

Some History:

- One of the first effective PET tomographs attributed to Mike Phelps and Ed Hoffman of Washington University for blood flow and metabolism in animals 1974
- First Human scanner 1975 (only ~4 years after first human CT)
- In December 2000, The Health Care Financing Administration recommended Medicare reimbursement of PET for diagnosis, staging and restaging of the following:
 Lung Cancer, Colorectal Cancer, Melanoma, Lymphoma, Head and Neck Cancer (excluding central nervous system and thryoid), Esophageal Cancer, Refractory Seizures, Myocardial Viability, and Breast Cancer.
- PET has 4 major stages:
 - -I. Radionuclide Production
- –II. Radiochemistry
- -III. Imaging
- –IV. Data Analysis

Basic Stages of PET

- I. Radionuclide Production
 - Make radio-isotope
- II. Radiochemistry
 - Make radiopharmaceutical Label a tracer
- III. Imaging
 - 1. Administer radiotracer
 - 2. Positron decay annihilation
 - Anti-parallel photons travel through patient (some interact)
 Photons enter detectors (most interact)
 - 5. Detected photons paired into coincident events
 - Store events in sinogram format (data)
- IV. Data Analysis
 - 1. Correct data for errors
 - 2. Reconstruction into images and interpret

I. Radionuclide Production

Stable nuclei bombarded with high energy particles

PET RADIONUCLIDES PRODUCED WITH A CYCLOTRON

Nuclide	Half-Life	Nuclear Reaction
O-15	2 min	¹⁴ N(d,n) ¹⁵ O; ¹⁵ N(p,n) ¹⁵ O
N-13	10 min	¹² C(d,n) ¹³ N
C-11	20 min	¹⁰ B(d,n) ¹¹ C
F-18	110 min	¹⁸ O(p,n) ¹⁸ F

p is proton, n is neutron, d is deuterium (heavy hydrogen with proton and neutron) In production of F-18, O-18 is the target material bombarded with a proton causing a neutron to be emitted in the production of F-18

Requires on-site cyclotron or quick access to isotopes

Inorganic Scintillators (physical characteristics)							
	Nal(TI)	BGO	LSO(Ce)	GSO(Ce)	relevant detector property		
Density (gm/cm ³)	3.67	7.13	7.4	6.71	1		
Effective Atomic Number	51	75	66	59	sensitivity		
Attenuation Coefficient (@ 511 keV, cm ⁻¹)	0.34	0.955	0.833	0.674	l j		
Light Output (photons/Mev)	40K	~8K	~30K	~20K	energy & spatial resol.		
Decay Time	230 ns	300 ns	12 ns 40 ns	60 ns	counting speed		
Wavelength	410 nm	480 nm	420 nm	430 nm	1		
Index of Refraction	1.85	2.15	1.82	1.85	photo-sensor matching		
Hygroscopy	yes	no	no	no	manufacturing / cost		
Rugged	no	yes	yes	no	J		

