such a gray tone, although the gray tone may not 
necessarily distinguish the organ from its surrounds.) 
Such gray tones usually fall in a certain range. This 
range is the height of the “cliff” for the target organ. 
While bones have very high cliffs, livers and spleens 
have relatively low cliffs. 

(4) Location in terms of stable landmarks (the aorta 
and the spine). The coordinate system relative to these 
landmarks is used, since the absolute coordinate system 
does not work if the body is not positioned correctly 
in the center of the image. The location of an organ is 
represented by the center of gravity of the organ. The 
possible locations are restricted to those points that 
are within an acceptable range from the mean gravity 
center of the landmark. 

The multi-modal approach has an advantage over 
the conventional single-mode methods, since different 
tissues having very close gray tones in a single mode 
cannot always be distinguished reliably with only one 
mode of data. Most of the current single-mode systems 
(including human dosimetrists) make an educated guess 
when the gray tones are ambiguous. Therefore, in 
order to improve the results of medical image analysis, 
additional reliable constraints are required. 

(5) Adjacency with other organs. The relative posi- 
tion is specified by the angle of direction relative to the 
body-based coordinate system and the distance be- 
tween the two organs in question. 

(6) Size in terms of the area of the slice for each 
approximate level of slice. The size is given by the 
number of pixels in the area of the organ. 

4. KNOWLEDGE FOR ORGAN RECOGNITION AND 
EXTRACTION 

(7) Relationships with slices at other levels. The 
constraint used for this relation is the overlap ratio of 
the regions of interest between adjacent slices. This 
ratio must fall within a certain range depending on the 
width between adjacent slices. If two adjacent slices 
having an outrageous inclusion ratio are encountered, 
it would be a sign of an incorrect segmentation. 

Our system was designed under the following two (8) Positive and negative shape constraints. Positive 
modeling principles. First, it employs only those pro- shape constraints describe the shape of acceptable 
perties that are meaningfully reliable and stable. This objects, while negative shape constraints describe what 
principle has significance particularly in the medical is unacceptable. The only positive shape constraints 
domain, since there are many quasi-stable properties we have found stable enough to use are the circularity 
that can be useful in some cases, while very misleading of the eye sockets and the aorta and the symmetry of 
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the spine. The negative shape constraints used in this 
system are abnormal extension and abnormal com- 
pactness. These are useful constraints for employing 
with dynamic thresholding, since lowering the thresh- 
old a single step can cause the candidate region to 
connect with other tissues and thus to appear extre- 
mely abnormal. 

The location, size, adjacency, overlap ratio and shape 
constraints are formulated from the anatomical defini- 
tions so that they are computationally executable. The 
properties are defined for each level of slice, and infor- 
mation concerning appropriate levels of slice for each 
organ is an input to the system. Each of the above 
constraints, except the first and the last, is given as a 
range that spans from 3-6 S.D.‘s from the mean. Due 
to the very generous tolerance range, each constraint 
alone may not be able to distinguish a target organ. 
However, each target organ can usually be un- 
ambiguously detected by the conjunction of all the 
constraints. 

5. ALGORITHMS 

The system is composed of two major categories of 
module: the brain modules for control and the engine 
modules for processing. The engine modules implement 
the image processing and features extraction operators. 
The operators currently supported by the system are 
(1) thresholding, (2) morphological opening and closing, 
(3) the set operations of union, intersection, and dif- 
ference, (4) the connected components operation, (5) 
property computation operations for location, size, 
positive shape constraints (such as circularity), and 
negative shape constraints (such as compactness) and 
(6) region identification/elimination based on these 
properties. The brain is made up of the domain knowl- 
edge base and the performance control module. The 
domain knowledge base contains statistical data for 
all the properties used in organ recognition. The domain 
knowledge base includes properties of the spine, the 
aorta, the right kidney, the left kidney, the spleen and 
the liver. The spine and the aorta are used as land- 
marks for locating the other organs, and the ordering 
is determined by the principle of progressive land- 
marking, locating the most reliable organs first. The 
current ordering is (1) spine, (2) aorta, (3) kidneys, 
(4) spleen and (5) liver. The knowledge base was com- 
piled from a training data set of 113 slices from live 
patients. 

The system was designed with the assumption that 
the original CT images are assigned consecutive slice 
numbers from the top slice to the bottom slice. The 
expected range of slice numbers for each organ is an 
input to the system. The extraction process proceeds 
vertically; that is, each organ is extracted from all slices 
before the extraction ofthe next organ begins. For each 
organ, except the spine and aorta, the initial slice to be 
processed is the slice that is closest to 2/5 of the organ’s 
expected height from its bottom-most expected slice. 
The “2/5 from the bottom” heuristic for finding a 

reliable starting position is based on our observation 
of the training set. The process goes through two 
iterations from that initial level, one upward to the 
topmost expected slice of the organ, the other down- 
ward to the bottom-most expected slice. For the spine 
and aorta, the extraction process goes from the lowest 
to the highest slice. At each slice the system goes 
through a series of dynamic thresholding operations 
that is controlled by feedback information on various 
properties of the candidate regions produced by the 
thresholding. The essence of the dynamic thresholding 
is as follows. 

The system first sets the initial threshold to the high 
end of the relevant gray tone range predefined for the 
organ of interest and performs a thresholding operation 
with the initial threshold. It then performs a connected 
components operation on the binary image produced 
by the thresholding and checks to see if there is a region 
that satisfied all of the constraints. If there is, it reduces 
the threshold by a single step and repeats the same pro- 
cedure, executing the connected components operation 
and checking all the properties. 

The system repeats this process until the low end of 
the relevant gray tone range is reached or candidate 
regions disappear (due to becoming too large or con- 
nected to other organs/tissues). After exiting this loop 
of repeated thresholding, if there is an acceptable range 
of thresholds that provide candidates, the system selects 
a threshold from them that is most likely to produce 
the best-fit region to the organ of interest. 

The selection of such a threshold is done by checking 
the rate of increase of the area of the candidate region 
with respect to the reduction of threshold. The rate of 
increase is computed for the gray tone interval that 
reflects the height of the gray tone cliff of each organ. 
The best threshold is selected out of the interval that 
has the least rate increase. This process is referred to 
as the “slope check” in the following descriptions. The 
final output is the candidate region created by that 
selected threshold. 

The morphological routine was designed to be a 
dot clustering operator that can compensate for the 
weakness of the conventional connected components 
operator. In the morphological routine, the connectiv- 
ity among pixels does not depend on a direct adjacency 
criterion. Instead, it is able to group together some 
separate dots whose connection closes up a hole in an 
organ, while cutting apart some narrow connections 
that would be acceptable to the connected components 
operator. In our system, if there is too narrow a range 
of thresholds that generate candidate regions, the system 
invokes the morphological routine with the binary 
image obtained from the lowest threshold that did not 
produce too large a region. A range of such thresholds 
is considered too narrow if it is less than the preset 
width for each organ. The preset widths reflects the 
heights of the gray tone cliffs of the organs. 

The morphological routine first connects tiny regions 
that are separate, but close enough to each other, by 
a closing operation, since closely-situated disconnected 
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Fig. 3. Dynamic thresholding process. (a) At the initial (highest) threshold for kidneys, the kidneys show up 
only as a set of small, disconnected regions. (b) At 3 sttps (gray tone width 30) lower than the initial threshold, 
the kidneys become large enough to be in the range of acceptable size. (c) At 11 steps (gray tone width 110) 
lower than the initial threshold, both kidneys connect with other organs/tissues and violate the negative 

constraints. 

regions that belong to the same organ tend to come 
about when the threshold range is too narrow. Then 
it separates regions that are connected by narrow 
unwanted bridges using an opening operation. More 
stress is placed on cutting narrow connections than 
on connecting close separate regions, based on the 
heuristic, which seems effective in processing CT images, 
that the size of the structuring element used for the 
opening is greater than that used for the closing. It 
performs the connected components operation on the 
resulting image and checks all the properties of each 
region. The output for most organs is the largest region 

that satisfies all the constraints. For some organs 
adjacency to another organ overrules the area size in 
the final decision. The following algorithm describes 
the basic procedure followed by the system. 

Step 1. Set the initial threshold to the high end of 
the relevant gray tone range predefined for the organ 
of interest. From the second iteration on reduce the 
threshold by a constant value (10 was used in our 
experiments). If the threshold reaches the low end of 
the relevant gray tone range and if there is no candidate, 
then invoke the morphological routine (Step 11) for 
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the binary image computed by thresholding with the 
lowest threshold that keeps all the regions within the 
target area of the image smaller than the maximum 
acceptable size. 

Step 2. Execute the thresholding operation on the 
given image with the current threshold. 

Step 3. Execute the connected components operation 
on the binary image produced by Step 2 to produce a 
set of regions. Figure 3a shows (in white) the connected 
components found at the initial threshold for kidney 
extraction. 

Step 4. (Area check) Check if there is a region of 
acceptable size within the search area that was pre- 
defined for the organ of interest. If there are some, 
record them as candidates. If there is none, go back to 
Step 1. In Fig. 3a there are no regions of acceptable 
size in the kidney search area. Three iterations later, 
as shown in Fig. 3b the kidney regions are large enough 
to become candidates. 

Step 5. (Location check) Check if there is among the 
candidates a region that satisfies the location condition 
defined by the position of the gravity center. If there 
are some, keep them in the record of candidates. If 
there is none, go to Step 1. If the candidate object is 
the left kidney, then the left kidney candidate in the 
image should satisfy the location check, while the right 
kidney and spine should not. 

Step 6. (Positive/Negative shape check) Check if there 
is among the candidates a region that satisfies the posi- 
tive/negative shape conditions. These conditions are 
expressed by the properties such as spatial extension 
(an extension to an extremely abnormal region of the 
body-based coordinate system, violating the negative 
shape constraints), vertical and horizontal lengths, and 
their ratio. If there are some, keep them in the record 
of the candidates. If there is none, go to Step 1. In 
Fig. 3b, the kidney candidates satisfy the shape check, 
but in Fig. 3c, which illustrates the eleventh iteration, 
the kidney candidates have merged in with other organs 
and violate the abnormal extension constraint. 

Step 7. (Overlap check) Check if there is among the 
candidates a region that satisfies the overlap condition 
with an adjacent slice that is already correctly seg- 
mented. The overlap condition is expressed as the 
minimum required overlap ratio which is 50% of the 
smaller region of the overlapping pair. If there are 
some, keep them in the record of the candidates. If 
there is none, go to Step 1. 

Step 8. (Collision check) Check if there is among the 
candidates a region that does not collide with the other 
already recognized organs in the same slice. If there 
are some, keep them in the record of the candidates. If 
there is none, go to Step 1. Neither of the two kidney 
candidates in Fig. 3b collide with anything else. 

Step 9. Choose the best candidate from the candi- 
dates at the current threshold, record its area, and go 

Slope Check 

big 

I\ 

!E toobig 
threshold 

Fig. 4. The slope check test. 

to Step 1. For most organs, best means most suitable 
in area. For some organs, however, adjacency to land- 
marks is the criterion used. Depending on whether the 
left or right kidney was sought, one of the two kidney 
candidates in Fig. 3b will be selected as the best candi- 
date for the third interaction. 
Step 10. (Slope check) This step checks the record of 
the change of the area size of the candidates with 
respect to the threshold change. Suppose the area of 
the candidate is plotted along the vertical axis and the 
corresponding threshold along the horizontal axis, as 
shown in Fig. 4. This step looks for the flattest part of 
the curve that gives an acceptable area for the organ 
in question and chooses the midpoint of the flat part 
as the correct threshold. The candidate at that thresh- 
old is output as the region of the organ of interest. 
However, if the slope of the flattest range is not within 
the preset acceptable range for the organ of interest, 
the system sends the binary image made by that middle- 
level threshold to the morphological routine (Step 11). 

Step 11. Execute the following morphological opera- 
tions. 

(1) Close with a disk of diameter 3 pixels. 
(2) Open with a disk of diameter 5 pixels on the 

above result. 
(3) Execute connected component operation on the 

above result. 
(4) Extract the region that satisfies the conditions in 

Steps 4,5, 6 and 7. 
(5) Close the extracted region alone with a disk of 

diameter 3. The result is output as the region of the 
organ of interest. 

The extraction of the liver and the spleen is more 
difftcult than that of the other organs, since their gray 
tone cliffs are low and their gray tones are very similar 
to adjacent tissue. For this reason, we have added some 
special additional processing for these two organs that 
takes advantage of the merits of the progressive land- 
marking and the stable ordering of the gray tones of 
some organs/tissues. If the regions of other organs/ 
tissues having higher gray tones than that of the target 
organ are eliminated from the image, the segmentation 
of the target organ becomes easier by the thresholding 



482 M. KOBASHI and L. G. SHAPIRO 

process described above, since there is less danger 6. PERFORMANCE OF THE SYSTEM 

of connecting a candidate region with other organs/ 
tissues. Since the liver and the spleen have lower gray One peculiarity of this task domain is that th 
tones than bones and many other organs/tissues, the no precise ground rule of truth. Although most 
elimination of higher gray tone regions makes the fessional dosimetrists produce very similar results; 
isolation of these organs from other organs/tissues can be considerable differences among them in dr: 
easier. very ambiguous contours of complex regions. 

(b) 

Fig. 5. Grade A extraction of all organs. (a) Original image. (b) Homogeneous dark regions are kidneys, 
liver (leftmost), spleen (rightmost), aorta (round one in the center) and a part of spine. 

lere is 
: pro- 
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It is 
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not unusual that differences between the results of In this work, the evaluation was done by the author, 
dosimetrists can extend to around a 5 pixel width in but with an attempt to be fairly conservative. Although 
an image of size 512 x 512. In difficult cases the mis- the decision on some parts of the liver can be contro- 
match can be more than 10 pixels wide, and a whole versial in some instances, the contours of the kidney 
region of substantial area may be included or discarded are in all instances very clear and unambiguous. The 
depending on the individual. outputs of the system are evaluated against the correct 

(4 

(4 

Fig. 6. Grade B extraction of liver. (a) Original image.(b) Homogeneous dark region is the extracted liver. 
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result indicated by the author. Evaluation was done After checking for mismatch, each extraction re; suit 
on the : accuracy of the outermost contours only. Some is graded as A, B or C. The grading is not done by 
holes inside organs are ignored, since the objective of objective measurements but by incorporating qu ali- 
this SJ {stem is to provide correct outermost contours tative assessments. Qualitative considerations are ne- 
of the organs. Inner holes can be, if necessary, filled by cessary since, for example, misidentifying the sort: 1 as 
a hole -tilling algorithm. a part of the liver, which makes the mismatch area 1% 

(4 

Fig. 7. Grade B extraction of spleen. (a) Original image. (b) Homogeneous dark region is the extracted 
spleen. 



of the c :orrectly identified region is worse than having (A) Comparable to human dosimetry work 
thinly distributed contour mismatch amounting to 5 pixel wide mismatch regions in 512 x 512 in 
1.5% 0. f the correctly identified region. Therefore, the there are more than 5 pixel wide mismatches, 1 
criteria for grade A include the judgement of whether of such mismatch is less than 1% of the total a 
or not the identified region includes a part of other the mismatch is of benign quality (i.e., not an ir 
organs (excluding non-organ tissues like surrounding of a part of a wrong organ). 
fat). Th e rules for grading a result are as follows. (B) Worse than A, but at least 70% of the 
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04 
Fig. 8. Grade C extraction ofliver. (a) Original image. (b) Homogeneous dark region is the extracted liver. 
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region of the organ is detected and the area of other The system was first tested on the 113 training 
tissues recognized as parts of the target organ is less images of the abdomen from five patients. Our results 
than 30% of the correct area of the target organ. were: 

(C) Worse than B, less than 70% of the correct 
region of the organ is detected or the area of other Kidneys: grade A-94%, grade B-3%, grade C-3%, 
regions included as parts of the target organ is more Spleen: grade A-62%, grade B-30%, grade C-8%, 
than 30% of the correct area of the target organ. Liver: gradeA--60x, gradeB-20x, gradeC-20%. 

(W 

Fig. 9. Extraction result of a low level slice. (a) Original image. (b) Homogeneous dark regions are the 
extracted organs. 
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The system shows very good performance in extracting 
kidneys while its success rate is substantially lower 
with liver and spleen segmentations, especially in the 
high-level slices of the liver. Examples of the graded 
results are shown in Figs 5-8 along with the original 
images. 

The kidneys can be correctly segmented in most 
cases by the dynamic thresholding technique alone, as 

they tend to have high contrast of gray tone against 
their adjacent region. This high contrast reflects the 
tendency that the kidneys are covered with fat, which 
has very low gray tones. On the other hand the upper 
part of the liver tightly contacts tissues of gray tones 
very close to itself. Therefore, many of those images 
with which the system failed are difficult to analyse 
even for humans. 

(4 

Fig. 10. Extraction result of a mid level slice. (a) Original image. This slice is five slices (about 5 cm) higher 
than the slice of Fig. 9. (b) Homogeneous dark regions are the extracted organs. 
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The system failed in only one slice out of 113 to row index of the aorta’s gravity center do not vary 
locate the spine correctly (success rate 90%). For the much between slices, and providing these figures is 
aorta, it failed in 17 slices out of 113 (success rate 85%). their major role in this system. Figs 9-12 show the 
However, for the spine and the aorta, a complete extraction results of four slices of a patient. 
failure can be compensated for by using data from the The system was next tested on 75 more images of 
nearest slice with successful extraction. This is because the abdomen from three patients, that were not a part 
the column index of the spine’s gravity center and the of the original training set. This was a particularly 

(4 

(b) 

Fig. 11. Extraction result of a mid-high level slice. (a) Original image. This slice is five slices (about 5 cm) 
higher than the slice of Fig. 10. (b) Homogeneous dark regions are the extracted organs. 
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nt test, because many of these images were of extractable organs were very close to the gray levc 
>oor quality. Our results on these images were: the surrounding tissues. Figure 13 shows exampl 

:: grade A--85%, gradeB-Ox, gradeC-15x, 
some of the poor quality images that failed in the 
set. 

grade A-70%, grade B-6%, grade C-23%, 
gradeA-52x, gradeB--31x, gradeC-17%. 

We believe that the overall performance of the 
tern is very good. The two principles of modeling 

t of the detections that failed were due to the flexible control make it possible to achieve a diff 
lality of the images. The gray levels of the non- combination of powerful discriminatory capat 
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(b) 

Fig. 12. Extraction result of a high level slice. (a) Original image. This slice is five slices (about 5 cm) higher 
than the slice of Fig. 11. (b) Homogeneous dark regions are the extracted organs. 
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(4 

Fig. 13. Several poor quality images from the test set. 

and tolerance to wide variation of instances, both of 
which are required in this task domain. However, the 
system exhibits some weakness, especially in making 
distinctions between different adjacent tissues of very 
close gray tones. This weakness is caused by lack of 
shape knowledge with which to make the educated 
guesses that human dosimetrists use. The use ofseveral 
different modes of data might be useful here. Despite 
its weaknesses, the basic approach of the current system 
is very effective as a first approximation to successfully 
locating the core region of an organ of interest. 
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