Analysis of Human Face Shape Abnormalities Using Machine Learning

Jia Wu (iiawu@uw.edu)
University of Washington

Motivation

- Cleft lip and/or palate
-1 in 700-1000 children born with cleft
- No "gold standard"

- Relatively new area

Plastic Surgery: Subjective outcomes

VS

Plastic Surgery: Subjective outcomes

VS

Anthropometric Calculators

3dMD System and Data Format

3dMD system

Texture map
3D mesh

Previous Use of 3d Images

Automated Face Extraction and Normalization

- Problem statement: given raw data by 3dMD system, crop out the face, front part of skull, and ears based on medical experts' requirement

Input

Output

Automated Face Extraction and Normalization

- Steps:

(a) Original data

(d) Procrustes

(b) Front faced

(e) Cleaned data

(c) Detected face

(f) Side view
J. Wu, R. Tse, L. Shapiro, "Automated Face Extraction and Normalization of 3D Mesh Data", submitted to Proceedings of the 2014 IEEE Engineering in Medicine and Biology Annual Conference, 2014.

Automated Face Extraction and Normalization

- Step1(a): detect landmark-related regions

Automated Face Extraction and Normalization

- Step1(b): rotate to frontal position

Automated Face Extraction and Normalization

- Step2: face detection

(a) Face detection on the original data

(b) Face detection on the screenshot
X. Zhu and D. Ramanan: Face detection, pose estimation, and landmark localization in the wild CVPR 2012

Automated Face Extraction and Normalization

- Step3: Pose normalization using the Procrustes analysis (PA)
- PA is performed by optimally translating, rotating and uniformly scaling the objects.

(a) Landmarks before PA

(b) Landmarks after PA

Automated Face Extraction and Normalization

- Steps4: final cleanup

Automated Face Extraction and Normalization

- Experiment results

Accuracy for each step in the progress			
Dataset	Control	Unrepaired cleft	Repaired cleft
\# of instances	21	64	35
Eye-nose detection	$21(100 \%)$	$60(94 \%)$	$34(97 \%)$
Face detection	$21(100 \%)$	$64(100 \%)$	$35(100 \%)$
Ear and forehead	$21(100 \%)$	$64(100 \%)$	$35(100 \%)$
No clothes left	$21(100 \%)$	$60(94 \%)$	$32(91 \%)$

System Progress

Automatic Landmark Location

- Problem statement: given a template with manually labeled landmarks and a target data, transfer the labeled landmarks to the target data

Template

Target

Target with transferred landmarks
S. Liang, J. Wu, S. Weinberg, L. Shapiro, "Detection of Landmarks on 3D Human Face Data Via Deformable Transformation", in Proceedings of the 2013 IEEE Engineering in Medicine and Biology Annual Conference, 2013.

Automatic Landmark Location

- Method: initial key points using geometric information, followed by a deformable registration

Automatic Landmark Location

- Dataset: 994 normal (aged 3-40)

- Experiment results:

Average distances (mm) and the standard deviation of our method and methods in the literature						
Landmark name	Our method	Yu	Nair	Lu	Colbry	Perakis
Nose tip	1.7 ± 1.1	2.2 ± 6.8	8.8	8.3 ± 19.4	4.1 ± 5.1	4.9 ± 2.4
Right mouth corner	3.1 ± 2.1	-----------	-----------	6.0 ± 16.9	6.9 ± 8.6	5.6 ± 4.3
Left mouth corner	3.1 ± 1.6	------------	------------	6.2 ± 17.9	6.7 ± 9.3	6.4 ± 4.3
chin	5.2 ± 3.5	-----------	-----------	-----	11.0 ± 7.6	6.0 ± 4.3
Right eye inner corner	3.4 ± 4.1	4.7 ± 9.8	12.1	9.3 ± 17.2	5.5 ± 4.9	5.1 ± 2.5
Left eye inner corner	3.8 ± 4.5	5.6 ± 16.1	11.9	8.2 ± 17.2	6.3 ± 5.0	5.5 ± 2.6
Right eye out corner	3.1 ± 5.6	--	20.5	9.5 ± 17.1	-------	5.8 ± 3.4
Left eye out corner	5.0 ± 5.9	------------	19.4	10.3 ± 18.1	------------	5.7 ± 3.5

System Progress

Children with Cleft Before and After Surgery

Before surgery

Find the Mid-facial Reference Plane

Computer-based Methods

The learning method
From learned landmark related regions

The a-Imk method
From automatic landmarks

The mirror method

From literature
J. Wu, R. Tse, C. Heike, L. Shapiro, "Learning to Compute the Plane of Symmetry for Human Faces", ACM Conference on Bioinformatics, Computational Biology and Biomedicine 2011, August 2011.

Survey Setup

- Six medical experts, 50 data (35 unilateral cleft, 10 bilateral cleft, 5 control)

Survey Form

If cannot determine, the reason is: Facial animation \square Resolution \square Artifact \square Other \square : Comments or notes:

Survey Scale Example

2 (probably)

5 (moderately off)

3 (very close)

6 (severely off)

The average ranking score for all methods

Method	direct	m-Imk	mirror	a-lmk	learning
All (50)	2.43	2.54	3.27	2.66	3.15

The average rating score for all methods

Method	direct	m-Imk	mirror	a-Imk	learning
All (50)	2.45	2.53	3.07	2.61	2.93

Rating score Histogram

Learning to Rank

- Performance on predicting

Learning to Rank

- Problem statement: given a list of manually ranked cleft image, learn how to rank based on the severity

J. Wu, R. Tse, L. Shapiro, "Learning to Rank the Severity of Unrepaired Cleft Lip Nasal Deformity on 3D Mesh Data", in International Conference in Patten Recognition, 2014.

Learning to Rank

- Features

Learning to Rank

- Evaluation
- The Spearman correlation coefficient ρ

Ranking correlations for all features(feature length 400, CV4).				
Method	Linear R	SVM R	RankNet	RankBoost
mirror	0.66	0.64	0.51	0.68
a-Imk	0.60	0.60	0.51	0.77
learning	0.57	0.59	0.67	0.75
m-Imk	0.56	0.55	0.63	0.64
direct	0.52	0.52	0.63	0.77

Learning to Rank

(a) Top 5 selected grids

(b) Top 10 selected grids

Ranking correlations for selected features(feature length 5, CV4).

Method	Linear R	SVM R	RankNet	RankBoost
mirror	0.73	0.73	0.72	0.68
a-Imk	0.79	0.78	0.81	0.71
learning	0.79	0.81	0.84	0.75
m-Imk	0.80	0.81	0.83	0.77
direct	0.80	0.81	0.83	0.75

Learning to Rank

- Sample results

expert's order	1	2	3	4	5	6	7	8	9	10
images										
learning	1	3	2	4	5	6	8	9	7	10
a-lmk	1	2	3	5	6	4	8	7	9	10
mirror	1	2	4	8	5	6	9	3	7	10
m-lmk	1	2	3	4	5	6	9	7	10	8
plane	1	2	3	5	4	6	7	9	10	8

System Progress

Automatic landmark location

The mid-facial reference plane

Quantifying the Asymmetry and the Nasal Deformity

Asymmetry
descriptors

\bullet Grid-based angle difference (ADa)

\bullet Point-based difference (PDa)\end{array}

$$
\begin{array}{l}\text { Nasal } \\
\text { deformity } \\
\text { descriptors }\end{array}
$$

$$
\begin{array}{l}\bullet \text { The angle of columella (} \alpha \text {) } \\
\bullet \text { The distance from nose tip to the } \\
\text { mid-facial reference plane (dp) } \\
\text { - The Angle Between the Plane of } \\
\text { the Nose and the Mid-facial } \\
\text { Reference Plane }(\beta)\end{array}
$$

\hline\end{array}\right.\)

Quantifying the Asymmetry and the Nasal Deformity

The Angle Between the Plane of the Nose and the Mid-facial Reference Plane (β)

Quantifying the Asymmetry and the Nasal Deformity

The distance from nose tip to the mid-facial reference plane (dp)

Average Score Before and After

Surgery

- Dataset: 35 unilateral cleft before and after surgery

Comparing three asymmetry scores before and after surgery			
Score	RDa	ADa	PDa
Before surgery	2.04	0.39	4.33
After surgery	1.07	0.26	1.67
Decrease	48%	33%	61%

Comparing three nose deformity scores before and after surgery			
Score	$\|\alpha\|$	$\|\mathrm{dp}\|$	β
Before surgery	0.043	3.29	0.19
After surgery	0.001	1.38	0.11
Decrease	80%	58%	44%

Radius Difference Before and After

Surgery

2.72
1.64

1.22

Quantifying the Asymmetry and the Nasal Deformity

Quantifying the Asymmetry and the Nasal Deformity

- Correlation coefficient of descriptors with ranks given by medical expert based on the severity of cleft before surgery

Correlation coefficient of asymmetry descriptor with experts ranking			
Score	RDa	ADa	PDa
Before surgery	0.71	0.70	0.72
After surgery	0.27	0.02	0.19
Improvement	0.70	0.61	0.70

Correlation coefficient of nose deformity descriptor with experts ranking			
Score	$\|\alpha\|$	$\|\mathrm{dp}\|$	β
Before surgery	0.29	0.76	0.72
After surgery	0.05	0.35	0.04
Improvement	0.30	0.76	0.64

Contributions

Thank you!

Questions?

