Analysis of Human Face Shape Abnormalities Using Machine Learning

Jia Wu (jiawu@uw.edu)

University of Washington

Motivation

- Cleft lip and/or palate
 1 in 700-1000 children born with cleft
- No "gold standard"
- Relatively new area

Plastic Surgery: Subjective outcomes

VS

Plastic Surgery: Subjective outcomes

VS

Anthropometric Calculators

3dMD System and Data Format

Previous Use of 3d Images

 Problem statement: given raw data by 3dMD system, crop out the face, front part of skull, and ears based on medical experts' requirement

• Steps:

(a) Original data

(b) Front faced

(d) Procrustes

(e) Cleaned data

(f) Side view

J. Wu, R. Tse, L. Shapiro, "Automated Face Extraction and Normalization of 3D Mesh Data", submitted to Proceedings of the 2014 IEEE Engineering in Medicine and Biology Annual Conference, 2014. 9

• Step1(a): detect landmark-related regions

• Step1(b): rotate to frontal position

• Step2: face detection

(b) Face detection on the screenshot

X. Zhu and D. Ramanan: Face detection, pose estimation, and landmark localization in the wild CVPR 2012

- Step3: Pose normalization using the Procrustes analysis (PA)
- PA is performed by optimally translating, rotating and uniformly scaling the objects.

• Steps4: final cleanup

• Experiment results

Accuracy for each step in the progress						
Dataset	Control	Unrepaired cleft	Repaired cleft			
# of instances	21	64	35			
Eye-nose detection	21 (100%)	60 (94%)	34 (97%)			
Face detection	21 (100%)	64 (100%)	35 (100%)			
Ear and forehead	21 (100%)	64 (100%)	35 (100%)			
No clothes left	21 (100%)	60 (94%)	32 (91%)			

System Progress

Automatic Landmark Location

 Problem statement: given a template with manually labeled landmarks and a target data, transfer the labeled landmarks to the target data

Template

Target

Target with transferred landmarks

S. Liang, J. Wu, S. Weinberg, L. Shapiro, "Detection of Landmarks on 3D Human Face Data Via Deformable Transformation", in Proceedings of the 2013 IEEE Engineering in Medicine and Biology Annual Conference, 2013.

Automatic Landmark Location

 Method: initial key points using geometric information, followed by a deformable registration

Automatic Landmark Location

- Dataset: 994 normal (aged 3 40)
- Experiment results:

Average distances (mm) and the standard deviation of our method and methods in the literature

Landmark name	Our method	Yu	Nair	Lu	Colbry	Perakis
Nose tip	1.7±1.1	2.2±6.8	8.8	8.3±19.4	4.1±5.1	4.9±2.4
Right mouth corner	3.1±2.1			6.0±16.9	6.9±8.6	5.6±4.3
Left mouth corner	3.1±1.6			6.2±17.9	6.7±9.3	6.4±4.3
chin	5.2±3.5				11.0±7.6	6.0±4.3
Right eye inner corner	3.4±4.1	4.7±9.8	12.1	9.3±17.2	5.5±4.9	5.1±2.5
Left eye inner corner	3.8±4.5	5.6±16.1	11.9	8.2±17.2	6.3±5.0	5.5±2.6
Right eye out corner	3.1±5.6		20.5	9.5±17.1		5.8±3.4
Left eye out corner	5.0±5.9		19.4	10.3±18.1		5.7±3.5

System Progress

Children with Cleft Before and After Surgery

Before surgery

After surgery

Find the Mid-facial Reference Plane

Humanbased

- The direct method
- The m-lmk method

Computerbased

- The learning method
- The a-lmk method
- The mirror method

- Survey the medical experts
- Performance on predicting

Computer-based Methods

The learning method

From learned landmark related regions

The a-lmk method

From automatic landmarks

The mirror method

From literature

J. Wu, R. Tse, C. Heike, L. Shapiro, "Learning to Compute the Plane of Symmetry for Human Faces", ACM Conference on Bioinformatics, Computational Biology and Biomedicine 2011, August 2011.

Survey Setup

• Six medical experts, 50 data (35 unilateral cleft, 10 bilateral cleft, 5 control)

Survey Form

If cannot determine, the reason is: Facial animation \Box Resolution \Box Artifact \Box Other \Box : Comments or notes:

Survey Scale Example

2 (probably)

3 (very close)

4 (slightly off)

5 (moderately off)

6 (severely off)

The average ranking score for all methods						
Method	direct	m-lmk	mirror	a-lmk	learning	
All (50)	2.43	2.54	3.27	2.66	3.15	

The average rating score for all methods						
Method	direct	m-lmk	mirror	a-lmk	learning	
All (50)	2.45	2.53	3.07	2.61	2.93	

Performance on predicting

• Problem statement: given a list of manually ranked cleft image, learn how to rank based on the severity

J. Wu, R. Tse, L. Shapiro, "Learning to Rank the Severity of Unrepaired Cleft Lip Nasal Deformity on 3D Mesh Data", in International Conference in Patten Recognition, 2014.

• Features

- (a) Radius difference
- (b) Angle difference

(c) Curvature difference

(d) Edge difference

- Evaluation
 - The Spearman correlation coefficient ρ

Ranking correlations for all features (feature length 400, CV4).						
Method	Linear R	SVM R	RankNet	RankBoost		
mirror	0.66	0.64	0.51	0.68		
a-lmk	0.60	0.60	0.51	0.77		
learning	0.57	0.59	0.67	0.75		
m-lmk	0.56	0.55	0.63	0.64		
direct	0.52	0.52	0.63	0.77		

(a) Top 5 selected grids (b) Top 10 selected grids

Ranking correlations for selected features (feature length 5, CV4).						
Method	Linear R	SVM R	RankNet	RankBoost		
mirror	0.73	0.73	0.72	0.68		
a-lmk	0.79	0.78	0.81	0.71		
learning	0.79	0.81	0.84	0.75		
m-lmk	0.80	0.81	0.83	0.77		
direct	0.80	0.81	0.83	0.75		

• Sample results

expert's order	1	2	3	4	5	6	7	8	9	10
images	6 R	5	T	20	A	E.	R	6	A	6
learning	1	3	2	4	5	6	8	9	7	10
a-lmk	1	2	3	5	6	4	8	7	9	10
mirror	1	2	4	8	5	6	9	3	7	10
m-lmk	1	2	3	4	5	6	9	7	10	8
plane	1	2	3	5	4	6	7	9	10	8

System Progress

Asymmetry descriptors

Nasal deformity descriptors

- Grid-based radius difference (RDa)
- Grid-based angle difference (ADa)
- Point-based difference (PDa)
- The angle of columella (α)
- The distance from nose tip to the mid-facial reference plane (dp)
- The Angle Between the Plane of the Nose and the Mid-facial Reference Plane (β)

The Angle Between the Plane of the Nose and the Mid-facial Reference Plane (β) 3

The distance from nose tip to the mid-facial reference plane (dp)

Average Score Before and After Surgery

• Dataset: 35 unilateral cleft before and after surgery

Comparing three asymmetry scores before and after surgery							
Score	RDa	ADa	PDa				
Before surgery	2.04	0.39	4.33				
After surgery	1.07	0.26	1.67				
Decrease	48%	33%	61%				

Comparing three nose deformity scores before and after surgery						
Score	α	dp	β			
Before surgery	0.043	3.29	0.19			
After surgery	0.001	1.38	0.11			
Decrease	80%	58%	44%			

Radius Difference Before and After

1.03

 Correlation coefficient of descriptors with ranks given by medical expert based on the severity of cleft before surgery

Correlation coefficient of asymmetry descriptor with experts ranking						
Score	RDa	ADa	PDa			
Before surgery	0.71	0.70	0.72			
After surgery	0.27	0.02	0.19			
Improvement	0.70	0.61	0.70			

Correlation coefficient of nose deformity descriptor with experts ranking						
Score	α	dp	β			
Before surgery	0.29	0.76	0.72			
After surgery	0.05	0.35	0.04			
Improvement	0.30	0.76	0.64			

Contributions

Thank you!

Questions?