Imaging Brain Structure and Function

Thomas J. Grabowski, Jr., MD Professor, Radiology and Neurology (joint) Director, UW Integrated Brain Imaging Center Director, UW Alzheimer's Disease Research Center CSE/EE 577 October 18, 2017

Why image the brain?

- What's wrong?
- How does it work?
- To aid intervention

(Medical diagnosis)(Neuroscience)(Medical treatment, Engineering)

Why is the brain hard to image?

- Different soft tissues (gray, white) give low contrast to xrays
- Cerebral anatomy is 3D complex and variable
- Neurophysiological processes must be imaged indirectly through their coupled vascular and metabolic effects
- Much of the organization of the brain is still poorly understood.
- Cerebral functional zones are defined by microscopic features that can't be imaged directly

Digital image paradigm

- Images are matrices of values of a physical or physiological parameter, extended over an anatomic space.
- The parameter is not derived "directly" from hardware sensors, but by post-acquisition computation.
- Images may be inputs to further workflow.

Paradoxically, imaging is an abstract concept

Outline

- The brain
- Brain imaging modalities
- Standard anatomical space
- Image processing

The brain is an organ

Sulci and Gyri of the Cerebral Cortex

Cortical thickness

FreeSurfer, CARET

Molecular layer

I

- External granular layer
- External pyramidal layer

IV Internal granular

- Internal pyramidal
- Multiform layer VI

Brodmann's cytoarchitectonic map (1909)

Julich cytoarchitectonic map (2009)

Xray Computed Tomography

Tissue vs. Bone Windows

+30 +70

+1000

Hounsfield Number – radiodensity

Computed tomography

- First tomographic anatomic imaging technique
- Modest soft tissue contrast
- Contrast agent (iodinated) already existed
- Good sensitivity to pathology, esp. blood
- Good resolution of bony structures
- Rapid (good throughput, low sensitivity to motion)
- Finds uses as a first-line emergency technique
- Integrated with PET for attentuation correction and anatomic image fusion
- Used very extensively in body imaging

Intracerebral hypertensive hemorrhage

Eyes open

In theory, metabolic mapping techniques can resolve cortical processes at the level of cortical columns.

2-deoxyglucose: visual stim in cats

Eyes closed

One open, one closed

Positron Emission Tomography (PET)

Images of physiological parameters are inferred from the distribution of positron-emitting radiopharmaceuticals

Positron emission

PET detectors

[¹⁸F]Fluorodeoxyglucose PET

PET

- Physiologically distributed signal
- Unrivaled sensitivity
- A medical procedure with ionizing radiation
- Requires radionuclide source (cyclotron) and radiochemistry facilities
- Tracers exist for tissue metabolism (18F-FDG), blood flow (15O-water), DNA synthesis (18F-FLT), Alzheimer disease proteins, and more.

BRAIN IMAGING OF ALZHEIMER'S DISEASE

AMYLOID PET SCAN

Detects amyloid plaques Stereotypical distribution Leads symptoms by 15 years Doesn't change over time

Use: to certify diagnosis Spinal fluid is an alternative.

TAU PET SCAN

Detects tau tangles Variable distribution Correlates well with symptoms Tracks advance of disease

Use: to delineate disease impact To track treatment

Magnetic Resonance Imaging (MRI)

Wassersteifel Roman Signer 1986

MRI

- Water molecules have a natural frequency at which they can accept and radiate energy
- More precisely, the hydrogen nuclei have a quantum mechanical property called *spin angular momentum*
- The spin states of hydrogen nuclei diverge in energy level in the presence of a magnetic field
- Water protons absorb or give off energy to move between these energy levels, at the natural frequency, the Larmor frequency, which is a function of the magnetic field strength.

In a magnetic field, protons precess at a natural frequency. Energy can go in or out of this system *only* at this frequency.

Excitation

- Radiofrequency energy at the Larmor frequency transfers to the water protons of the system.
- This does two things:
 - Introduces a transverse component to the magnetization
 - Synchronizes the precession of the protons
- When the pulse of RF input stops, the system (water in the magnet) will radiate radiofrequency energy for a little while

Relaxation: T1, T2, T2*

- With time (described by T1) the excited dipoles will relax back into alignment with the field.
- Before that happens, their precession will get out of phase (described by T2) and no more signal will be available.
- But even before that, local imperfections in the field will probably cause even faster dephasing (described by T2*).

T1 relaxation occurs at different rates in different tissues

- T1 relaxation is slowest in a homogeneous sample of water (e.g. in CSF)
- T1 relaxation is faster in lipid-rich white matter than in gray matter
- Differential relaxation is the key to tissue contrast in MRI

Together, the values of TR and TE emphasize different tissue parameters.

T2

PD

TE = 20 msec

TE = 120 msec

TE = 20 msec

A **short** TR and **short** TE emphasizes T1 contrast.

A long TR and long TE emphasizes T2 contrast.

A long TR and short TE emphasizes proton density contrast.

FLAIR : FLuid-Attenuated Inversion Recovery — T2 weighting with black spinal fluid

The MRI signal is rich

- Proton density
- Relaxation times (T1, T2)
- Magnetic field distortion (T2*)
- Flow
- Diffusion
- Chemical shift
- Magnetization transfer
 - ••••
Magnetic resonance angiography "MRA"

The "economy" of MRI

- In MRI signal is the sum of the longitudinal magnetization of the protons in the field of view
- This is a like fixed budget, that can be used more or less efficiently, and can be spent to obtain some combination of:
 - Better spatial resolution
 - Better signal to noise ratio (SNR)
 - Reduced imaging time
- There are always trade-offs!
- Advances in MRI are often in the form of a smarter pulse sequence.

Efficient pulse sequences

- Maximize the amount of time spent listening for the signal
- Maximize the number of protons in the sample that are being put to work at any one time
- Optimize the relationship between TR and TE to maximize signal
- We use two efficient sequences extensively: MP-RAGE and EPI GRE fMRI

Diffusion Tensor Imaging

Diffusion

Ellipsoid = Probability of Diffusion Distribution

Isotropic Diffusion

Anisotropic Diffusion

Diffusion eigenvectors

Diagonalization of this tensor provides three eigenvectors (ev_1 , ev_2 and ev_3) with three corresponding eigenvalues (λ_1 , λ_2 and λ_3)

$$D = \begin{pmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{xy} & D_{yy} & D_{yz} \\ D_{xz} & D_{yz} & D_{zz} \end{pmatrix} = E^{T} \begin{pmatrix} \lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3} \end{pmatrix} E$$

Diffusion Tensor Images

Diffusion imaging

- Parameters neurologists are used to seeing
 - Diffusion-weighted image
 - Apparent diffusion coefficient ADC
- Parameters neuroscientists are used to seeing
 - Diffusion fractional anisotropy FA

A measure of how constrained water is to diffuse in only certain directions

– Diffusion principal eigenvector

The axis along which water diffuses most freely

DTI Tract Tracing

In vivo Connectivity-based Cortex Parcellation

Functional Magnetic Resonance Imaging (fMRI)

Physiological basis of fMRI

Brain activity is imaged *indirectly*, through parameters related to metabolic substrate delivery.

Neurovascular coupling

Synaptic electrochemical activity DEPENDS ON Maintenance of membrane potentials WHICH DEPENDS ON Metabolism of glucose WHICH DEPENDS ON Substrate delivery via blood flow

Basis of fMRI signal

HRF sums linearly over trials

A. Dale and R. Buckner Hum Brain Mapp 5:329 1997

Time, seconds

Activation of the anterior temporal lobes during listening to discourse.

Activation of hippocampus during successful memory encoding and retrieval

Encoding

Retrieval

Conjunction

Two fMRI paradigms

• Activation paradigm

- Signal model: predicted BOLD timecourse

• Functional connectivity paradigm

- Signal model: correlated signal timecourses

Damoiseaux et al 2006

"Default" Mode Network

Relevance to adaptive behavior

Deactivation DMN

Activation DAN

Relevance to disease

ty, 2007

Summary: functional connectivity paradigm

- BOLD fluctuations formerly thought to be "noise" are correlated across distant sites.
- Analysis of functional connectivity "at rest" identifies consistent "intrinsic networks"
- Functional connectivity is grounded in anatomic connectivity
- Intrinsic networks may reflect a fundamental level of large-scale physiologic organization

Anchoring standard space

Anchoring standard space The brain "equator" is the intercommisural line

Talairach Space

Talairach Space Montreal Neurological Institute (MNI) space

Voxel-based morphometry

Limits on interpretation of spatial normalization

- Anatomic variability in Talairach space
 1.5 cm
- Irreducible cortical variability
 - This variability is itself variable
 - Cytoarchitecture adds another layer of variability
- Not always easy to assign results to one location
 - Local maximum of statistic field, vs center of mass
 - Extent-based statistics vs Magnitude-based statistics
- fMRI data are typically smoothed for SNR reasons

fMRI Data Post-Processing

fMRI time series

MR

time

fMRI signal reflects multiple simultaneous effects

- Task
- Physiologic fluctuations
 - Cardiac pulsatility
 - Respiratory effects
 - CSF flow/pulsation
- Head motion/spin history
- Slow drifts
- Thermal noise

Statistical analysis

- Problem: at each voxel, estimate the task effect in the presence of other effects
- Technique: multiple linear regression supported by the general linear model:

$$\mathbf{Y} = \boldsymbol{\beta}_1 \mathbf{X}_1 + \boldsymbol{\beta}_2 \mathbf{X}_2 + \dots + \boldsymbol{\varepsilon}$$

- The task effect is estimated by regression coefficient (β) and tested with a *t* statistic

Activation of the anterior temporal lobes during listening to discourse.

Summing Up

- MRI approaches to brain structure and function continue to diversify and become more powerful, driven mostly by conceptual and software innovation.
- Multispectral/multimodal approaches are now common, clinically and in research.
- Imaging approaches are beginning to analyze brain activity in terms of natural systems structure (columns, fields, large scale systems)
- Most of the techniques have not (YET) found their way into clinical application

