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Abstract

Finding point correspondences plays an important role in automatically building statistical shape

models from a training set of 3D surfaces. For the point correspondence problem, Davies et al. [1]

proposed a minimum-description-length-based objective function to balance the training errors

and generalization ability. A recent evaluation study [2] that compares several well-known 3D

point correspondence methods for modeling purposes shows that the MDL-based approach [1] is

the best method.

We adapt the MDL-based objective function for a feature space that can exploit nonlinear

properties in point correspondences, and propose an efficient optimization method to minimize the

objective function directly in the feature space, given that the inner product of any vector pair can

be computed in the feature space. We further employ a Mercer kernel [3] to define the feature

space implicitly. A key aspect of our proposed framework is the generalization of the MDL-based

objective function to kernel principal component analysis (KPCA) [4] spaces and the design of a

gradient-descent approach to minimize such an objective function. We compare the generalized

MDL objective function on KPCA spaces with the original one and evaluate their abilities in terms

of reconstruction errors and specificity. From our experimental results on different sets of 3D

shapes of human body organs, the proposed method performs significantly better than the original

method.

1 Introduction

Statistical shape models show considerable promise as a basis for understanding and

interpreting images and have been widely used in model-based image segmentation and

tracking [5]. To automatically build statistical shape models [5] from a training set of

shapes, finding point correspondence across images becomes an essential task. In this paper,

we focus on establishing dense 3D point correspondences between all 3D surfaces of a

training set.

There are as many proposed methods and algorithms in automatically computing point

correspondences as in statistical shape modeling itself. These approaches vary in terms of
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the shape representation and registration procedure [6]. Davies et al. [1] assumed the

projected coefficients of principal component analysis (PCA) of the data have multivariate

Gaussian distributions and derived an objective function for point correspondence problems

that uses minimum description length (MDL) to balance the training errors and

generalization ability. This optimization approach, although slow in convergence, produces

high quality matching results. A recent evaluation study [2] compares several well-known

3D point correspondence methods for modeling purposes and shows that the MDL-based

approach [1] generates the best results.

Despite all the progress, finding accurate 3D point correspondences has remained a

challenging task, largely due to the lack of a well-defined metric for a good correspondence.

However, certain properties of a good correspondence can be identified. For example,

various nonlinear properties, such as curvature [7] and torsion [8], can not be quantified nor

computed by linear combinations of point positions but have been shown not only necessary

for modeling shapes but also helpful for finding point correspondences. This suggests that

point correspondence algorithms should take nonlinear information into considerations.

Exploiting nonlinear properties in point correspondences to improve results is the main

motivation of this paper. Despite being ranked as the state-of-the-art method for finding

point correspondences, the MDL-based approach [1] does not capture such knowledge

directly, as no local patch information is used. In addition, one key assumption behind the

MDL-based approach is that the projected coefficients on principal component analysis have

a multivariate Gaussian distribution. Such Gaussian properties are preserved and propagated

back via affine transformations (e.g., PCA reconstruction) to all points in the set, which may

not reflect reality. In this paper, we propose to overcome this limitation by assuming that the

distribution of the projected PCA coefficients of the data in a feature space is a multivariate

normal; thus we allow a nonlinear mapping from the input space to the feature space. We

further adapt the MDL-based objective function for the feature space, given that the inner

product of any vector pair can be computed in the feature space.

Besides presenting a novel objective function, we further propose an efficient optimization

method to minimize the objective function directly in the feature space, inspired by the

success of applying the gradient descent method proposed by Heimann et al. [9][10] on the

original MDL-based approach. In order to compute the gradient of the proposed objective

function in the feature space, we identify the key condition, which requires the inner product

of any vector pair to be computed in the feature space. This requirement is extremely useful

for guiding us to a broad set of feature spaces for efficient optimization.

We further employ the Mercer kernel [3] to define the feature space implicitly, given its nice

property of supporting pair-wise vector inner product computation. A key aspect of our

proposed framework is to generalize the MDL-based objective function to kernel principal

component analysis (KPCA) [4] spaces and a gradient descent approach to minimize such an

objective function. Although there has been some previous work [11][12] using KPCA in

active shape models to model shapes, we are not aware of any previous work that

generalizes the MDL-based objective functions to KPCA or shows how to optimize such an

objective function. With our generalized framework, the original MDL framework turns out
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to be a special case where a homogenous polynomial kernel of degree 1 (i.e., an inner

product between two vectors) is used.

We compare the generalized MDL objective function on KPCA spaces with the original

MDL approach [1] and evaluate their abilities in terms of reconstruction error and

specificity. From our experimental results on different sets of 3D shapes of different organs

of the body, the proposed method performs significantly better than the original method.

The two main contributions of the paper are summarized below. First, there is a significant

theoretical generalization of the MDL-based objective function to feature spaces using

gradient descent energy minimization. The original MDL framework, is a special case of

this generalization, when an inner product is used. Second, besides the theoretical

improvement, the empirical contribution is also substantial. Overcoming the limitation that

nonlinear properties are not included in the original MDL framework directly is significant

as our proposed KPCA approach yields much better results.

2 Previous Work

The objective functions automatic methods used to quantize the quality of point

correspondences can be partitioned into three classes: shape-based, model-based and

information-theoretic objective functions [5]. Shape-based objective functions are based on

similarity between shapes and the representative examples use Euclidean distances, bending

energy, curvatures, shape contexts [13] and SPHARM [14] to measure shape similarity. In

contrast model-based objective functions consider the statistics of the dissimilarity among

shapes; the determinant of the model covariance is a representative example. Information-

theoretic objective functions uses information theoretic measures, such as MDL and mutual

information [1][15]. A recent evaluation study [2] that compares several well-known 3D

point correspondence methods for modeling purposes shows that an information theoretic

objective function, the MDL-based approach [1], is the best method. Because of its superior

performance, this class of information theoretic objective functions is the main focus in this

paper.

In the following, we first review the MDL-based approach [1] in detail. Then, PCA and

KPCA, which play important roles in both MDL-based objective functions and

understanding the proposed framework, are reviewed. Assume that we have a training set of

N 3D shapes, Γ = {x1, x2, …, xN}, and each shape is represented by M 3D landmarks points.

Conventionally, we can represent each such shape by a vector with dimension 3M × 1. Note

that 3D shapes are used for illustration only and all the methods we will review can be

applied to both 2D curves and 3D shapes.

2.1 Correspondence by Minimizing Description Length

Davies et al. [1] proposed a MDL-based objective function to quantize the quality of the

point correspondences. In this paper, we use the commonly-used version F proposed by

Thodberg [16] as defined below.
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(1)

Given a set of shapes and a set of known point correspondences, PCA is computed on the set

of shapes, and the computed eigenvalues, {λk|k = 1, …, N}, are used to calculate F in (1).

λcut is a parameter that determines the point where we effectively switch between the

determinant-type term (i.e., the if-part in (1)) and the trace-type term (i.e., the otherwise-part

in (1)). The determinant-type terms jointly measure the volume of the training set after

correspondence in shape space, which favors compactness. The trace-type terms jointly

measure similarity of each pair of the training shapes after correspondence via Euclidean

distance.

Given the above MDL-based objective function, an efficient method for manipulating point

correspondences and an optimization algorithm that minimizes the objective function are

required in order to find optimal point correspondences [5][9]. Typically, manipulating point

correspondences is treated as parameterizing and then reparameterizing the surfaces. A

parameterization assigns every point on the surface of the mesh to a unique point on the unit

sphere, although parameterizations may not exist for arbitrary surfaces. In this paper, we

assume that the 3D shapes are closed two-manifolds of genus 0. We use a conformal

mapping as a parameterization and a reparameterization that modifies the parameterization

based on kernels with strictly local effects, as developed in [9].

We assume that the parameterization of the ith shape is controlled by some parameter vector

αi, for which the individual parameters are given by {αi,a|a = 1, …, A}. The gradient descent

approach is used to minimize F with respect to a parameter vector αi. The Jacobian matrix

for the gradient of the objective function is defined as

(2)

It is easy to compute  (see (1)) and so we focus on  in the following discussions.

 can be computed by using the following chain rule for derivatives.

(3)

While  is typically computed by using finite differences, the following analytic form

for  exists:
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(4)

where ci,k is the projection coefficient of the i-th shape vector xi onto the k-th eigenvector bk.

2.2 PCA and KPCA

PCA—PCA is a common approach to model the shape variations of a given training set of

3D shapes. The total scatter matrix S is defined as

(5)

where x̄ is the mean shape vector as defined below.

(6)

PCA finds a projection axis b that maximizes bt Sb. Intuitively, the total scatter of the

projected samples is maximized after the projection of the samples onto b. The optimal Q

projection axes bq, q = 1, …, Q that maximize the above criterion are the eigenvectors of S

corresponding to the largest Q eigenvalues, {λq|q = 1, …, Q}. The reconstruction x̃ of shape

vector x can be used to approximate it.

(7)

where cq = (x − x̄)tbq.

KPCA—Assume that we have an input space of shapes Ψ = R3M×1, a feature space Ω, and a

mapping ϕ : Ψ → Ω. Instead of performing PCA in the input space Ψ, KPCA performs PCA

in the feature space Ω.

The mean of the data points in the feature space, x̂, is defined as follows.

(8)

The covariance matrix C can be defined as follows.

(9)

Let β denoting the column vector with entries, β1, β2, …, βN, which can be computed by

solving the following eigenvalue problem.
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(10)

where K̃
ij = (K − 1NK − K1N + 1NK1N)ij, K = [Kij] is a N × N Gram matrix, and Kij = ϕ(xi)

· ϕ(xj).

To require e, an eigenvector, to be a unit vector, an additional constraint on β must be posed.

(11)

Let {eq, q = 1, …, Q} be the eigenvectors of C with the largest Q eigenvalues {λq|q = 1, …,

Q}. Any eigenvector ei of C can be expressed as

(12)

The reconstruction  of ϕ(x) can be used to approximate it.

(13)

where cq = (ϕ(x) − x̂) · eq.

Instead of using an explicitly defined mapping ϕ, we can use a Mercer kernel [3] that

satisfies the following constraint:

(14)

Commonly used Mercer kernels include Gaussian radial basis functions (RBFs),

inhomogeneous polynomial functions, and sigmoidal functions. Gaussian RBFs are defined

as

(15)

where σ ∈ R is a kernel parameter, and ||x|| is the Euclidean norm of x. Inhomogeneous

polynomial kernels of degree d ∈ R are defined as

(16)

In contrast with inhomogeneous polynomial kernels where the constant one is added in the

definition, homogeneous polynomial kernels of degree d are defined as

(17)
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The common inner product between two vectors xi and xj is a special case of a homogenous

kernel of degree 1. If such a kernel is used in KPCA, KPCA degenerates to PCA.

3 The Proposed Framework

In the following, we first focus on general feature spaces and then on special feature spaces

called Mercer-kernels-induced feature spaces.

3.1 General Feature Spaces

In contrast with [1][16][9] that perform all the work in the input space Ψ, we generalize and

perform our work in the feature space. In other words, instead of using the eigenvalues

computed by PCA in (1), we propose to use those computed by PCA in the feature space Ω.

We propose a gradient descent approach to minimize the objective function based on the

ideas in Section 2.2. to compute the Jacobian matrix for the gradient of the objective

function.

The Jacobian matrix for the gradient of the objective function is defined as

(18)

As in Section 2.1, it is easy to compute , and so we focus on  here.  can be

computed by using the following chain rule for derivatives.

(19)

The term, , is typically approximated by using finite differences. For example, we can

use a forward difference to approximate  as follows.

(20)

where Δαi,a is a predefined small quantity. In addition to the above forward difference

method, it is also possible to use other finite difference methods, such as backward and

central differences and high-order difference methods.

In this paper, we focus on a general class of finite difference methods whose calculations

can be represented by a weighted linear combination, , where {wp|p = 1,

…,P} is a given set of weights and {yp|p = 1,…,P} is a given set of shape vectors as shown

below.
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(21)

Note that forward, backward and central differences, as well as high order difference

methods, are representative examples in this class.

In contrast with using finite differences to approximate , the following analytic form

for  exists1.

(22)

where ci,k is the projection coefficient of the feature vector ϕ(xi) of i-th shape vector xi onto

the k-th eigenvector ek.

By plugging (21), (22) and (12) into (19),

(23)

1The full derivations can be found in appendix A.

Chen et al. Page 8

Comput Vis ECCV. Author manuscript; available in PMC 2014 October 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



From (23), a key insight is that the calculation of  depends on the inner product of two

vectors in the feature space (ϕ(xj)·ϕ(yp)). If an explicitly defined mapping ϕ(x) from Ψ to Ω

is used,  can be computed by (23).

It is easy to see that the previous methods [1][16][9] are special cases of our work when ϕ(x)

= x. In other words, when ϕ(x) = x is used in the proposed framework, the objective function

degenerates to (1)[1][16], and the above gradient descent optimization approach degenerates

to the one in Section 2.2 [9]. In addition, our framework allows nonlinear information easily

if we choose ϕ(x) as a nonlinear mapping from Ψ to Ω.

3.2 Mercer-Kernel-Induced Feature Spaces

Instead of using an explicitly defined mapping ϕ(x) from Ψ to Ω, we can in (23) use a

Mercer kernel (14) that implicitly induces a mapping. In other words, (23) can be further

simplified as follows by plugging (14) into the right-hand side of the last equation in (23).

(24)

Although nonlinear mappings are allowed in both (23) and (24), their time complexities can

be very different. In contrast with the time complexity of using (23) to compute 

depending on the dimensionality of the feature space, the time complexity of using (24) to

compute  depends on the dimensionality of the input space. If a Mercer kernel is used,

our framework can deal with nonlinear mapping functions whose feature spaces with infinite

dimensionality (the dimensionality of ϕ(x) is infinite) and still keep its time complexity

dependent on the dimensionality of the input space and not on the dimensionality of the

feature space. Note that although we focus on using a Mercer kernel in the above

discussions, the proposed framework naturally allows using multiple Mercer kernels without

any modifications.

4 Experiments

We have 3D triangular mesh models of 17 left kidneys, 15 right kidneys, and 18 spleens as

shown in Figure 1. All 3D meshes are constructed from CT scans of different patients2.

After correspondences are found, all the mesh models of the same organ have the same

number of vertices (2563) and the same number of faces (5120), and all vertices are used as

landmarks to represent the shapes. Two methods, the proposed method and MDL, are

compared. The code [10][9] that implements the ideas described in Section 2.1 is used as an

implementation of MDL, and the implementation of the proposed method is built on top of

it. The same heuristic used in [10][9] is used to select λcut values for the organ dataset on

2We constructs the shape of an organ from manual segmentation of CT scans of a patient by using marching cubes in ITK-SNAP
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which the two methods are compared. A weighted forward difference (e.g., a weighted form

of (20)) is used in (21).

We follow a standard procedure extensively used in [1][5][2][9] to compare different point

correspondence methods when the ground truth correspondences among different shapes are

not available, and two standard evaluation measures, leave-one-out cross validation and

specificity, are used. Leave-one-out cross validation is used to determine how accurately an

algorithm will be able to predict data that it was not trained on. The evaluation measure for

this method is the difference between an unknown shape and its reconstruction. In contrast,

given a set of shapes sampled from the probability density function of the training set, the

specificity measure computes the average distance from each sampled shape to the nearest

element of the training set. In both measures, the Euclidean distance (i.e, the sum of the

distances between all pairs of corresponding landmarks) is used to measure the difference

between two shapes.

Figure 2 shows the changes in leave-one-out reconstruction errors for different organs with

different kernel parameters and the numbers of principal components in use. The kernel

parameters can greatly affect the reconstruction errors; for example, the parameters in

Gaussian RBF kernels, 9 and 10, gave significantly lower errors than 2 and 16 in Figure

2(a). In addition, some feature spaces induced by using different parameters in Mercer

kernels failed to capture the nonlinear properties in the point correspondences and

performed worse than MDL. The proposed method with Gaussian RBF kernels, MDL

+K(G), and the best kernel parameters, is better than MDL for left kidneys and spleens and

comparable to MDL for right kidneys. In contrast, the proposed method with

inhomogeneous polynomial kernels, MDL+K(P), and the best kernel parameters, is

comparable to MDL in all the datasets. Figure 3 shows that the specificity measures for

different organs change with different kernel parameters and with the numbers of principal

components in use. MDL+K(G) and MDL+K(P) have better performances than MDL,

which has either the worst or the second worst performance in all datasets. From these two

figures, it can be concluded that MDL+K(G) is the best among the compared methods.

Table 1 shows point correspondences resulting from the models with the lowest

reconstruction errors in Figure 2 in for visual comparisons.

The better performance of MDL+K(G) is mainly attributed to the fact that KPCA with

Gaussian RBF kernels can model nonlinear properties in the point correspondences, while

PCA can not. The comparisons between MDL+K(G) and MDL+K(P) show that for the test

datasets, Gaussian RBF kernels are more suitable than MDL+K(P) in capturing nonlinear

properties in the point correspondences.

5 Conclusions and Future Work

In this paper, we generalize the MDL-based objective function to feature spaces and propose

a gradient descent approach to minimize the objective function. The original MDL

framework is a special case of this theory when an inner product is used in the proposed

framework. We empirically compare the generalized MDL objective function on KPCA

spaces with the original one. From our experimental results on different sets of 3D shapes of
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different organs, the proposed method is better than the MDL in terms of the reconstruction

errors and specificity.

Instead of using the reconstruction errors and specificity, we plan to use some datasets

whose ground truth correspondences are known to directly compare the proposed method

with other existing methods. We currently use a brute-force approach to test all possible

kernel parameter values and select the best one. Because the effect of kernel parameters can

affect the reconstruction errors and specificity greatly, a future study is to investigate how to

choose the kernel parameters that perform best and under what conditions on input shapes

the proposed framework is guaranteed to perform better than the original one. In the

experiments, we only focus on Mercer kernels that can implicitly induce nonlinear feature

spaces. However, the induced nonlinear mappings may not be anatomically meaningful.

Hence, an interesting future direction is to incorporate priori knowledge into the Mercer

kernel, so that an anatomically meaningful feature space can be induced.
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Appendix A

In the following, we will derive an analytic form for . Assume the k-th eigenvector

and eigenvalue of C defined in (9) are ek and λk, respectively. By definition of eigenvalues

and eigenvectors of a matrix, we have Cek = λkek. The inner product of ek and Cek, , is

λk because  and the above relation can be expressed by using the following

equation.

(25)

where the second equality is obtained by substituting C by its definition in (9).

 can be obtained by the following chain rules.

(26)

I is an identity matrix both of whose dimensions are the same as ek. For some nonlinear

mapping functions ϕ, the dimensionality of ϕ(x) can be infinite. Note that  in (26) is

treated as a row vector but it is defined as a column vector in the main paper.
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Fig. 1.
Some examples of the 3D triangular meshes of different organs used in the experiments.

From the top row to the bottom row are left kidneys, right kidneys and spleens, respectively.
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Fig. 2.
How the leave-one-out reconstruction errors for different organs change with different

kernel parameters and the numbers of principal components in use. The rows show different

organs. The first column shows the results with the Gaussian RBF kernels while the second

column shows the results with inhomogeneous polynomial kernels.
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Fig. 3.
How the average specificity for different organs change with different kernel parameters and

the numbers of principal components in use. The rows show different organs. The first

column shows the results with the Gaussian RBF kernels while the second column shows

the results with inhomogeneous polynomial kernels.
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Table 1

The point correspondences found with the compared methods. The columns show different organs. The rows

show the results with the proposed method with Gaussian RBF kernels, the results with the proposed method

with inhomogeneous polynomial kernels and the results with MDL, respectively. Points that correspond are

shown in same colors.
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