Digital Pathology: Diagnostic Errors, Viewing Behavior and Image Characteristics

Ezgi Mercan

Our Aim

We propose novel image features and viewing behavior analysis methods

- to investigate the causes of diagnostic errors and
- to discover accurate and efficient interpretation strategies for pathologists.

Outline

- 1. Introduction
- 2. ROI Localization in WSIs
- 3. Tissue Label Segmentation
- 4. Automated Diagnosis of ROIs
- 5. Viewing Behavior Analysis
- 6. Conclusions

Medical Diagnosis of Cancer

light microscope

Breast Histopathology

Diagnostic Categories

cpupillam@ell/chapige

a terpiceal size table bigg on policesia hyp@ppl@\$ia

6

1. Introduction

2. ROI Localization 3. Tissue Segmentation 4. Automated Diagnosis 5. Viewing Behavior Analysis 6. Conclusions

digiPATH Dataset

pathologist (n=87)

age years in practice # cases per week affiliation lab size education pathology perception

participant ROI* participant diagnosis viewport log

> confidence score difficulty score borderline diagnoses

diagnostic outcome

ROI identification* diagnostic agreement efficiency

case (n=240)

digital WSI consensus ROI consensus diagnosis

biopsy type breast density patient age

Expert Consensus Data Collection

1. Introduction

2. ROI Localization 3. Tissue Segmentation 4. Automated Diagnosis 5. Viewing Behavior Analysis 6. Conclusions

digiPATH Dataset

diagnostic outcome

ROI identification* diagnostic agreement efficiency

Participant Data Collection

Outline

- 1. Introduction
- 2. ROI Localization in WSIs
- 3. Tissue Label Segmentation
- 4. Automated Diagnosis of ROIs
- 5. Viewing Behavior Analysis
- 6. Conclusions

1. Introduction **2. ROI Localization** 3. Tissue Segmentation 4. Automated Diagnosis 5. Viewing Behavior Analysis 6. Conclusions

digiPATH Dataset

Localization of Diagnostically Relevant Regions of Interest in Whole Slide Images

- Whole slide images are big (50,000 x 20,000 pixels).
- The diagnostic decision making is a complex cognitive process that includes visual search and interpretation tasks.
- **Region of Interest (ROI):** Parts of the whole slide to which the pathologists paid attention.
- Our aims are:
 - To understand what attracts' pathologists attention, and
 - To model diagnostically relevant regions computationally using image features.

ROI Localization in WSIs

A Model based on Color and Texture to Predict ROIs

Viewport Log Analy<u>sis</u>

- Where did pathologists really look?
- **viewport**: a rectangular part of the image pathologist sees on the screen
- **viewport logs:** records all viewports
 - *panning:* changes the location of viewport
 - *zooming in/out:* changes the size of viewport

Viewport Log ID	Participant ID	Case ID	Log Time	Position X	Position Y	Width	Height	Zoom Level	Control Width	Control Height	Viewer Version
:	1	:		1	1		:	1	:	1	1
277	406	1883	4/3/13 14:20:39.167	13434	10907	19660	16000	2	983	800	1703987
278	406	1883	4/3/13 14:20:42.463	10154	15527	19660	16000	2	983	800	1703987
279	406	1883	4/3/13 14:20:47.573	15254	17667	19660	16000	2	983	800	1703987
280	406	1883	4/3/13 14:20:47.823	17294	18767	19660	16000	2	983	800	1703987
281	406	1883	4/3/13 14:20:48.087	17814	18767	19660	16000	2	983	800	1703987
282	406	1883	4/3/13 14:20:49.120	17574	19767	19660	16000	2	983	800	1703987
283	406	1883	4/3/13 14:20:49.387	17434	20647	19660	16000	2	983	800	1703987
284	406	1883	4/3/13 14:20:50.683	17474	20647	19660	16000	2	983	800	1703987
285	406	1883	4/3/13 14:20:50.947	21014	21107	19660	16000	2	983	800	1703987
286	406	1883	4/3/13 14:20:51.230	22854	21827	19660	16000	2	983	800	1703987
287	406	1883	4/3/13 14:20:51.510	22874	21827	19660	16000	2	983	800	1703987
288	406	1883	4/3/13 14:20:52.807	27789	25827	9830	8000	4	983	800	1703987
289	406	1883	4/3/13 14:20:54.900	27789	25837	9830	8000	4	983	800	1703987
290	406	1883	4/3/13 14:20:55.167	27799	27717	9830	8000	4	983	800	1703987
291	406	1883	4/3/13 14:20:55.447	27929	28457	9830	8000	4	983	800	1703987
:	1	1		1	5	:	5	1	1	1	1

Zoom Level - The value of the **magnification** per each log entry. Higher the zoom, the smaller the rectangle.

Displacement - The **distance** between the two consecutive viewport rectangles in pixels.

Duration - The **amount of time** a pathologist spent at each viewport rectangle.

ROI Localization in WSIs

Tracking Data Analysis to **Discover ROIs**

ROIs to which pathologist actually paid attention

A Model based on Color and Texture to Predict ROIs

Learning Visual Dictionary

- Words are obtained from ROIs.
- Each pixel patch is a visual *word*.
- We calculated color and texture histograms from each visual word.
- Using k-means clustering we obtained a visual dictionary.

Training: Sliding Window

- Visual bag : overlapping sliding windows
- Each visual bag has 900 visual words.
- Bag-of-words: a histogram of *K* visual words from the visual dictionary
- Bags inside the ROIs are positive samples. Bags outside the ROIs are negative samples.

a histogram (bag of words) for each sliding window

22

Evaluation

- Each sliding window is a sample.
- Evaluation metric: Accuracy

 $accuracy = \frac{\# \ correctly \ classified \ sliding \ windows}{total \ \# \ sliding \ windows}$

Ground Truth (from viewport analysis)

Prediction (from visual bag-of-words model)

Experiments

- Dictionary size:
 - $K = 200 \longrightarrow 5$

K = # words

patch clusters

- Visual words:
 - patches
 - superpixels

superpixel clusters

- We ran 10-fold cross-validation experiments using Logistic Regression.
- Dataset:
 - N=240 whole slide images
 - Expert viewport logs.

Prediction Results

Dictionary Size

K = 40

Removing the visual words that describe the **epithelium** reduces the accuracy significantly.

Results

Ground Truth (from viewport analysis)

Prediction

Summary

- We presented
 - a novel viewport log analysis to detect diagnostically relevant ROIs from pathologists' actions, and
 - a visual **bag-of-words model** based on **color and texture** features to predict ROIs in unseen WSIs.
- 74% prediction accuracy in 240 WSIs.

Outline

- 1. Introduction
- 2. ROI Localization in WSIs
- 3. Tissue Label Segmentation
- 4. Automated Diagnosis of ROIs
- 5. Viewing Behavior Analysis
- 6. Conclusions

digiPATH Dataset

Tissue Label Segmentation

- For an automated diagnosis system, we need to describe the structural changes that lead to cancer.
- Segmentation is a powerful that provides information about the distribution and arrangement of different tissue types.

S. Mehta, E. Mercan, et al., British Machine Vision Conference, 2017 (submitted).

Superpixel Clustering

• Each superpixel cluster can be identified as a biologically meaningful building block of the tissue.

superpixel clusters

Superpixel Clustering

• Patterns emerge when we label the superpixels in an unsupervised manner.

Supervised Tissue Label Segmentation

We tested two models using a subset of ROIs (N=58):

- Support Vector Machines (SVM)
- Convolutional Neural Nets (CNN)

Training Labels

benign epithelium normal stroma 🗖 secretion 📕 background necrosis malignant epithelium 🔲 desmoplastic stroma blood

Superpixel + SVM-based Segmentation

Ground Truth

no neighborhood

1 neighborhood

2 neighborhoods

color and texture histograms

blood

background

benign epithelium malignant epithelium

normal stroma secretion desmoplastic stroma

necrosis

CNN-based Segmentation

CNN-based Segmentation

ROI

Training set: 38 ROIs Test set: 20 ROIs

Segmented ROI

Overlapping Patches 256x256 pixel

Supervised Tissue Label Segmentation

Superpixel + SVM

- Each superpixel is assigned a class label.
- Context: Two circular neighborhoods
- Relatively simple model
- Faster to train (~3 hours)

CNN

- Each pixel is assigned a class label.
- Context: 256x256 and 384x384 pixel patches
- More complex model
- ~1 week to train on special hardware

Evaluation

Each pixel is a sample.

Results

Confusion Matrices

		Prediction						 		ł	Prediction 1 .03 .01 .01 .00 .0 5 .09 .01 .01 .00 .0 1 .13 .07 .02 .00 .0						
background		.89	.01	.01	.00	.02	.07	.00	.01	.93	.01	.01	.03	.01	.01	.00	.00
benign epithelium		.02	.27	.31	.03	.27	.08	.00	.02	.01	.72	.16	.09	.01	.01	.00	.00
malignant epithelium	uth	.02	.10	.47	.00	.24	.16	.00	.00	.06	.09	.61	.13	.07	.02	.00	.03
normal stroma	d Tri	.05	.01	.06	.28	.35	.19	.04	.03	.03	.02	.01	.88	.05	.00	.01	.00
desmoplastic stroma	roun	.04	.03	.17	.03	.61	.11	.00	.01	.06	.02	.05	.66	.20	.00	.01	.00
secretion	Ð	.04	.02	.07	.27	.14	.20	.21	.05	.15	.06	.05	.07	.02	.49	.07	.09
blood		.03	.01	.05	.13	.23	.05	.46	.04	.01	.01	.01	.10	.04	.00	.83	.00
necrosis		.12	.04	.13	.00	.26	.20	.01	.24	.10	.01	.11	.01	.01	.15	.01	.59

CNN

Superpixels + SVM

Segmentation Results

Summary

- Tissue-label segmentation is a useful abstraction.
- We developed a set of 8 tissue labels and collected pixellabel data from a pathologist on 58 ROIs.
- We trained two models: **SVM** and **CNN**
- CNNs performed significantly better than SVMs both quantitatively and qualitatively.

Outline

- 1. Introduction
- 2. ROI Localization in WSIs
- 3. Tissue Label Segmentation

4. Automated Diagnosis of ROIs

- 5. Viewing Behavior Analysis
- 6. Conclusions

digiPATH Dataset

Automated Diagnosis of ROIs

- Diagnostic errors are alarmingly high for pre-invasive lesions of the breast.
- In the digiPATH study, the agreement between pathologists and experts for the atypia cases is only 48%.
- Novel image features for diagnosis can help
 - develop computer aided diagnosis systems, and
 - study the reasons for diagnostic errors.

Superpixel Label Frequency and Co-occurrence Histograms

Co-occurrence Histogram

Structure Feature

Inner Layers

Structure Feature

Diagnostic Classification

4-class classification

Diagnostic Classification

Evaluation

Each ROI is a sample.

tp = true positive
tn = true negative
fp = false positive
fn = false negative

Experiments

- We subsampled the training data for a uniform distribution of all classes.
- We trained SVMs with different features
- We ran 10-fold cross-validation experiments for the 4 classification tasks:

Accuracy for **4-class** classification

Results – Accuracies

	Average Accuracy								
	Invasive vs. Non-invasive	Atypia & DCIS vs. Benign	DCIS vs. Atypia	4-class					
sensitivity	.84	.72	.70						
specificity	.99	.62	.82						
Participant Pathologists	.98	.81	.80	.70					
sensitivity	.70	.83							
specificity	.95	.42							
Freq. and Cooc. Hist.	.94	.70	.83	.46					
sensitivity		.85	.89						
specificity		.45	.80						
Structure Feature	.91	.70	.85	.56					

Structure Feature

Summary

- Image features to describe the diagnostically important visual characteristics:
 - superpixel label frequency and co-occurrence histograms
 - structure feature
- Different features are informative for different diagnoses:
 - Superpixel label frequency and co-occurrence histograms for invasive cancer (0.94 accuracy).
 - Structure features for benign, atypia and DCIS (0.70 and 0.85 accuracies).

Outline

- 1. Introduction
- 2. ROI Localization in WSIs
- 3. Tissue Label Segmentation
- 4. Automated Diagnosis of ROIs
- 5. Viewing Behavior Analysis
- 6. Conclusions

digiPATH Dataset

years in practice # cases per week affiliation lab size education pathology perception assessment (n=5,220)

participant ROI* participant diagnosis viewport log

> confidence score difficulty score borderline diagnoses

Diagnostic Search Patterns: Scanners and Drillers

- Histopathological diagnosis is a visual search.
- Prior work in radiology showed that physicians tend to adopt <u>different search strategies</u>.
- Our aim is:
 - To find efficient and accurate visual search strategies for diagnosis.
 - To understand the factors affecting visual search patterns.

Scanners and Drillers

Scanner

Viewport Graph

Viewport

Pathologist's Screen

Scanners and Drillers

Scanner

Viewport Graph

Viewport

Pathologist's Screen

Driller

Viewport Graph

Viewport

Pathologist's Screen 68

Scanning Percentage

Zoom Level Statistics

Statistical Analysis

What factors affect interpretative strategy?

Pathologist Characteristics Breast Histopathology Perceptions

joint work with Prof. Tad Brunye

Pathologist Demographics

Pathologist Demographics

Interpretation Order

Statistical Analysis

How does interpretative strategy influence diagnostic outcome?

Assessments (n=5,220)

Average Zoom Level Maximum Zoom Level Zoom Level Variance Scanning Percentage ANOVA

Diagnostic Accuracy & Efficiency

> Under-interpretation Over-interpretation Interpretation Time

Diagnostic Accuracy and Efficiency

Scanning does not affect diagnostic accuracy

but it costs time.

Diagnostic Concordance

Average Zoom Level

* p<0.02 (ANOVA)

Diagnostic Concordance

Zoom Level Variance

Scanning Percentage

Maximum Zoom Level

* p<0.02 (ANOVA)

Summary

- Pathologists exhibit two viewing patterns:
 - scanning and drilling
- We developed four objective measures to quantify the viewing behavior:
 - maximum zoom level
 - average zoom level
 - zoom level variance
 - scanning percentage

Summary

- Scanning is correlated with
 - sex (females > males), age (+), facility size (-), experience (-) and confidence (-).
- Pathologists learn to drill in the course of 60 cases.
- Scanning is not predictive of diagnostic accuracy but it is inefficient in terms of time.
- Increasing average and maximum zoom levels, and variance correlates with over-interpretation.

Outline

- 1. Introduction
- 2. ROI Localization in WSIs
- 3. Tissue Label Segmentation
- 4. Automated Diagnosis of ROIs
- 5. Viewing Behavior Analysis
- 6. Conclusions

Our Aim

We propose novel image features and viewing behavior analysis methods

- to investigate the causes of diagnostic errors and
- to discover accurate and efficient interpretation strategies for pathologists.

Contributions

- Novel analysis methods for the viewing behavior:
 - Analysis methods for the tracking logs to detect diagnostically relevant regions
 - Objective measures to quantify the interpretation patterns
- Novel image features for the pre-invasive and invasive lesions of the breast:
 - An 8-label supervised segmentation
 - Structure feature to describe the changes associated with preinvasive lesions

digiPATH

Acknowledgments

Linda Shapiro

Su-In Lee Joann Elmore

Don Weaver Tad Brunye Selim Aksoy

Bilge Soran Sara Rolfe Shu Liang Deepali Aneja Yao Lu Yuguang Lee Sachin Mehta Shima Nofallah Sean Yang Bindita Chaudhuri Nathan Sjoquist Shenqi Tang Irma Lam Mabel Raza Nicola Dell Raven Travillian Jia Wu Shulin Yang Alfred Gui Safiye Celik Scott Lundberg Nao Hiranuma Javad Hosseini Gabriel Schubiner Hugh Chen Mara Rendi Jamen Bartlett Dilip Nagarkar Tom Morgan Paul Frederick Andrea Radick Ross Lambert Natalia Oster Hannah Shucard Parmita Mehta Mike Chung Robert Gens Kivanc Muslu Paul Pham Jinna Lei

of Health

R01 CA172343, R01 CA140560, and K05 CA104699

