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Abstract

Background: The success of radiation therapy depends critically on accurately
delineating the target volume, which is the region of known or suspected disease in
a patient. Methods that can compute a contour set defining a target volume on a
set of patient images will contribute greatly to the success of radiation therapy and
dramatically reduce the workload of radiation oncologists, who currently draw the
target by hand on the images using simple computer drawing tools. The most
challenging part of this process is to estimate where there is microscopic spread of
disease.

Methods: Given a set of reference CT images with “gold standard” lymph node
regions drawn by the experts, we are proposing an image registration based method
that could automatically contour the cervical lymph code levels for patients receiving
radiation therapy. We are also proposing a method that could help us identify the
reference models which could potentially produce the best results.

Results: The computer generated lymph node regions are evaluated quantitatively
and qualitatively.

Conclusions: Although not conforming to clinical criteria, the results suggest the
technique has promise.

Background
Malignant tumors in the head and neck represent a great epidemiological problem in

western countries. Head and neck cancer accounts for approximately 3% of all cancer

cases reported in the United State, or roughly 50,000 cases per year [1]. Due to the

tumor position, the risk of developing lymph node metastases in the neck region is

very high. Radiation therapy is used as part of the treatment in a majority of the cases.

Therefore a fast and effective system for creating a conformal radiation treatment for

enlarged (i.e. potentially malignant) lymph nodes is essential.

Computerized tomography (CT) scanning is commonly used for conformal radia-

tion treatment. The scan is performed with the patient set in the treatment position,

immobilized using custom devices, thereby minimizing movement of the treatment

target. Radiation oncologists have adopted definitions for the various components of

the target volume, in order to achieve some uniformity and facilitate the conduct of

inter institutional clinical trials [2,3]. The Gross Target Volume (GTV) is the visible

and palpable tumor mass. Although it can usually be seen on images (CT and MR),

it is normally difficult to automatically identify with existing image processing
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techniques. To date it is still usually hand drawn by clinicians using a computer soft-

ware drawing tool. The Clinical Target Volume (CTV) includes the locations of

microscopic local and regional spread, which usually means the GTV plus the lymph

node regions around it. Microscopic disease cannot currently be imaged by any

existing technique. Even the nodes themselves are often hard to identify in the

images. The task of delineating these nodal regions, which is also usually done by

the clinicians, is very time consuming. Figure 1 shows how these target volumes are

related to each other [4].

Creating the 3D CTV is a critical part of the 3D radiation treatment and Intensity-

Modulated Radiation Therapy (IMRT) as the success of radiotherapy depends on the

accuracy of the CTV. A conformal IMRT plan with accurately drawn CTV can avoid

critical anatomic structures and maximize radiation dosage. As 3D conformal radio-

therapy and IMRT become the state of the art, the process of CTV delineation is more

important than ever. This process currently also requires radiation oncologists to

manually draw the 2D target contours on axial CT slices. It is tedious, time consuming

and can be the bottle neck to make IMRT available to more patients. As imaging

based cervical lymph node region classification is developed, it is possible to design a

system that can identify critical anatomic structures and contour CTV by segmenting

patients’ CT images with little or no user interaction. Software tools that automate the

segmentation of critical structures and contouring of target volume is crucial to the

success of implementing a fast and effective radiation treatment planning system as it

can dramatically decrease the planning effort for radiation oncologists and increase the

availability of IMRT to more patients. The objective of this study is to create a proto-

type system which is capable of generating a patient’s head and neck CTV contours

from his CT scan. This paper summarizes our previous work [5-8] and presents a

complete system with more comprehensive results.

Figure 1 Illustration of target volumes. (Courtesy of Mary Austin-Seymour [25]).
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Imaging-based lymph node regions

The neck has an extensive lymphatic network [9]. In fact, more than one third of the

body’s total number of lymph nodes resides in the extracranial head and neck. Cervical

lymph nodes are divided into regions or ‘levels’ that are described by their anatomic

location [10]. Although this traditional classification was decided using surgical land-

marks, translation into an imaging-based nodal classification is feasible.

Automatic segmentation of cervical lymph nodes remains to be an open problem,

researchers [11,12] are actively working on techniques to segment the lymph nodes for

diagnosis or surgery planning. However, in the context of radiation therapy planning,

the exact contours of lymph nodes are not as important as the lymph node regions

including the surrounding tissue which make up the CTV. Studies have been con-

ducted to create an imaging-based classification for the lymph node levels of the neck

that can be accepted by clinicians and easily used by radiologists [4,13-17]. Anatomic

landmarks were chosen to create a consistent nodal classification similar to the clini-

cally-based classifications. Radiologists must be able to identify the pertinent anatomic

landmarks such as the bottom of the hyoid bone, the back edge of the submandibular

gland, and the back edge of the sternocleidomastoid muscle. The Radiation Therapy

Oncology Group (RTOG) [18] has also published guidelines for CT-based delineation

of lymph node levels in the neck and the anatomic boundaries for delineation.

Automatic delineation of lymph node region can reduce physicians’ manual CTV

contouring time even though the results are not sufficiently accurate for clinical use

directly [19,20]. Atlas-based segmentation is used in most of the state of the art

research [17,21,22] and commercial tools [23,24] for automatic delineation of lymph

node levels in head and neck CT. These methods tend to yield better results when the

atlas is more anatomically similar with the target subjects. The method and database

(CT images) used to construct an unbiased atlas is critical to the success of the seg-

mentation [25,26]. However, the high anatomical variability in post-operative head and

neck CT images makes it very difficult to construct a mean image and atlas that works

well for all patients. We proposed an alternative approach which uses a collection of

CT images with contoured CTV from previously treated patients as reference models

[6], and a method to identify reference subjects whose anatomic structures share simi-

lar properties or features for a given target [8]. Using previously treated patients or

canonical models with the most similar head and neck anatomy as references, an

image registration process can segment lymph node regions more accurately for a tar-

get patient based on known contours in the reference models.

Recent studies evaluated some of the state of the art atlas-based segmentation tools

listed above by comparing the automatically delineated head and neck lymph node

region contours and volumes against the ones drawn by physicians [27-29]. In addi-

tion to qualitative assessment by physicians, statistics measures such as sensitivity

and specificity or Dice similarity coefficient were commonly used as quantitative

assessment. We also proposed an alternative quantitative evaluation using Hausdorff

surface distance measure which maybe more clinically relevant than the statistical

metrics [6].

Given the set of post-op head and neck cancer patients, a series of 2D contours were

manually delineated for each of the lymph node levels on axial CT images; which build

up to 3D volumes. Using an image registration technique, these expert drawn lymph
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node regions are used as reference models and templates to project the lymph node

regions in another target image which are compared to the expert drawn contours in

the target image, i.e. the “gold standard” or “ground truth”. Instead of the atlas-based

approach or choosing one patient as the reference model, we will determine criteria

for choosing one or more similar reference models which can produce optimal results.

Traditional 3D shape retrieval systems [30-32] mostly experiment with artificial models

and focus mainly on classifying 3D models of very different shapes. While these experi-

mental systems can match models of the same classes to a certain degree of success,

they usually fall short of distinguishing the finer details of objects within a class. Using

3D medical images to find similarity among a known set of patients is becoming a

research subject of interest in many medical domains. Ruiz et al. [33] use a shape-

based similarity measure to find similar craniosynostosis patients for intervention

planning. We developed a method to find similar head and neck cancer patients for

radiation planning. The similarity of head and neck anatomy between patients is based

not only on shape features of structures, such as outer body volume, mandible, and

hyoid, but also on their relative locations. These types of medical-image-based pro-

blems are very domain specific, and are not solved by the traditional shape-based

retrieval system.

Recent reviews of 3D shape matching techniques were done by Iyer [34] and Tan-

gelder [35]. A majority of the 3D shape matching systems use feature-based meth-

ods, which compare geometric and topological properties of 3D shapes. Methods

using features or distributions work reasonably well in classifying objects of different

shapes, but they do not discriminate between objects of the same class such as the

head and neck anatomy of different patients. The matching process is usually done

by computing a distance between feature vectors representing the different objects.

Most systems do not give many details on the distance measurements or their com-

parison methods, although they usually imply a Euclidian vector space model and

use either a simple (weighted) Euclidean distance or a city-block (L1 Minkowski)

distance.

Methods
This prototype system is designed to take a cancer patient’s head and neck CT images

as input and use image registration techniques to produce projections of lymph node

regions as output, which can be used to produce a CTV for the radiation treatment

plan. The system can be divided into the following major components:

- Segmentation,

- Retrieval of similar reference models,

- Image registration.

Figure 2 is the flow chart which shows how these components are linked. The offline

process on the left creates a database DB of CT scans from prototypical reference

patients on which experts have drawn contours that denote the lymph regions. These

reference images {di} are segmented offline to extract 3D volumes of landmark anato-

mical structures such as the mandible and hyoid [5]. 3D meshes and geometric proper-

ties of these 3D volumes are also stored in the database.
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Image registration

Given a reference model and a target patient’s CT data set, we can use image registra-

tion methods to align the sets of CT images. Image registration is commonly used in

medical imaging applications. It is essentially a process of finding a geometric transfor-

mation g between two sets of images, which maps a point x in one image-based coor-

dinate system to g(x) in the other. By assuming the head and neck anatomy has

similar characteristics between a specific target patient and a reference subject, we can

use image registration methods to transform a region from the reference image set to

the target image set.

Mattes and Haynor [36] implemented a multi-resolution non-rigid (deformable)

image registration method using B-splines and mutual information. The transformation

of a point x = [x, y, z]T in the reference image coordinate system to the test image

coordinate system is defined by a 3 × 3- homogeneous rotation matrix R, a 3-element

transformation vector T and a deformation term D(x|δ):

g x R x x T x D x( | ) ( ) ( ) ( | ) = − − − +C C  (1)

where xC is the center of the reference volume. A rigid body transformation defined

by R and T was first calculated and used as the initial transformation for the deforma-

tion process. The deformation term D(x|δ) gives an x-, y-, and z- offset for each given

x. Hence the transformation parameter vector μ becomes

 = { , , , , , ; }   t t tx y z j (2)

Figure 2 System components block diagram.
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The first three parameters g, θ, � are the roll-pitch-yaw Euler angles of R. The trans-

lation vector T is defined by [tx, ty, tz]
T. T and R together define the rigid body

transformation.

The parameter δj is the set of the deformation coefficients. The deformation was

modeled on cubic B-splines [37] because of their computational efficiency (via separ-

ability in multidimensional expression), smoothness, and local control. The deforma-

tion is defined on a sparse, regular grid of control points lj, each having associated x-,

y-, and z-components of the deformation. The resolution

 =| , , |  x y z (3)

of the deformation determines the spacing of the grid and can be anisotropic. Mattes

uses control points on a uniform grid with spacing
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where qx, qy, and qz are the dimensions of the reference image.

The deformation at any point x = [x, y, z]T in the reference image is interpolated

using a cubic B-spline convolution:
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By displacing the control points, intermediate deformation values are computed by

cubic spline interpolation between them.

Because contract enhancement is often used in head and neck CT scans, image

intensity range and distribution may vary in different data sets. A mutual information

based registration method such as Mattes’ can work with images in different range.

However, the high anatomical variability in cancer patients’ head and neck CT images

particularly contributed by the surgical resections, pure voxel intensity based registra-

tion such as Mattes’ method described in previous section does not always produce

satisfactory results. A new method [6] is developed which integrates landmark based

information with intensity scheme; hence CT data set need to be preprocessed to

extract landmark information.

Segmentation and landmark correspondence

Fully automatic segmentation in the neck region is particularly difficult, because many

soft tissue anatomic entities are small in size and similar in density. Furthermore, they

can be directly adjacent to each other or only divided by fascial layers that are not visi-

ble in CT images. The relative locations between anatomic entities can vary in different

axial locations. Little work has been done specifically for the neck images; few excep-

tions include the work of Krugar et al. [10] who implemented a semi-automatic system

to segment neck CT images for pre-operative planning of neck dissections; and the

work of Cordes et al. [38] who developed NeckVision system for neck dissection plan-

ning. We implemented an automatic segmentation method [5] designed to locate ana-

tomic structures in the neck that are relevant to the lymph node region boundaries
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including cervical spine, mandible, hyoid, jugular veins, and carotid arteries. This

method is motivated by a knowledge-based technique [39] using consists of constraint-

based dynamic thresholding, negative shape constraints to rule out infeasible segmen-

tation, and progressive landmarking that takes advantage of the different degrees of

certainty of successful identification of each structure.

The drawback of this 2D thresholding approach is the difficulty in determining the

optimal threshold, especially in the head and neck region where many structures of

similar density are crowded in a tight space. Our proposed method eliminates the need

of finding the optimal threshold by combining the 2D thresholding with a 3D active

contour procedure (by ITK, www.itk.org). A sub-optimal threshold that only produces

partial structure on some axial slices can grow into a 3D volume through 3D active

contouring. The 2D regions produced by the knowledge-based dynamic thresholding

method can be used as the initial region or “seed” to eliminate the need of user input.

In the context of finding relevant landmarks, it is not necessary to fully segment cer-

tain structures such as the blood vessels and their branches as we are only interested

in sections lateral to the hyoid. This lax requirement circumvents the need of perfect

segmentation and optimal active contouring parameters. These selected structures

usually have clear contour allowing successful segmentation within the section of axial

slices of interests.

The anatomical structures of interests are segmented in the order according to the

reliability of successful detection. In addition to domain knowledge of gray tone range,

size and shape, each structure is also associated with location relative to other struc-

tures that can be found prior to itself. For each structure, we first run the dynamic

thresholding process to find 2D regions in axial slices according to domain knowledge.

Note that some axial slices may yield successful 2D segmentation results and others do

not, we then the 3D active contouring to build a 3D model using the partial 2D seg-

mentation result as the initial seed. Also note that the active contouring may not grow

the structure perfectly to its full extent, but sufficient to provide landmark information.

This two step process is then repeated for the next structure. 3D surface meshes of

those structures are constructed for both the reference and target subjects. The meshes

can be used as landmarks to improve the alignment and to measure similarity between

the subjects. Figure 3 shows examples of segmentation results on selected subjects.

We choose to use these 3D anatomic structure surfaces as landmarks because vir-

tually no 1D (points) or 2D (lines) anatomic features that can be used as landmarks

are defined in the neck. By using Shelton’s method [40] of finding surface mesh corre-

spondence, we can estimate correspondence between the surfaces of the landmark ana-

tomic structures of the reference and target subjects. The following energy function for

which smaller values indicate better correspondences is defined to evaluate possible

correspondence relations:

E C E C E C E C( ) ( ) ( ) ( )= + +sim str pri  (6)

where C is the function that maps points on surface A to matching points on surface

B, a and b are weight parameters, Esim is the similarity term which measures how clo-

sely C matches points on A to points on B, Estr is the structural term that minimize

the distortion of surface A, and Epri is the “prior information” term which ensures C
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represent a plausible deformation. Initial values of a and b are set to 0.001 and 0.0001

respectively.

Let υk be the set of landmark points sampled from the mandible, hyoid and other sur-

face meshes of the reference image set or surface A, and vk be their corresponding loca-

tions on surface C(A) or the transformed surface which matches the test image set and

minimize the energy function. The deformation ζ at those landmark points is simply

ζ k k k= −  . (7)

Figure 3 Examples of automatic segmentation results for selected subjects: (a) cervical spine, (b)
respiratory tract, (c) mandible, (d) hyoid, (e) thyroid cartilage, (f) jugular vein, (g) common carotid
artery, and (h) sternocleidomastoid muscle.
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Image registration with landmark correspondence

Given the anatomic structure surface correspondence between the reference and target

data, we developed a method to incorporate these landmarks into the image registra-

tion process. Instead of initializing the deformations at the control points to zeros or

random numbers as in the Mattes method, we can use the landmark correspondence

to initialize or adjust the deformations at the control points at each of the multi-reso-

lution stages. The deformation control points are set to a uniform grid

 j x y zl m n= Δ Δ Δ[ , , ] ,ρ ρ ρ T (8)

where 0 ≤ l ≤ rx, 0 ≤ m ≤ ry, 0 ≤ n ≤ rz, and the corresponding deformation values

D(lj) are either initially set to zero or calculated from the deformation coefficients δj
of the previous iteration at a lower resolution of control points as in equation (5).

Given νk and vk as sets of corresponding landmarks in the reference and target

images described in equation (7), the deformation of each control point that has land-

mark points in close proximity is modified to the deformation of the closest landmark

point as follows

D

if

j
k

jx kx x

jy ky x jx kx z
’( )

| |

| | | | =

− < Δ ∨

− < Δ ∨ − < Δ


  

     

1
2

1
2

1
2

DD otherwisej( )

⎧

⎨

⎪
⎪

⎩

⎪
⎪

(9)

where υk is the closest landmark point to lj in the reference image set, and ζk is the

deformation at υk obtained from the surface correspondence in equation (7). A new

set of deformation coefficients δ is then set to the spline coefficients of the new grid of

deformation values D′(l). While the new D′ might not be initially smooth, the follow-

ing mutual information registration will mitigate the side effect. Finally the transforma-

tion parameter vector μ is input to the optimizer for alignment.

Similarity measurement based on anatomical structure geometry

As we need to compare similarity between anatomic structures from different patients,

we do so by measuring the errors between structure surfaces using the 3D Hausdorff

distance [41]. Given two surface meshes, SR and ST, the distance between a point pR
belonging to SR and the mesh ST can be defined as follows:

d p S p pR T
p S

R
T

( , ) min .= −
∈

(10)

We first align meshes SR and ST with the Iterative Closest Point (ICP) rigid body

registration [42] so they are roughly in the same 3D coordinate. Given the 3D point

sets PR = {pi} containing the n vertices of SR, the registration process will produce a

transformation matrix T which minimizes the function

D S S d Tp SR T i T

i

n

( , ) ( , ).=
=
∑

1

(11)
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The transformed reference mesh TSR consists of vertices {Tpi}, and the Hausdorff

distance between TSR and ST is given by

d TS S d Tp Sh R T
p S

T
R

( , ) max ( , ).=
∈ (12)

A database DB of CT scans is created from prototypical reference subjects on which

experts have drawn “ground truth” contours that denote the lymph node regions.

These reference data sets {di} are segmented offline to extract 3D volumes of identifi-

able structures, including the mandible, hyoid, jugular veins and the outer body con-

tour that are relevant to the boundaries for the lymph node regions [5]. We use these

landmark anatomic structures to rapidly produce a distance metric between a target

CT scan as query Q and each data set d in DB. The feature vectors that we use to

compare two CT scans include three kinds of features: 1) simple numeric 3D regional

properties of these structures, such as volume and extents, 2) vector properties or the

relative location between structures and 3) shape properties or the surface meshes of

these structures. The feature vector consists of the following properties,

- volume and extents of the overall head and neck region,

- surface meshes of the mandible and outer body contour,

- 3D centroid difference vector between mandible and hyoid,

- 2D centroid difference vectors between hyoid and jugular veins, and between hyoid

and spinal cord on the axial slice at the centroid of the hyoid,

- normalized centroid locations of the hyoid and the mandible within the region.

Given feature vectors Fd and FQ for model d and query Q in the feature vector space

RN, the following weighed Euclidean distance is used as the distance measure:

D F F w d F FF d Q i i

i

N

di Qi( , ) ( , )=
⎡

⎣
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⎢
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⎦
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where wi is the weight parameter, di is the distance function for feature i,

d f f
d Tf f for meshes

f f otherwisei
h( , )
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1 2
1 2

1 2
=

−
⎧
⎨
⎪
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dh is the Hausdorff distance defined in equation (12), and T is the ICP registration

transformation matrix. The weight parameters range from 10 to 0.1 from heavy to

light in the order of: 1) hyoid locations (normalized and relative to other structures),

2) mandible distance (between two models), 3) vertical distances between skull base,

mandible and, hyoid, 4) head and neck outer contour and volume, and so on.

The distance between mandible meshes of two subjects is one major discriminating

feature of the proposed distance measure. Figure 4 shows the measurement of point to

surface distance d as in Equation (10), from which the directional Hausdorff distance

dh between the reference mandible surface mesh to the target mesh is derived. The

mesh on the left with shading indicates the distance from a given point on the surface

to the mesh on the right.
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Results and discussion
CT images are acquired from the radiation therapy treatment planning system. Head

and neck cancer patients who did not have large scale surgical resection are the pri-

mary candidates. All the images used in the experiments are CT scans performed at

the University of Washington Medical Center using a General Electric CT scanner.

Head and neck CT images were selected in which all of the slices are 512 × 512 pixels

in axial dimension; the distance between slices varies between 1.25 mm and 3.75 mm

for each image set. Selected lymph node regions are drawn as 2D contours on axial

CT slices of twenty subjects chosen by resident physicians in University of Washington

Radiation Oncology Department. These lymph node regions are used as “ground

truth” or “gold standard” as we evaluate the computer generated lymph node regions.

A simple automated segmentation pre-process removes the bed and immobilization

devices on each CT images. The experiment was conducted on personal computers

with Pentium 4 processors and 2 GB RAM.

Image registration

We ran the image registration experiment with the twenty sets of CT images chosen

by the oncologists, each of which is used as a reference and a target data set to align

with every other image set. The maximum resolution of the deformation control points

as defined in Eq. (3) is [15,15,11], or 2475 control points. The pairing results in 20 ×

(20-1) = 380 total registration tests. We used the results of the Mattes method as the

baseline to compare with the results of the new method.

Out of the 380 total tests, the Mattes method failed to converge in 13 cases while the

proposed method succeeded in all cases. The average time to complete the registration

improved by approximately 20%. Tables 1 and 2 compares the success rate and conver-

gence time of the two image registration method out of 380 inter-subject cases.

3D volumes and surface meshes of the lymph node regions are built from the 2D

“ground truth” contours as well as the computer generated lymph node regions. We

can quantitatively evaluate the results of the image registration process with statistical

metric such as spatial overlap index and surface distance measure. Given VT as the

ground true volume and VC as the computer generated volume, we can use Dice

Figure 4 Measuring distance d(pR, ST) in between sample point pR on reference mesh surface on
the left and target mesh ST on the right. The bar graph on the left indicates distance measurement in
centimeter corresponding to the shade of SR.
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similarity coefficient (DSC) to measure the spatial overlap between two segmentations

[43], where

DSC V V V V
V VC T

C T
C T

( , ) ( ) .= ∩
+2 (15)

Table 3 shows examples of the statistical evaluation of the automatically delineated

contours. While statistical metrics give certain validation, we suggest that Hausdorff

surface distance error may be more clinically relevant as it represents the “worst case

scenario” or often a critical error. Given two 3D surface meshes: reference lymph node

region transformed into target space as the projected region and the corresponding

“ground truth” region of the target subject; we measure the Hausdorff distance and

mean distance between these meshes by sampling the surface points. The Hausdorff

distance between the projected lymph node region N of reference subject SR and the

expert drawn region for a given target subject ST can be defined as DH(TSR, ST, N),

where T is transformation resulted from the image registration of SR and ST.

Figure 5 shows an example of qualitative comparison of image registration results

using the Mattes’ method without landmark information and the proposed method

which incorporates landmark correspondence. Rows A-E show selected axial CT slices

in the neighborhood of the hyoid in various data sets from superior to inferior loca-

tion. Column 1 shows slices from the reference subject, and column 4 shows slices

from the target subject. Columns 2 and 3 show transformed reference images which

were re-sampled to match or align with the target images using the transformation

function g(x|μ) of equation (1) produced from the image registration procedure. Col-

umn 2 is the result of Mattes’ image registration method without using landmark

information, and column 3 is the result of the proposed method using landmark corre-

spondence. The images in column 3 match better qualitatively to column 4 in several

Table 1 Success rate comparison between Mattes and proposed method

Total
cases

Successful registration
cases

Success rate
(%)

Mattes method 380 367 96.57%

Proposed method using landmark
correspondence

380 380 100.00%

Table 2 Time of convergence comparison between Mattes and proposed method

Average time of
convergence

Standard deviation time of
convergence

Cases
faster

Mattes method 32 minutes 6 minutes 326/380

Proposed method using landmark
correspondence

26 minutes 5 minutes 54/380

Table 3 Example of volume overlap analysis with Dice similarity index (DSC)

Level Side Average DSC Standard deviation

1B Left 0.74 0.11

1B Right 0.76 0.10

2 Left 0.71 0.12

2 Right 0.72 0.12
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ways. First of all, for example, the outer body contours is closer to the ones of target

CT. Second, the superior-inferior location of the hyoid bone and the mandible in col-

umn 3 match more closely to the ones in column 4; such as the hyoid bone is in slices

(rows) C-E (and beyond) of column 2, but in slices A¬D of column 4, and the inferior

boundary of the mandible ends in slice D of column 2, but continues beyond slice E in

columns 3 and 4. This is important because both hyoid and mandible represent super-

ior-inferior boundaries to adjacent lymph node levels. Third, the proximity of the cer-

vical spine in column 3 appears to be more closely matched to column 4. Even though

certain soft tissue structures appear distorted in column 3; in the context of delineating

lymph node regions, it is relatively less important compared to matching the location

of the dominant structures defining the boundaries.

Figure 6 shows comparisons of image registration results from the Mattes method

and the proposed method incorporating the landmark correspondence. The horizontal

axis represents the Hausdorff or mean distance between projected lymph node regions

based on the reference model using image registration results from the Mattes method

and corresponding expert drawn lymph node regions of the target subject. The vertical

axis represents matching results using the proposed registration method. The diagonal

dotted lines represent the points where the two measures are equal. The figures show

overall improvement using the proposed registration method. Tables 4 and 5 compare

the mean and standard deviation of results from two methods. The new landmark-

based method improved the average Hausdorff distance by as much as 25%, and the

average mean distance by as much as 42%.

There is currently no quantitative standard defining clinical acceptability for automa-

tically delineated target contours, whether in statistical error or maximum surface dis-

tance error. However, as the results for two sample lymph node region shown in

Tables 4 and 5, the average distances (error) between the generated CTV and ground

truth are under 1 cm for the cases tested; the Hausdorff distances are still in the 3 cm

range. Methods are being investigated to reduce the maximum error as part of the

future work for this continuing project. One of which is to port the registration mod-

ule to a supercomputer platform and increase to resolution of the control points dur-

ing the deformation process. Another is to merge the results of projected CTV from

multiple similar reference models and possibly alleviate regions that contribute the

worst Hausdorff distance.

Figure 7 shows an example of the projected lymph node region contour based on the

result of the image registration. The projected 3D lymph node regions are shown at

the lower left 3D view. They are also overlaid on the target CT images in axial, sagittal,

and coronal views. The radiation oncologists can make adjustments to the suggested

contours as needed.

While the proposed method improves the overall results, it does not decrease the

Hausdorff or mean distance in every case. One reason is that some of the “ground

truth” contours deviate from the image-based classification because physicians were

sometimes influenced by their clinical judgment as they outline the contours [20]. We

also observed that for cases which already produce small Hausdorff or mean distance,

the improvement or regression tends to be negligible. As the collection of reference

data sets grow, it becomes critically important to locate the candidates which can

potentially produce the best results based on the similarity measurement.
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Figure 5 Comparison of results from the image registration methods with and without using
landmark correspondence. Rows A-E show selected axial CT slices in the neighborhood of the hyoid in
various data sets from superior to inferior. Column 1 shows slices from the reference subject, column 4
from the target subject, column 2 is the result of Mattes’ image registration method, and column 3 is the
result of the new method using landmark correspondence.

Teng et al. BioMedical Engineering OnLine 2010, 9:30
http://www.biomedical-engineering-online.com/content/9/1/30

Page 14 of 21



Similarity measurement

For the twenty selected subjects with expert drawn “ground truth” lymph node regions,

each of which is used as target and reference, we measure the feature-vector-space dis-

tance between each target-reference pairs. For each target subjects, we rank all of the

reference subjects by two separate measurements:

- Ranking RI ranks by Hausdorff distance DH between projected lymph node region

and corresponding expert drawn region of target subject. The smallest value has the

highest rank. This represents the ranking of similarity according to the image

Figure 6 Hausdorff and mean distance (in cm) between transformed reference mesh and the target
mesh of nodal regions for all SR and ST, comparing image registration results from Mattes method
and the proposed landmark method.
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registration results, assuming that the more similar reference image aligns better with

the target image. Note that there may be different rankings for each lymph node

region as the Hausdorff distance results vary. These rankings are used as the baseline.

- Ranking RF ranks by distance measure in the feature vector space DF in Equation

(13). The smallest value has the highest rank. This represents the ranking of similarity

according to the geometrical features.

Table 4 DH(TSR, ST, L) for all SR, ST. Hausdorff distance (in cm) between transformed
reference mesh and target mesh for nodal levels (L) 1B and 2

Level Algorithm Average Standard deviation

1B Mattes method 2.85 1.44

1B Landmark enhanced 2.12 0.64

2 Mattes method 3.48 2.15

2 Landmark enhanced 3.07 1.75

Table 5 Mean distance (in cm) between transformed reference mesh and target mesh
for nodal level 1B and 2

Level Algorithm Average Standard deviation

1B Mattes method 1.02 1.01

1B Landmark enhanced 0.59 0.21

2 Mattes method 1.21 1.20

2 Landmark enhanced 0.91 0.68

Figure 7 Sample result of lymph node region projection: (a) level IA, (b)(c) level IB, (d)(e) level II, (f)
(g) level III, and (h)(i) level V. Each color region corresponds to a lymph node region.
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To validate the similarity ranking based on geometrical features RF, we compare it to

the ranking based on image registration results for each target subject RI. We define R

(i, ST) as the ith reference subject in the ranking for the target subject ST. For 81% of

the instances, RF(1, ST) is the same as RI(1, ST), meaning that 81% of the most similar

reference subjects according to geometrical features matches the one that align best

with the target according to image registration. In other words, the probability P(RI(1,

ST) = RF(1, ST) | RF(1, ST)) = 0.81. Additionally, RF(1, ST) has 96% chance of matching

one of the top three subjects in RI. Table 6 summarizes the probabilities of the most

similar subject based on geometric features matching subjects that align best with the

target.

As we previously defined DH(TSR, ST, n) as the Hausdorff distance between the pro-

jected lymph node region n based reference subject SR and the expert drawn for a

given target subject ST. The Hausdorff distance based on the most similar reference

subject in the feature space RF(1, ST) becomes DH(TRF(1, ST), ST, n). Table 7 compares

the image registration results of the most similar reference subject to results of all 380

test cases listed in previous section. The average DH of 1.28 cm is approximately 50%

improvement over the average of all test cases.

Figure 8 shows examples of correlation between the proposed distance measure and

the result of 3D deformable image registration for selected target patients. The vertical

axis shows the Hausdorff distance DH between the transformed 3D mesh of the refer-

ence model lymph nodal region and the corresponding mesh of the test model using

the transformation produced by the 3D deformable image registration. The horizontal

axis represents the distance measurement, or the weighed Euclidian distance DF

between the test and reference model properties in the feature vector space. The left-

most point in each graph represent the most similar reference subjects RF(1, ST) which

matches to one of the subjects that align well with the target, i.e. with the shortest

Hausdorff distance DH(TRF(1, ST), ST, n) compares to others. Table 8 also shows statis-

tical analysis of the correlation coefficients of DF and DH for all the target subjects ST.

Qualitative evaluation

The projected lymph node regions can be evaluated qualitatively by superimposed on

the target subject’s CT images. Figure 9 compares projected lymph node regions to

Table 6 Probabilities of the most similar subject based on geometric features matching
subjects that align best with target

x =
1

x =
2

x =
3

x >
3

P(RI(x, ST) = RF(1, ST) | RF(1, ST)), where RF(1, ST) is the most geometrically similar
reference subject

81% 11% 4% 4%

Table 7 Compare image registration results based on most similar reference subject and
results based on all test cases

Average Standard
deviation

DH(TRF(1, ST), ST, n) for all ST and n, based on most similar reference subjects of
each target subject.

1.28 0.31

DH(TSR, ST, n) for all SR, ST and n, based on all combinations of reference and
target subjects.

2.59 0.90
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expert drawn regions, each region is color coded. Rows 1-3 are sample CT slices from

superior to inferior positions of the same target subject. Column 1 on the left shows

projected regions from Mattes’ method; column 3 on the right shows results from the

new method using landmark information. Regions in column 2 are drawn by a radia-

tion oncologist. These projected lymph regions are reviewed by the radiation oncolo-

gist and considered to be clinically acceptable. The results from the Mattes’ method

are more generous in certain areas covering muscle tissues. Although it may be consid-

ered harmless today, it can be less desirable as the precise lymph node region contours

becomes more important in the future.

Figure 8 Examples of correlation between the proposed distance measure DF in feature vector
space (horizontal axis) and the Hausdorff distance DH between the projected lymph node regions
resulting from registration and those hand-drawn by experts (vertical axis). Figures A and B compare
correlation for two different lymph node regions. Each point in the figures correspond a test subject.

Table 8 Correlation coefficients of DF and DH for all the target subjects ST
Average Standard deviation

Correlation_coefficient(DH, DF) for all ST. 0.61 0.19

Teng et al. BioMedical Engineering OnLine 2010, 9:30
http://www.biomedical-engineering-online.com/content/9/1/30

Page 18 of 21



Conclusion
This software system is the first of its kind that attempts to automate the process of

identifying Clinical Target Volume for head and neck cancer radiation treatment by

projecting lymph node regions using inter-subject image registration techniques. We

developed a image registration technique using landmark correspondences in conjunc-

tion with a voxel based mutual information method, along with a patient similarity

measurement using the 3D geometrical relationship between anatomic structures in

addition to 3D shape descriptors of the structures. The image registration technique

provides a way to potentially automate the lymph node region contouring process for

radiation therapy planning. While the alignment of the projected lymph node contours

on the target image are close enough to suggest the technique has promise, the results

do not conform to clinical criteria. However, this system could drastically reduce the

time needed for a physician to draw a fully-detailed target volume as an intermediate

step that suggests an initial target volume upon which the physician can adjust and

refine before it is used for therapy.

Figure 9 Comparison between projected lymph node regions and expert drawn regions. Column 1
on the left shows projected regions from Mattes’ method; column 3 on the right shows results from the
new method using landmark information. Regions in column 2 are drawn by a radiation oncologist and
considered to be clinically acceptable.
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While the new image registration technique improves the overall result of the target

volume projection, the results discussed in previous section shows that it is perhaps

more important to identify the reference models which can potentially produce the

best alignment. As the similarity measurement is validated by the target volume projec-

tion, twenty data sets with “ground truth” information is not quite enough to provide a

variety of subjects with different anatomic features. We will expand the test data set to

refine and improve the method, while continuing to investigate other potential features

that can be incorporated in the similarity measure for better results, including more

anatomic structures and their relationships. In addition to using one reference model

to project the CTV for a test subject as in the current method, we will investigate the

possibility of using multiple similar reference models and merge their CTV projects to

further reduce the maximum error.

These software tools will need to be evaluated at a clinical environment for head and

neck cancer patients who undergo 3D conformal radiation therapy where the computer

generated target contours can be compared to the expert drawn contours of more tar-

get subjects. The method can also be generalized for treatment of other types of can-

cer. Furthermore, this work can potentially be integrated with other research work

such as predictions of the regional lymphatic involvement of head and neck squamous

cell carcinoma based on primary tumor location and T-stage [44]. By using the lym-

phatic prediction, we can delineate proper target volumes for given primary tumor

location and T-stage.
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