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Overview

Production of X-ray images

Cross sectional images

Reformatted images

Other imaging modalities



Types of medical images

I X-ray projections (chest X-ray, joints, etc.)

I X-ray cross sectional image (Computed Tomography, or CT)

I Nuclear Medicine scans (bone scans)

I Positron Emission Tomography

I Ultrasound

I Magnetic Resonance Images (MRI)

I other. . .



An example X-ray image



The process of X-ray image production
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I
0

x

µ

(x)I

Photons get absorbed in proportion to the number and cross
section of atoms in the slab. The intensity change for a small
thickness ∆x is

∆I = −µI ∆x

where µ is the “attenuation coefficient”. For continuous media,
this gives

dI

dx
= −µI

so
I (x) = I0e−µx



Attenuation with varying density

If µ varies as the X-rays traverse a thick body, projecting from
three dimensions to two (y and z) for an image,

I (y , z) = I0e−
∫ w
0 µ(x ,y ,z)dx

The intensity of X-rays that reach the film or detector will depend
on the total material along each ray from the source to the image,
so objects will appear as overlapped or obscured.



Scattering and absorption of photons (X-rays)

I Photoelectric effect - a photon is absorbed by an atom and an
electron is emitted:

µp ∝ ρZ 3E−3

I Compton scattering - a photon collides with an orbital
electron and is deflected:

µc ∝ ρ
(

Z

A

)
E−1

I Pair production - a photon is absorbed in a collision with a
nucleus and an electron-positron pair is produced.



Energy dependence

I X-ray tube voltages are in the range of 70,000-160,000 volts,
producing photons of 70KeV to 160 Kev.

I The cross section (and thus attenuation coefficient) of each
photon interaction depends on the photon energy.

I Pair production only occurs above 1.022 MeV so is irrelevant
to diagnostic X-ray imaging.

I At 70 KeV the probability of Photoelectric absorption is much
greater than that of Compton scattering, and is highly
dependent on the kind of atom (actually atomic number)

I At 160 KeV Compton scattering predominates and is not
dependent on composition, only tissue density.
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How to see past the overlaps in X-rays

I Cross sectional images can provide much more detail and less
ambiguity

I Computers and digital detectors made it possible to consider
two powerful mathematical ideas: the Radon transform and
the Projection-slice theorem

I The problem is: how to recover a two dimensional function
from its one dimensional line integrals? (Note: from this point
on we are considering log I , not I )

I The solution is to look from all angles!

I These ideas were first used for radio astronomy by Bracewell
and others to map the Sun.

I Later, Cormack, Hounsfield and others showed how to use
them for medical X-ray images.
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A CT cross sectional image of the chest



The Fourier Transform

Every sufficiently smooth function can be considered as made up
of sine (or cosine) waves with varying weights. The weights as a
function of the wave frequency define a function called the Fourier
transform.

I If f is a function of x , the Fourier transform of f is

f̂ (ω) =

∫ ∞
−∞

f (x)e−ixωdx

I The two dimensional version is just a double integral with x
and y , giving a function of ωx and ωy

f̂ (ωx , ωy ) =

∫ ∞
−∞

∫ ∞
−∞

f (x , y)e−ixωx e−iyωy dxdy

I The inverse transform looks similar, except the sign in the
exponent is changed.



The Radon Transform

The Radon Transform of a function of two variables is the integral
of that function along a line in the two-dimensional plane. It is a
projection, something like the X-ray formula.



The Projection Slice Theorem

For simplicity just project onto the x axis, giving

p(x) =

∫ ∞
−∞

f (x , y)dy



The Projection Slice Theorem, continued

The slice through the Fourier transform of f corresponding to this
is the function of ωx obtained by setting ωy = 0.

s(ωx) = f̂ (ωx , 0) =

∫ ∞
−∞

∫ ∞
−∞

f (x , y)e−ixωx dxdy

This is just the one-dimensional Fourier transform of the projection.

p̂ =

∫ ∞
−∞

p(x)e−ixωx dx

To get the entire f̂ , just rotate the projection, which also rotates
the Fourier space coordinates, and then transform back.



Image Reconstruction
A more complete description of the steps:

I collect all the projections (Radon transforms) at all the different
angles (only 180 degrees are needed),

R[f (x , y)](p, θ) =

∫ ∞
−∞

f (p cos θ − q sin θ, p sin θ + q cos θ)dq

where p, q are the rotated (linear) coordinate system,

I Fourier transform each one (one dimensional transform) in the
corresponding p direction,

F [R](ω, θ) =

∫ ∞
−∞

R(p, θ)e−iωpdp

=

∫ ∞
−∞

∫ ∞
−∞

f (x , y)e−iωpdpdq

=

∫ ∞
−∞

∫ ∞
−∞

f (x , y)e−iω(x cos θ+y sin θ)dxdy



Image Reconstruction continued

I The collection of 1-D Fourier transforms is (by inspection) the
two dimensional transform with respect to new variables,
u = ω cos θ and v = ω sin θ, i.e.,

F (u, v) =

∫ ∞
−∞

∫ ∞
−∞

f (x , y)e−i(xu+yv)dxdy

I so, Fourier transform back the entire collection (two
dimensional transform) in terms of u, v ,

frecon(x , y) =

∫ ∞
−∞

∫ ∞
−∞

F (u, v)e i(xu+yv)dudv



Filtered Back-Projection

Instead of all the Fourier transforms, each projection can be
“back-projected” as it is obtained. To do this, rewrite in terms of
integration over ω and θ. This change of variables gives a factor of
|ω|,

frecon(r , θ) =

∫ π

0

∫ ∞
−∞
|ω|F (ω, θ)e−iωpdωdθ

The integrand is the (inverse) Fourier transform of |ω|F (ω, θ)
which can be rewritten as the convolution of the individual
(inverse) Fourier transforms, i.e.,

frecon =

∫ π

0
F−1[|ω|]⊗ R(p, θ)dθ

The convolution of each projection can be computed while the
machine collects the data for the next angle. The function
F−1[|ω|] is called the filter function, and this version is called
filtered back-projection.



Other Reconstruction Algorithms

Many different filter functions have been tried in addition to the
mathematically implied one. They can be adjusted to correct for
finite, limited data sets, and other problems.
Another method is to treat the problem as an algebraic inverse
problem.

1. Start with a uniform image.

2. Compute its projections, and the difference between them and
the measured projections.

3. Adjust the image points in proportion to the difference.

4. Iterate until the error is low enough to accept.



CT Image Data Collection

CT scanner with cover removed to show the X-ray tube, the
detectors and the ring on which both rotate synchronously.



Hounsfield Units

The numbers computed for each pixel are normalized to a scale
known as “Hounsfield Units,” after Godfrey Hounsfield. The
Hounsfield scale is defined so that the Hounsfield number of water
at standard temperature and pressure is 0, and the Hounsfield
number of air is -1000. The formula is:

H(x) =
µ(x)− µwater
µwater − µair

× 1000

Typical bone values range from 400 to 2000 HU.
Although most articles and texts refer to µ as a “linear attenuation
coefficient”, the CT reconstruction does not exactly produce such
numbers, despite the theory in the preceding slides.



Window and Level

The range of Hounsfield Units from air to hard bone is over 2,000 units
(bone is around 1,000 H). This is too many gray levels to be useful.
Typical gray scale displays offer only 256 gray levels. Thus, a subset of
the full range is usually selected to map between 0 and 255 in display
intensities. The window refers to the width of this subset and the level
refers to its center.

Hl = L−W /2

Hu = L + W /2

G (H) =

 0 if H ≤ Hl

(H − Hl)/W × 255 if Hl < H < Hu

255 if H ≥ Hu



Gray scale mapping
A more flexible approach to mapping from image pixels to display values
uses a map array and lookups. It is faster than repeating the
interpolation for many identically valued pixels.

(defun make-graymap (window level range-top)

(let* ((map (make-array (1+ range-top)))

(low-end (- level (truncate (/ window 2))))

(high-end (+ low-end window)))

(do ((i 0 (1+ i)))

((= i low-end))

(setf (aref map i) 0)) ;; black

(do ((i low-end (1+ i)))

((= i high-end))

(setf (aref map i)

(round (/ (* 255 (- i low-end)) window))))

(do ((i high-end (1+ i)))

((> i range-top))

(setf (aref map i) 255))

map))



Applying the gray scale map

(defun map-image (raw-image window level range)

(let* ((x-dim (array-dimension raw-image 1))

(y-dim (array-dimension raw-image 0))

(new-image (make-array (list y-dim x-dim)))

(map (make-graymap window level range)))

(dotimes (i y-dim)

(dotimes (j x-dim)

(setf (aref new-image i j)

(aref map (aref raw-image i j)))))

new-image))

An advantage of this is that by redefining make-graymap you can
use any transformation function you want, e.g., a logarithmic,
bilinear, trillinear or other scale.



Beam hardening

The equations for attenuation, projection and reconstruction
assume that the X-ray beam consists of photons of a single energy.
If the beam is not monoenergetic, the transmitted intensity is
obtained by integrating over energy.

I (y) =

∫ Emax

0
I0(E )e−

∫ w
0 µ(x ,y ,E)dxdE

Then log I is no longer the simple line integral or Radon transform
of a two dimensional image. Applying the basic reconstruction
methods produces artifacts such as streaking. Correcting for this
effect is a complex engineering problem, but has largely been
solved in modern CT scanners.



A sagittal image computed from cross sectional images



A reprojection from cross sectional images



Prism demo

Live demonstration of window and level controls and reformatting
of image data to produce sagittal, coronal and reprojected images
(beam’s eye views).



Magnetic Resonance Images



Ultrasound



Nuclear Medicine Scans

I Sometimes known as “bone scans”

I Involve injection of radio-isotopes in the blood stream

I Similar to X-rays, except the photons are emitted rather than
transmitted

I The intense areas are those where the radio-isotope was
absorbed most

I The brightness of the image indicates activity, i.e., uptake.



An example nuclear medicine scan



Positron Emission Tomography

I Also uses radio-isotopes (positron emitters)

I Positron annihilation produces pairs of photons

I Photons are counted in lines in all directions, similar to CT

I Cross section reconstruction algorithms are similar to CT

I The brightness in these images also indicate metabolic activity



A schematic showing the PET scanner and associated
systems



An example PET image



Diagnosis with images

Left: a CT of a person’s head, and Right, a PET scan of the same
person’s head.
What is the diagnosis?
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