Head and Neck Lymph Node Region Delineation with Auto-segmentation and Image Registration

Chia-Chi Teng

Department of Electrical Engineering University of Washington

Outline

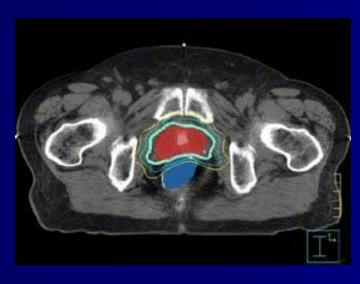
- Introduction
- Related Work
- Lymph Node Region Contouring with Image Registration
- Automatic Segmentation of Landmark Structures
- Geometrical Feature Based Similarity
- Results
- Conclusion

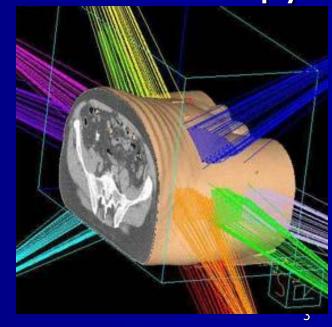
Context

■ 3D Conformal Radiotherapy (beams are shaped to match the tumor)

Intensity Modulated Radiation Therapy

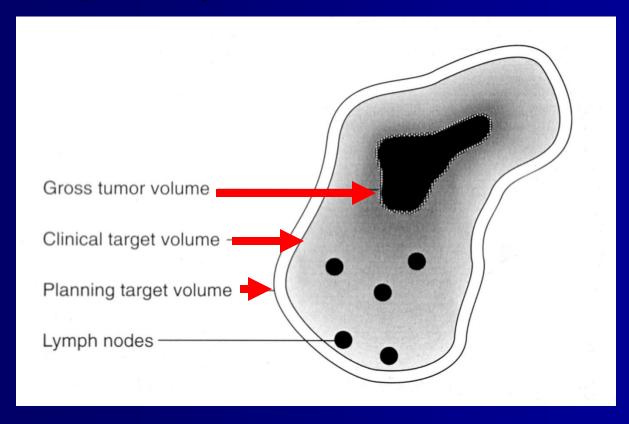
(controls intensity in small volumes)





Target Volumes

GTV / CTV / PTV

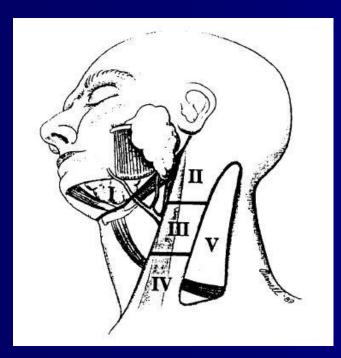


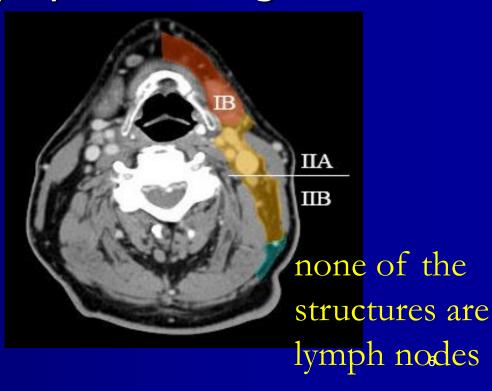
Motivation

- Improve the process of target volume delineation for radiation therapy planning.
- Objective:
 - Auto-contour lymph node regions.
 - -Initial focus on head and neck.

Problem

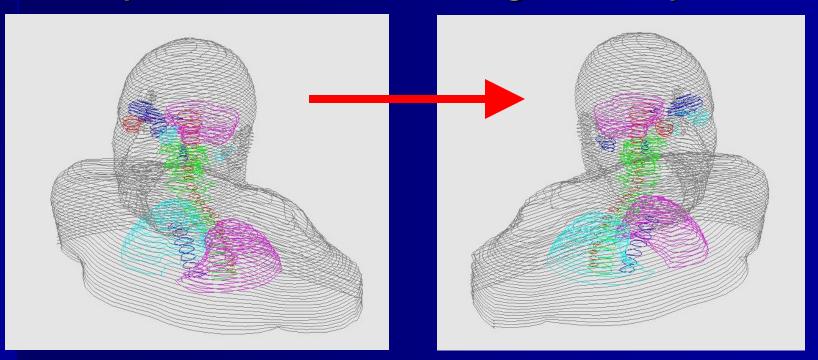
- Where are the lymph nodes?
- Where are the lymph node regions?





Solution

- Create reference (canonical) models.
- Map reference nodal regions to patients.



System Overview

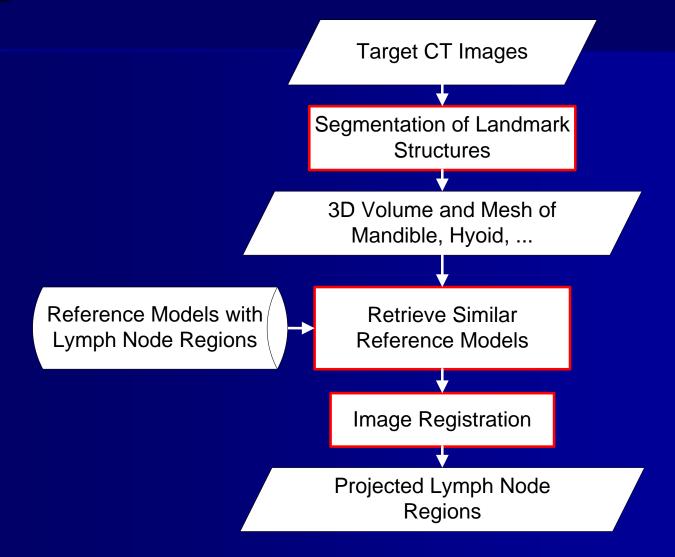
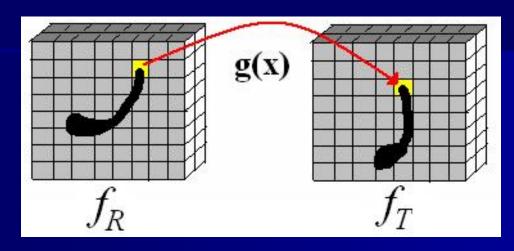


Image Registration



- Align the transformed reference image f_R ° ${\bf g}$ to the target image f_T .
- Find the optimal set of transformation parameters μ that maximize an image similarity function S:

$$\mu_{\text{optimal}} = \operatorname{argmax}_{\mu} S(\mu)$$

Mattes' Method

Similarity Function

$$S(\mu) = -mutual_information(f_R \circ \mathbf{g}, f_T)$$

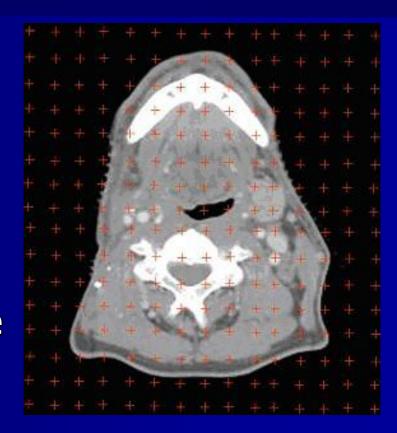
Transformation Function

$$\mathbf{g}(\mathbf{x}|\boldsymbol{\mu}) = \mathbf{R}(\mathbf{x} - \mathbf{x}_C) - \mathbf{T}(\mathbf{x} - \mathbf{x}_C) + \mathbf{D}(\mathbf{x}|\boldsymbol{\delta})$$

 $\mathbf{x} = [x, y, z]^T$ in the reference image coordinates.

Deformable Transformation

- Control points (15*15*11).
- Each control point is associated with a 3-element deformation vector δ , describing x-, y-, z-components of the deformation.



Project Target Lymph Regions

- Image registration aligns reference and target CT sets.
- Apply result transformation g to reference lymph node regions.
- Incorporate anatomical landmark correspondences.
- Use surface mesh of outer body contour, mandible, hyoid ...

Surface Warping

- Shelton's method used to find correspondences between surfaces.
- Energy based surface mesh warping.

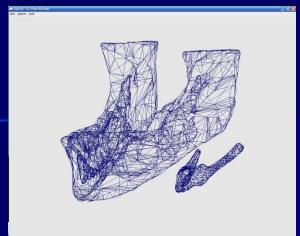
$$E(C) = E_{sim}(C) + \alpha E_{str}(C) + \beta E_{pri}(C)$$

C is the function which maps points from reference surface S_R to target surface S_T .

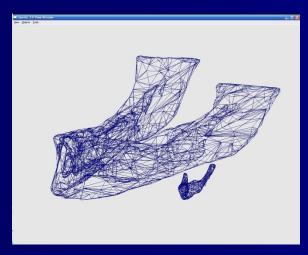
Landmark Correspondence

■ The deformation ζ at landmark points $\zeta_k = \mathbf{w}_k - \mathbf{v}_k$

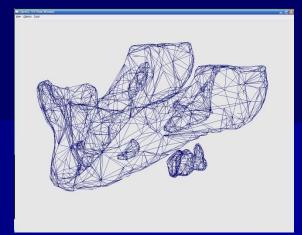
 \mathfrak{v}_k : points from reference surface mesh S_R . \mathfrak{w}_k : corresponding locations on transformed reference surface $S_R \circ C$ matching the target surface mesh S_T .



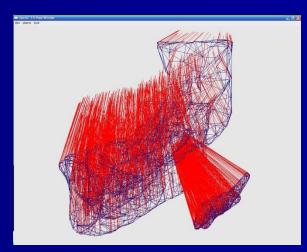
Surface S_R



 $S_R \circ C$



Surface S_T

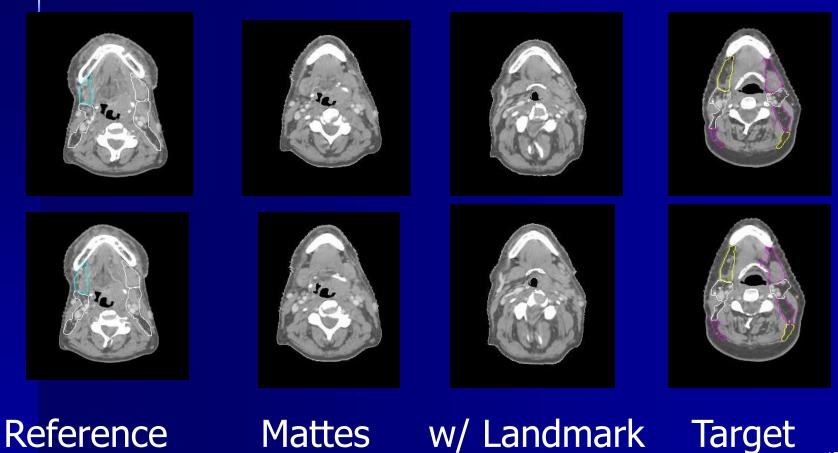


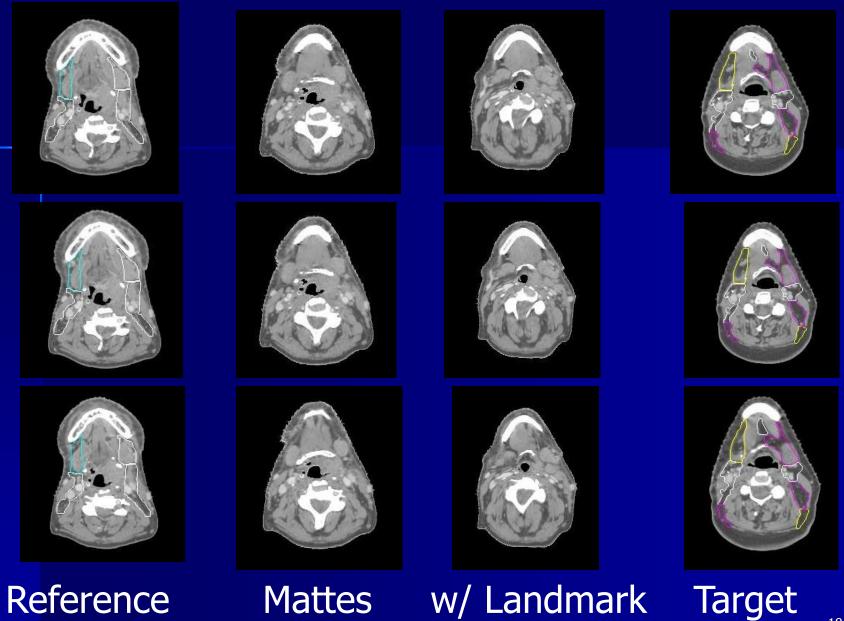
$$\zeta_k = \mathbf{w}_k - \mathbf{v}_k$$

Using Landmark Correspondence

- Deformation vectors $D(\lambda_j)$ are modified according to landmark correspondences ζ_k in the proximity of the control points λ_j .
- Landmark structures align better.
- Faster convergence.

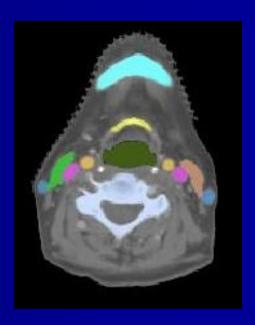
Compare Image Registration Results





Automatic Segmentation of Landmark Structures

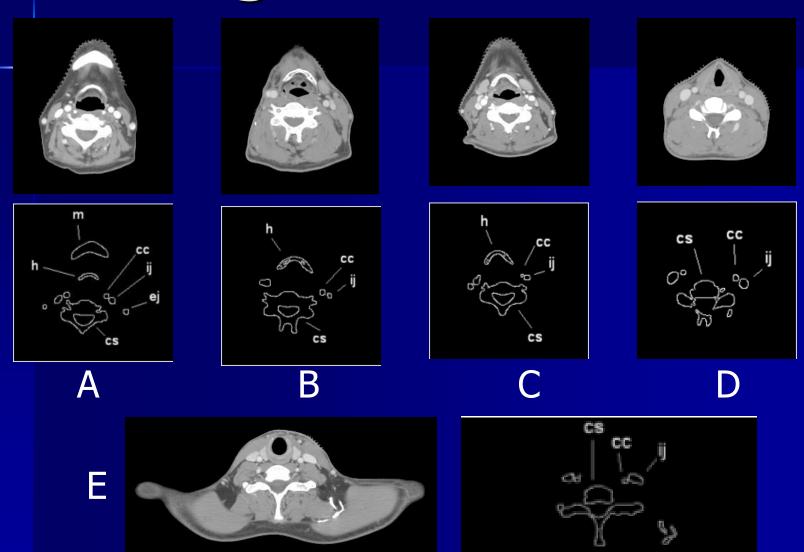
- **Given**: Cancer radiation treatment patient's head and neck CT image.
- Find:
 - Skull base & thoracic inlet.
 - Anatomical structures:
 - cervical spine (white)
 - respiratory tract (dark green)
 - mandible (turquoise)
 - hyoid (yellow)
 - thyroid cartilage
 - internal jugular veins (pink)
 - carotid arteries (dark yellow)
 - sternocleidomastoid muscles (light green, orange)



Method

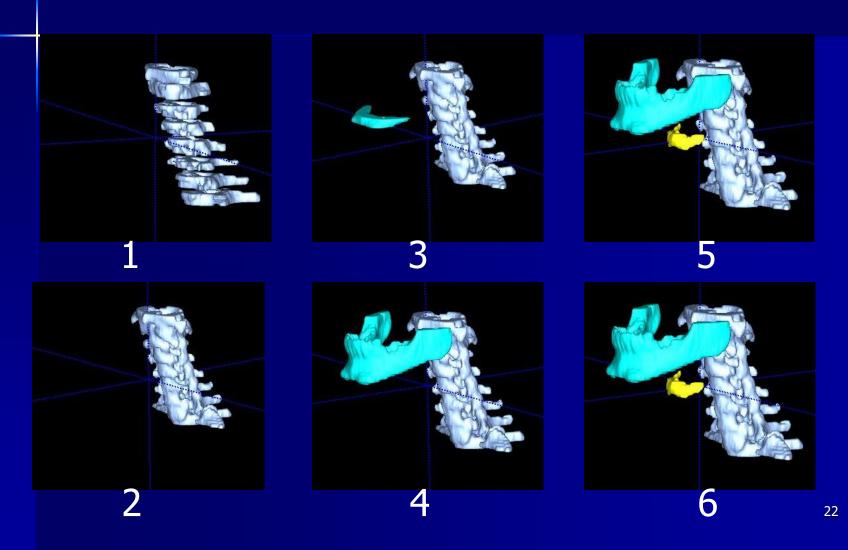
- 2D knowledge-based segmentation
 - Based on Kobashi's work
 - Dynamic thresholding
 - Progressive landmarking
- Combined with 3D active contouring
 - Does not require successful 2D segmentation on every axial slice
 - Initialized with 2D segmentation result

2D Segmentation Results

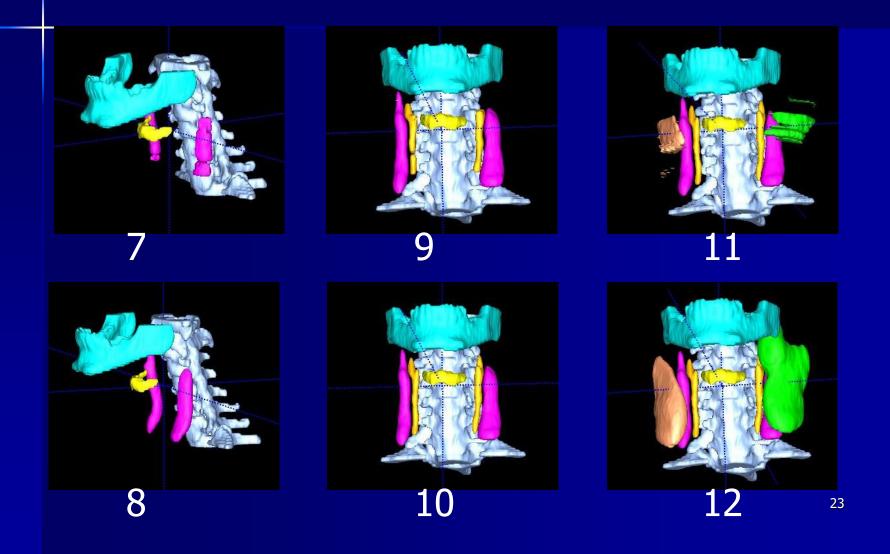


2D/3D Iteration

Identify objects that are easy to find, use them to find harder ones.



2D/3D Iteration — cont.

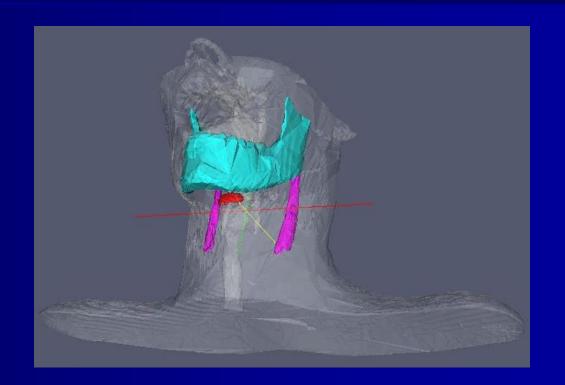


Geometrical Feature-Based Similarity

- **Given**: A stored database *DB* of CT scans from prototypical reference head and neck cancer patients and a single query CT scan *Q* from a target patient.
- **Find**: Similarity between Q and each database image d in DB in order to find the most similar database images $\{d_s\}$.

Structures

- Outer body contour
- Mandible
- Hyoid
- Internal jugular veins



Feature Types

- Simple numeric 3D regional properties: volume and extents.
- Vector properties: relative location between structures.
- Shape properties: surface meshes of structures.

Features for Similarity Measure

- Volume and extents of the overall region
- Normalized centroid of hyoid and mandible
- 3D centroid difference vector between mandible and hyoid
- 2D centroid difference vectors between hyoid and jugular veins
- Surface meshes of mandible and outer body contour

Mesh Feature Distance

- Register reference mesh S_R and target mesh S_T with Iterative Closest Point (ICP), result T.
- Hausdorff distance between two aligned surface meshes, TS_R and S_T

$$d_h(TS_R, S_T) = \max_{p \in S_R} d(Tp, S_T)$$

The Hausdorff distance is the maximum distance from any point in the transformed reference image to the test image.²⁸

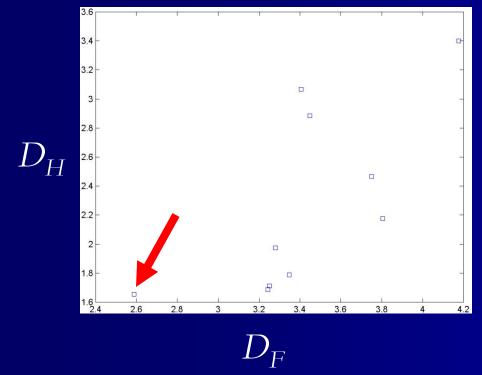
Feature Vector Distance

■ Given feature vectors F_d and F_Q for model d and query Q in the feature vector space R^N .

$$D_F(F_d, F_Q) = \left[\sum_{i=1}^{N} w_i d_i (F_{di}, F_{Qi})^2\right]^{\frac{1}{2}}$$

Evaluation

- Surface mesh distance after full image registration D_H slow.
- Feature vector distance D_F fast.



$$corr_coef(D_{HI} D_F)$$
$$= 0.72$$

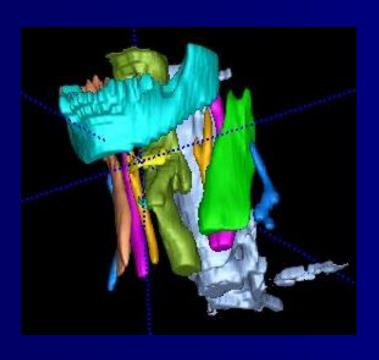
Images with small feature vector distance should produce the best results after registration.

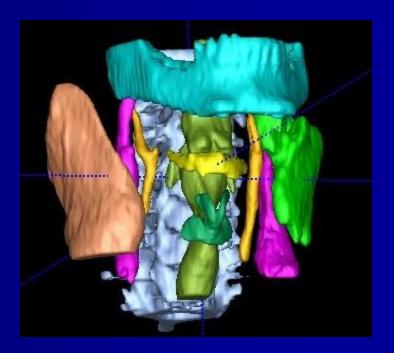
Experiment Results

- 50 head and neck patient CT sets.
- 34 subjects are segmented.
- 20 subjects with lymph node regions drawn by experts.
- Image registration 20 * (20 - 1) = 380 total cases.

Auto-segmentation Results

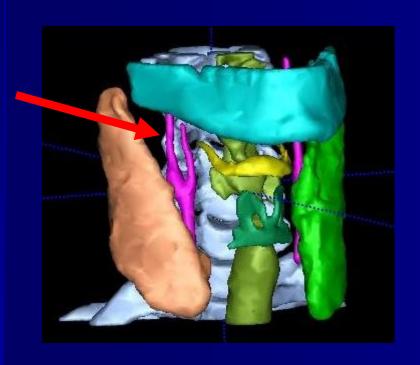
Correct Segmentations



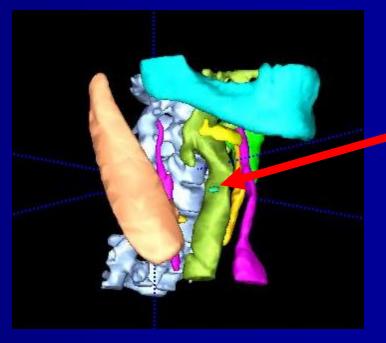


Auto-segmentation cont.

Incorrect Segmentations



Carotid artery misidentified as jugular vein due to surgery.



Hyoid partly missing due to too low inter-slice resolution.

Auto-segmentation cont.

	Successs	Failure	Incorrect	% of success
Cervical Spine	34	0	0	100.00%
Respiratory Tract	34	0	0	100.00%
Mandible	34	0	0	100.00%
Hyoid	34	0	0	100.00%
ThyroidCartilage	33	0	1	97.06%
Left Internal Jugular Vein	27	3	4	79.41%
Right Internal Jugular Vein	31	1	2	91.18%
Left Carotid Artery	25	9	0	73.53%
Right Carotid Artery	30	4	0	88.24%
Left SCM	24	10	0	70.59%
Right SCM	25	9	0	73.53%

Image Registration Results

Success/Failure

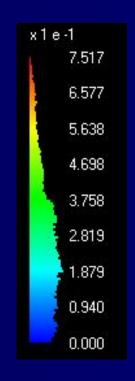
	Total cases	Successful	Success rate (%)
Mattes method	380	367	96.57%
New method using landmark correspondence	380	380	100.00%

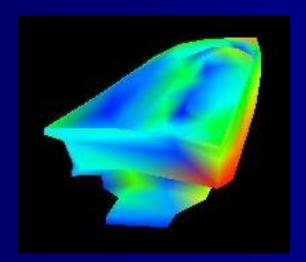
Time of Convergence

	Average	Standard deviation		
Mattes method	32 minutes	6 minutes		
New method using				
landmark correspondence	26 minutes	5 minutes		

Quantitative Evaluation - Surface Mesh Distance

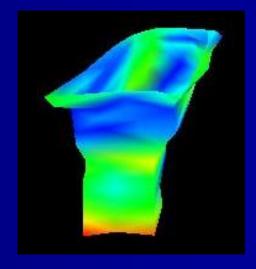
 $\overline{D_H(S_R} \circ \mathbf{g}, S_T, n)$: Hausdorff distance n: lymph node region



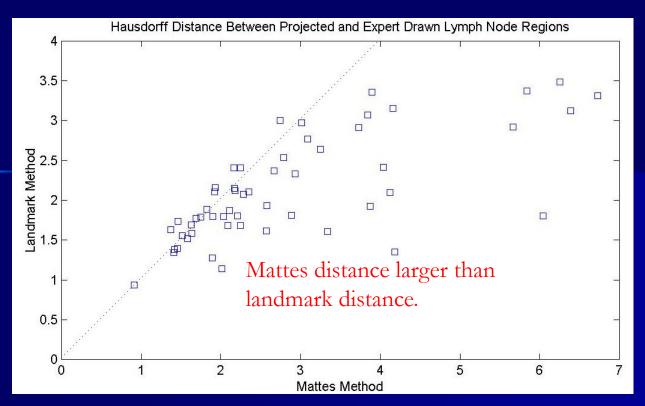


Projected Region $S_R \circ \mathbf{g}$

Color is distance to truth.

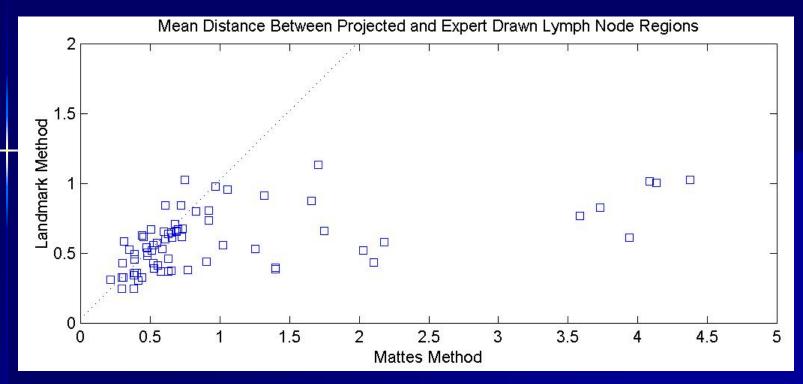


Ground Truth: Expert Drawn Target Region S_T



 $D_H(S_R \circ \mathbf{g}, S_T, 1B)$ for all S_R, S_T .

	Average	Standard deviation
Mattes method	2.85	1.44
New method using landmark		
correspondence	2.12	0.64



Mean_distance($S_R \circ \mathbf{g}, S_T, 1B$) for all S_R, S_T .

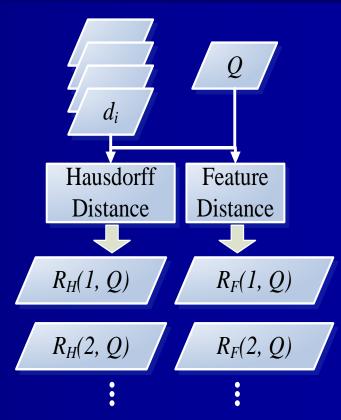
	Average	Standard deviation
Mattes method	1.02	0.51
New method using landmark		
correspondence	0.59	0.21

Similarity Evaluation

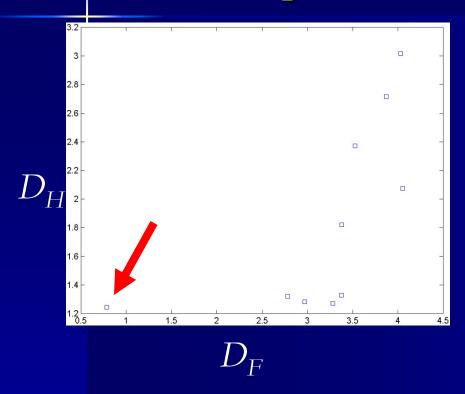
- $R_H(i, Q)$: the i^{th} ranked reference subject for target Q based on the image registration results, D_H .
- $R_F(i, Q)$: the i^{th} ranked reference subject based on geometrical features, D_F .

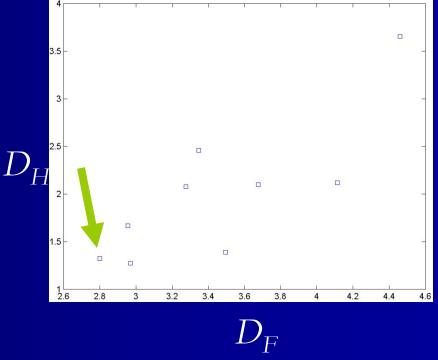
$$P(R_F(1, Q) = R_H(1, Q)) = 80\%$$

 $P(R_F(1, Q) = R_H(2, Q)) = 10\%$
 $P(R_F(1, Q) = R_H(3, Q)) = 4\%$



Similarity Evaluation Examples





 $corr_coef(D_{HI}, D_F)$ = 0.74

 $corr_coef(D_{HI}, D_F)$ = 0.68

Similarity Evaluation — Surface Mesh Distance

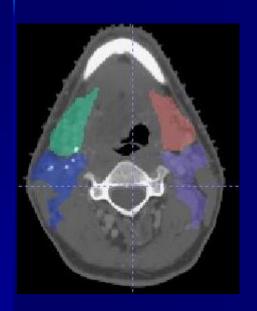
	Average	Standard deviation
D_H for the closest		
reference subject to		
each target based on		
feature distance	1.28	0.31
D_H for all reference		
and target subjects	2.59	0.90

Measurement in centimeter.

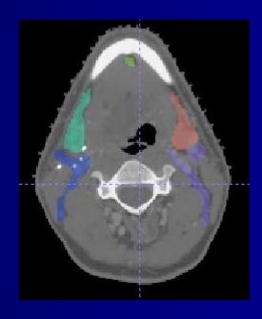
So its better to find the closest subject. 41

Qualitative Evaluation — 1.1

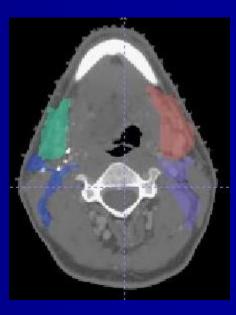
Clinically acceptable target projection.



Mattes



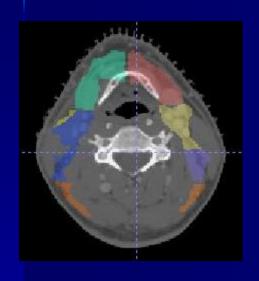
Expert Drawn



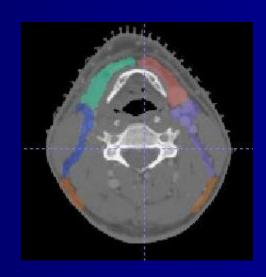
w/ Landmark

Qualitative Evaluation — 1.2

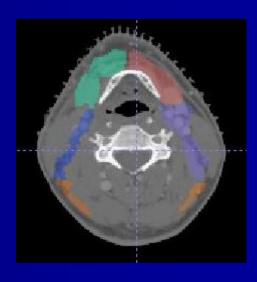
Clinically acceptable target projection.



Mattes



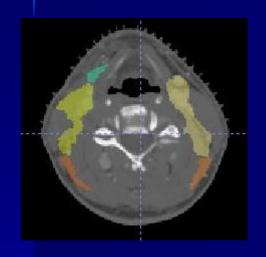
Expert Drawn



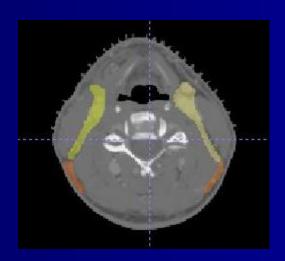
w/ Landmark

Qualitative Evaluation — 1.3

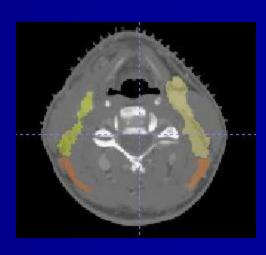
Clinically acceptable target projection.



Mattes



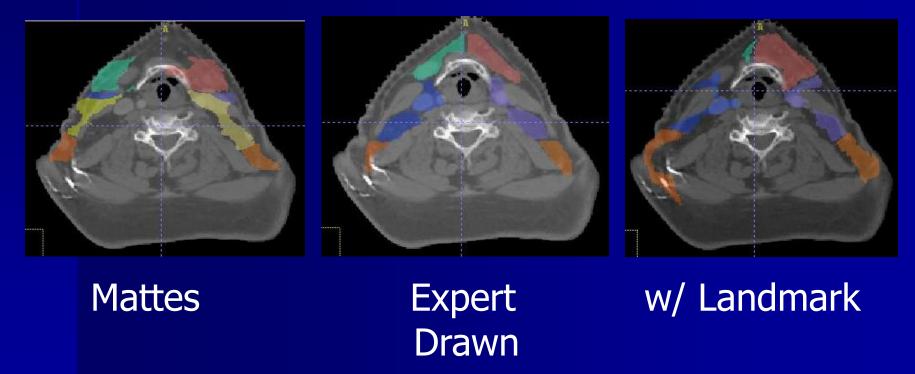
Expert Drawn



w/ Landmark

Qualitative Evaluation — 2

Clinically unacceptable target projection.



Conclusion

- Inter-subject image registration technique shows promise for lymph node region auto-contouring.
- Knowledge-based auto-segmentation is useful for head and neck CT.
- Fast similar subject search is possible and critical as reference database grows.

Future Work

- Integrate and evaluated in a clinical environment.
- Generalize to other types of cancer.
- Regional lymphatic involvement prediction.
- Improve image registration results.
- Improve auto-segmentation results.
 - Validation logic
 - Knowledge-based 3D active contour constraints

Acknowledgement

- Linda Shapiro
- Ira Kalet
- Jim Brinkley
- David Haynor
- David Mattes
- Mark Whipple
- Jerry Barker
- Carolyn Rutter
- Rizwan Nurani

Contributions

- The first auto target contouring tool for radiation therapy. (AMIA 2002)
- An auto-segmentation method combining 2D dynamic thresholding and 3D active contouring. (IEEE CBMS 2006)
- An image registration method using landmark correspondences in conjunction with mutual information optimization. (IEEE ISBI 2006)
- A patient similarity measurement using 3D geometrical features of anatomical structures. (IEEE ISBI 2007)