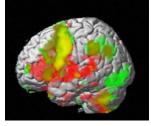

A Similarity Retrieval System for Multimodal Functional Brain Images



Rosalia F. Tungaraza Advisor: Prof. Linda G. Shapiro

Ph.D. Defense

Computer Science & Engineering University of Washington

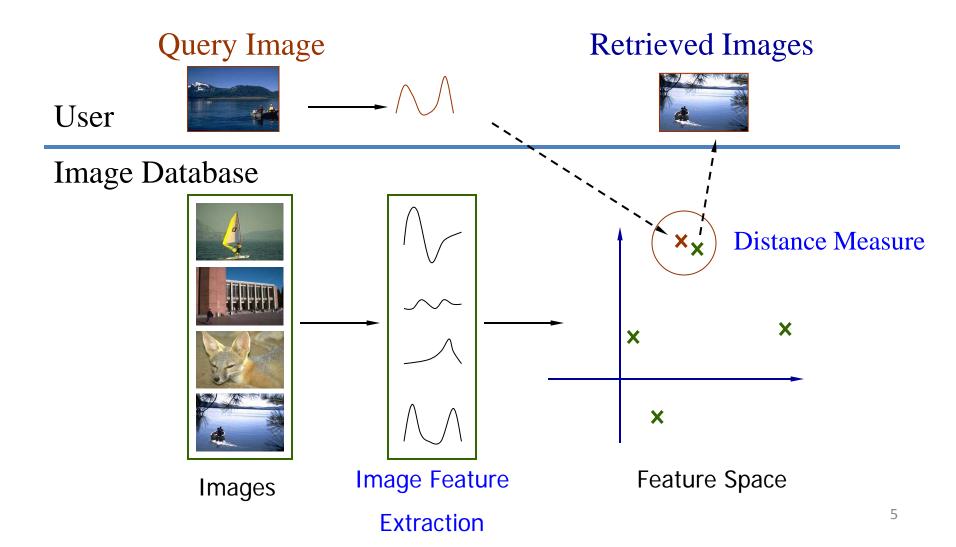
Functional Brain Imaging

- Study how the brain works
- Imaging while subject performs a task
- Image represents some aspect of the brain e.g.
 - fMRI: brain blood oxygen level
 - **ERP**: scalp electric activity

Motivation

Given a database of functional brain images from various subjects, cognitive tasks, and image modality.

> Database users need to retrieve similar images


A system that can automatically perform this retrieval will reduce amount of time and effort users spend during this task

Content-Based Image Retrieval

- Given a query image and an image database, retrieve the images that are most similar to the query in order of similarity.
- Example system for photographic images: Andy Berman's FIDS system; Yi Li's Demo

http://www.cs.washington.edu/research/imagedatabase/demo

Image Features / Distance Measures

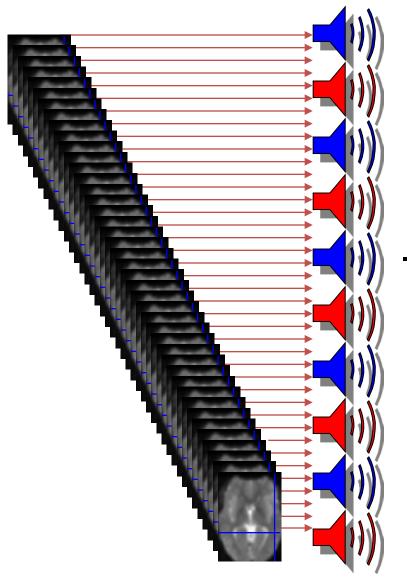
Contributions

- 1. Created a similarity retrieval system for multimodal brain images
 - I. fMRI, ERP, and combined fMRI-ERP
 - II. User interface
- 2. Developed feature extraction methods for fMRI and ERP data
- 3. Developed pair-wise similarity metrics
- 4. Simulated human expert similarity scores

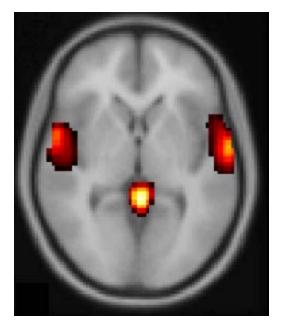

Outline

- Background
 - ≻ fMRI
 - ➢ ERP

Existing Similarity Retrieval Systems for these modalities


- Feature Extraction Process
- Similarity Metric
- User Interface
- Retrieval Performance
- Simulate Human Expert

Functional Magnetic Resonance Imaging (fMRI)


- A non-invasive brain imaging technique
- Records blood oxygen level in brain
- > While imaging, subject performs a task

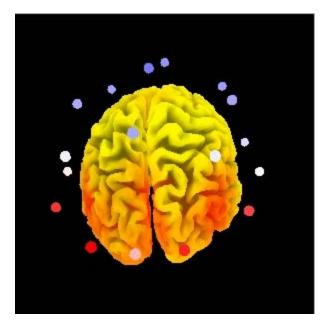
fMRI Statistical Images

Statistical Analysis

Voxel Thresholding

Event-Related Potentials (ERP)

@ 2004 by Nucleus Communications, Inc.


A non-invasive brain imaging technique

- Records electric activity along scalp
- > While imaging, subject performs a task

ERP Source Localization

Researchers want to identify the electric activity and its source for each electrode

But, multiple sources for each electrode

LORETA approximates anatomic locations of sources

Comparison of fMRI and ERP Data

	fMRI	ERP
Spatial resolution	Good (in mm)	undefined/poor
Temporal resolution	Poor (in sec)	Excellent (in msec)

Similarity Retrieval Systems for fMRI Images

Correspondence RV-Coefficient **Dur System** Codebook Wavelet Bipartite Yes No No Yes No Yes Yes Yes Yes Yes No Yes No No No No Yes Yes No Yes No No No No

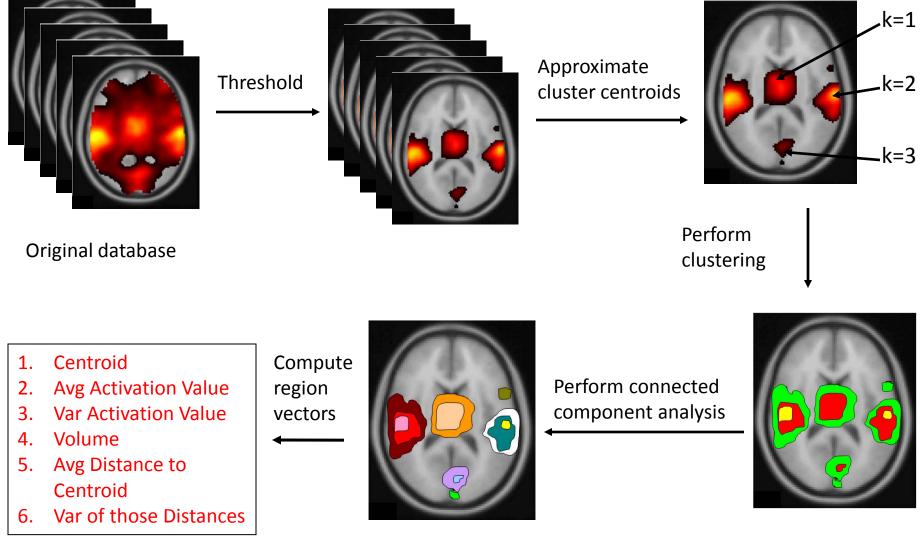
Retain "Most Important" Voxels Whole Brain Similarity Region of Interest Similarity Feature Selection

Similarity Retrieval Systems for ERP Images

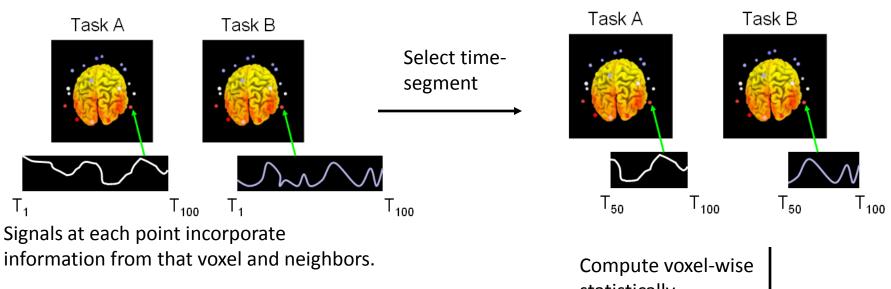
No relevant literature found

Similarity Retrieval Systems for Combined fMRI-ERP Images

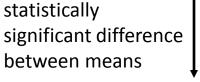
No relevant literature found

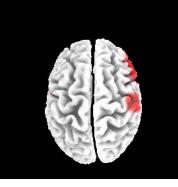

Outline

Background


Feature Extraction Process FMRI features

- **ERP** features
- Similarity Metric
- User Interface
- Retrieval Performance
- Simulate Human Expert


fMRI Feature Extraction


ERP Feature Extraction

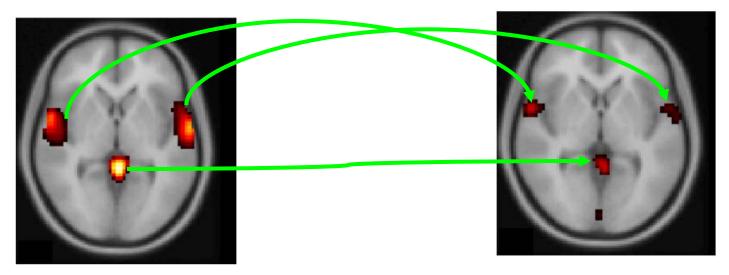
The retained voxels have significant activation meaning activities A and B are very different.

(X,Y,Z) positions of retained voxels Compute feature

Threshold

Outline

- Background
- Feature Extraction Process


Similarity Metric Summed Minimum Distance Similarity Score for Combined fMRI-ERP Images

- User Interface
- Retrieval Performance
- Simulate Human Expert

Summed Minimum Distance (SMD) for fMRI and ERP Images

Subject Q

Subject T

Q2T =
$$\frac{\sum_{r \in Q} \min_{s \in T} d_E(r, s)}{N_Q}$$
Euclidean
distance
between
feature
Vectors*

*We also used normalized Euclidean distance.

Sample SMD Scores

similarityRetrievalGUI_2

1	HealthyAOD_11	0.00	~
2	HealthyAOD_8	11.82	
3	HealthyAOD_1	15.33	
4	HealthyAOD_13	15.47	
5	HealthyAOD_6	16.38	
6	HealthyAOD_9	16.47	
7	HealthyAOD_12	19.01	
8	HealthyAOD_4	21.31	
9	HealthyAOD_3	21.32	
10	HealthyAOD_5	21.53	
11	HealthyAODMean_con	22.98	
12	HealthyAOD_15	24.43	
13	FaceUpVsFixation_14	25.91	
14	HealthyAOD_7	26.83	
15	HealthyAOD_10	27.44	
16	FaceUpVsFixation_4	27.98	
17	FaceUpVsFixation_9	28.18	
18	FaceUpVsFixation_20	28.21	
19	FaceUpVsFixation_3	28.50	
20	FaceUpVsFixation_19	28.59	
			~
	Do	ne	

Similarity Score for Combined fMRI-ERP Images

$SIM(i,j) = \alpha SMD_{fMRI}(i,j) + (1-\alpha)SMD_{ERP}(i,j)$

Outline

- Background
- Feature Extraction Process
- Similarity Metric
- User Interface
- Retrieval Performance
- Simulate Human Expert

GUI: Front Page

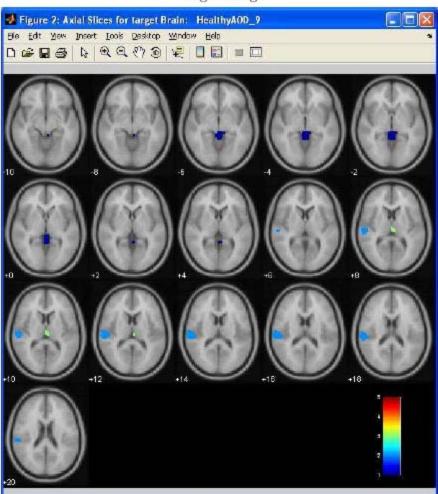
Similarity Retrieval Tool for Multimodal Brain Images

	Choose Modality 💿 fMRI	○ ERP ○ Both	
		1	
fMRI Threshold	0.01	fMRI Feature Weights	
ERP Threshold	10	Cluster Centroid	▲ 100
Scope	💿 Global 🛛 🔿 ROI	Cluster Area	• •
ERP Timeframe	TF1 101 TF2 121	Voxel Mean Distance to Centroid	• •
Alpha	0	Voxel Mean Activation Value	<u>د</u> ک
	Upload Database	Variance of Voxel Activation Values	× 0
Query Brain	HealthyAODMean_con	Variance of Voxel Distances to Centroid	<u>د ک</u> ۵
Query Brain Viewer Slices	-26:6:26 or All Slices	Return Top 15	Matches
Axial	Coronal Sagittal	Get Matches	

X

GUI: Retrievals with SMD Scores

similarityRetrievalGUI_2


1	HealthyAOD_11	0.00	^
2	HealthyAOD_8	11.82	
3	HealthyAOD_1	15.33	
4	HealthyAOD_13	15.47	
5	HealthyAOD_6	16.38	
8	HealthyAOD_9	16.47	
7	HealthyAOD_12	19.01	
В	HealthyAOD_4	21.31	
9	HealthyAOD_3	21.32	
10	HealthyAOD_5	21.53	
11	HealthyAODMean_con	22.98	
12	HealthyAOD_15	24.43	
13	FaceUpVsFixation_14	25.91	
14	HealthyAOD_7	26.83	
15	HealthyAOD_10	27.44	
16	FaceUpVsFixation_4	27.98	
17	FaceUpVsFixation_9	28.18	
18	FaceUpVsFixation_20	28.21	
19	FaceUpVsFixation_3	28.50	
20	FaceUpVsFixation_19	28.59	
			~
	Do		

25

GUI: Query-Target Activations (fMRI)

Query Image 🛃 Figure 1: Axial Slices for query Brain: HealthyAODMean_con Ele Edt Yew Insert Look Desktop Window Help D 🛥 🖳 🕾 🔍 🔍 🕲 🖉 🔜 🔜 🔍 🔍 🔍 🔍 🔍 🔍

Target Image

GUI: Query-Target Activations (ERP)

Query Image 100114-021

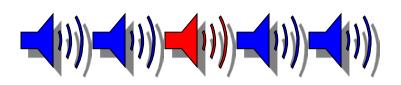
Target Image CT-MT

Outline

- Background
- Feature Extraction Process
- Similarity Metric
- User Interface
- Retrieval Performance
 - Data Sets
 - FMRI Retrieval Performance
 - ERP Retrieval Performance
 - Combined fMRI-ERP Retrieval Performance
- Simulate Human Expert

Data Sets for fMRI Retrievals

Checkerboard -- 12 subjects (Face Recognition)



Central-Cross -- 24 subjects (Face Recognition)

SB -- 15 subjects (Memorization)

AOD -- 15 subjects (Sound Recognition)

Data Set for ERP Retrievals

View Human Faces (Face Up) -- 15 subjects View Houses (House Up) -- 15 subjects

Data Set for Combined fMRI-ERP Retrievals

ERP: same data set as used in ERP retrieval

- ≻ fMRI:
 - Task: Face recognition using a house up background
 - Same subjects and images as data set for ERP retrieval

fMRI Retrieval Performance

1. RFX Retrievals

Random effects models are very conservative average activation models from a group, which contain only activated voxels present in all members.

2. Individual Brain Retrieval

3. Testing Group Homogeneity

4. Feature Selection

fMRI Retrieval Score

Retrieval Score =
$$\frac{1}{N \times N_{rel}} \left(\sum_{i=1}^{N_{rel}} R_i - \frac{N_{rel}(N_{rel}+1)}{2} \right)$$

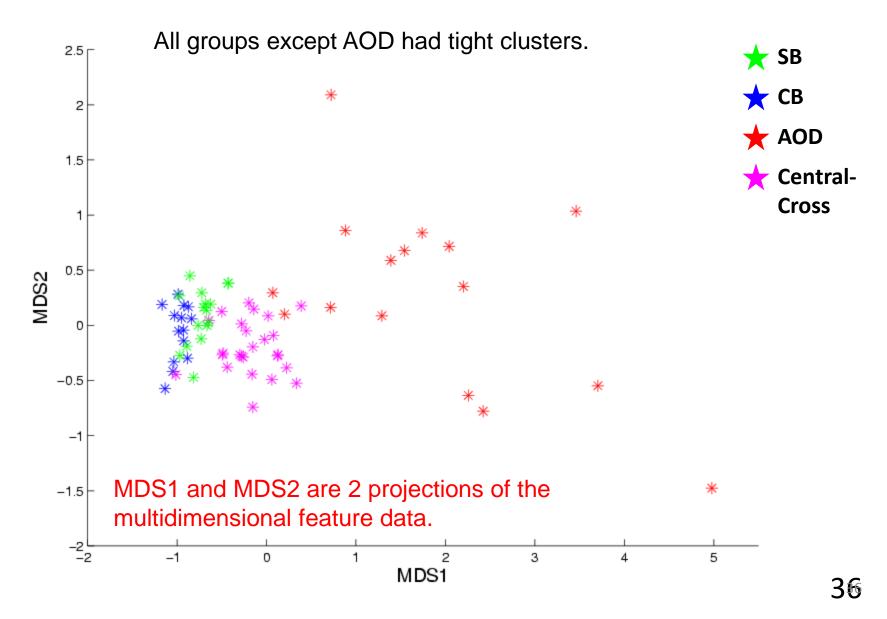
Perfect score :Retrieval Score = 0Random score:Retrieval Score ~ 0.5Worst score:Retrieval Score = 1

Example Scores
Retrieval Score =
$$\frac{1}{N \times N_{rel}} \left(\sum_{i=1}^{N_{rel}} R_i - \frac{N_{rel}(N_{rel}+1)}{2} \right)$$

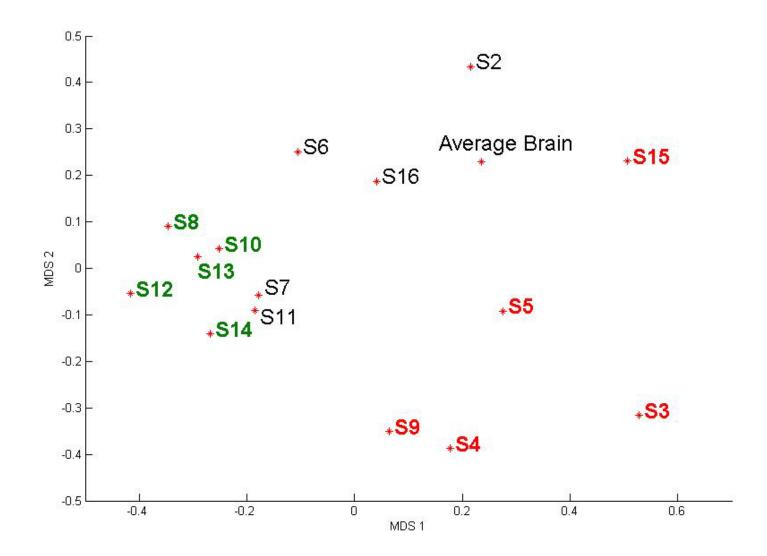
- Let N = 100 and $N_{rel} = 3$
- Sample Case1 R_i = i, i = 1 to 3
 1 + 2 + 3 6 = 0/300
- Sample Case 2 $R_1 = 3$, $R_2 = 2$, $R_3 = 1$ 3 + 2 + 1 - 6 = 0/300
- Sample Case 3: $R_1 = 10$, $R_2 = 20$, $R_3 = 30$ 10 + 20 + 30 - 6 = 54/300

fMRI Individual Brain Retrievals

Use individual brain as query


Mean Retrieval Scores (Top 6% activated voxels)

Checkerboard SB Central-Cross


AOD

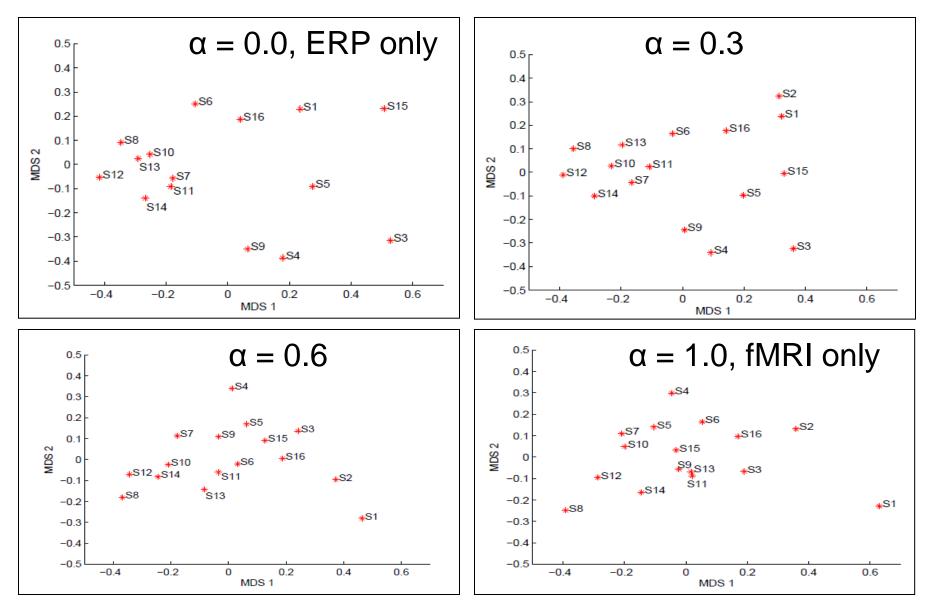
0.09 0.16 0.21 0.26

Testing Group Homogeneity for fMRI

ERP Retrieval Performance

37

Subject #8 Retrievals


Top Retrievals

Bottom Retrievals

Subject 8	Subject 12	Subject 14	Subject 13	Subject 10
0.00	0.11	0.23	0.25	0.26

Subject 9	Subject 4	Subject 5	Subject 15	Subject 3
0.70	0.75	0.78	0.91	0.95

Combined fMRI-ERP Retrieval

 $SIM(i,j) = \alpha SMD_{fMRI}(i,j) + (1-\alpha)SMD_{ERP}(i,j)$

Outline

- Background
- Feature Extraction Process
- Similarity Metric
- User Interface
- Retrieval Performance
- Simulate Human Expert
 - Simulation Method
 - Data Set
 - > Testing Function Performance

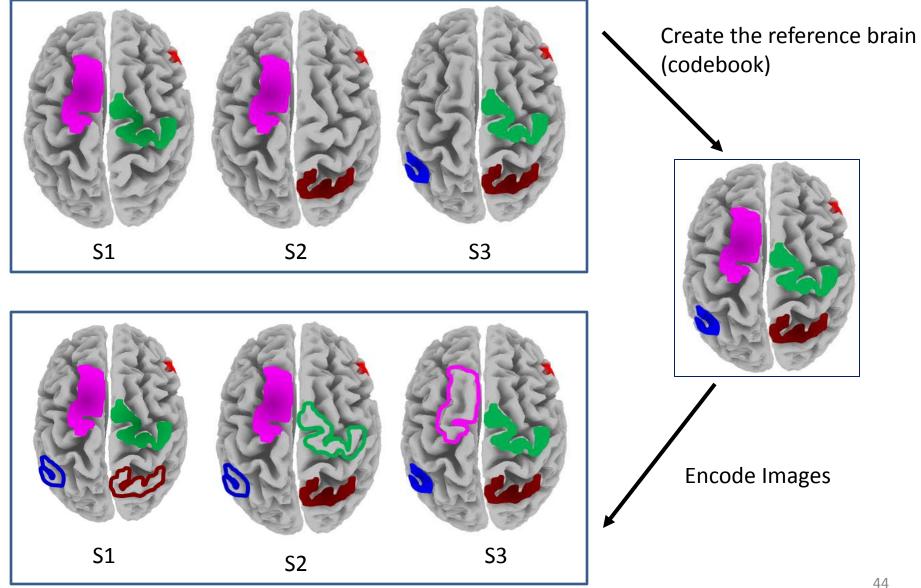
Simulate Human Expert

Dr. Jeff Ojemann

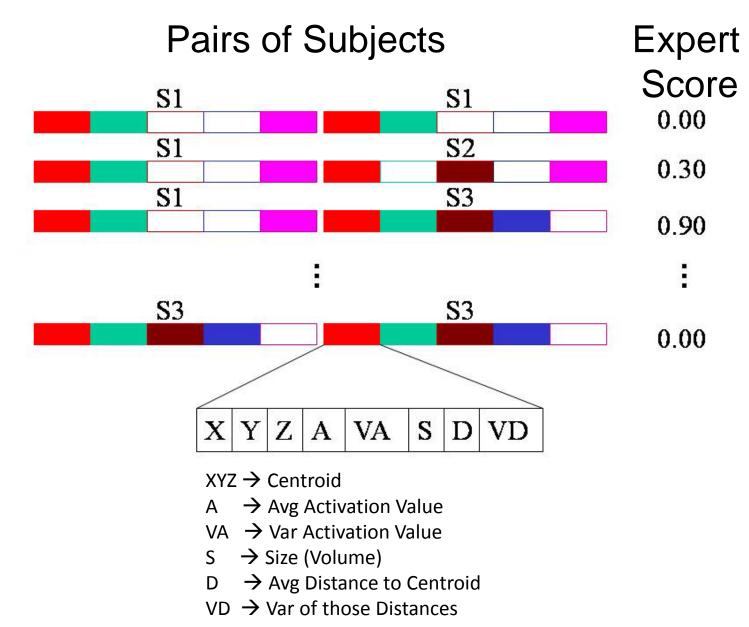
Current retrieval system requires some expert knowledge

	Centroid Only	Centroid and	Average Activation	
		Average Activation	Value Only	
		Value Only		
Correlation	0.60	0.64	0.52	
Coefficients				

Estimate a function to generate similarity scores with high correlation to expert scores

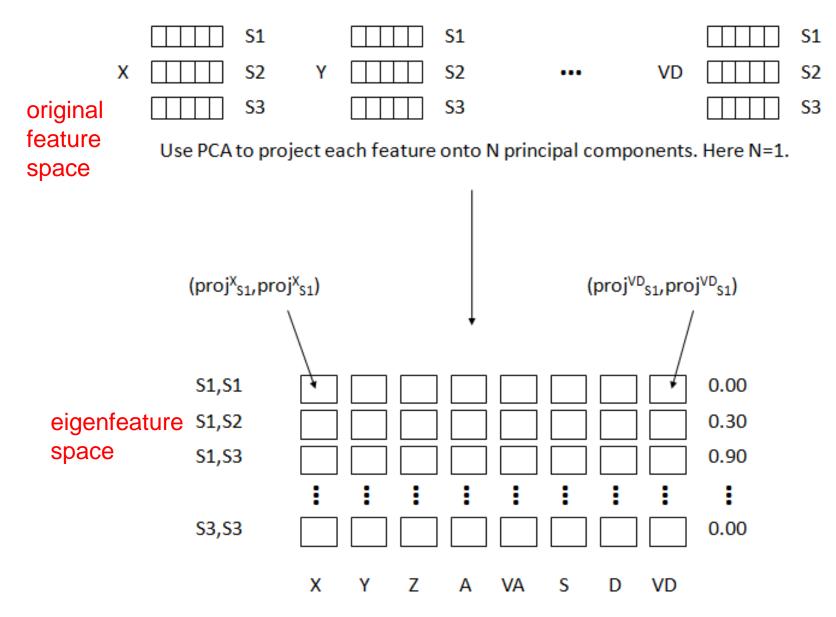

Simulation Method

- 1. Uniform feature representation: create codebook and encode each subject
- 2. Concatenate the codebook features for each pair of subjects
- 3. Create eigenfeatures
- 4. Estimate a function
- 5. Test function performance

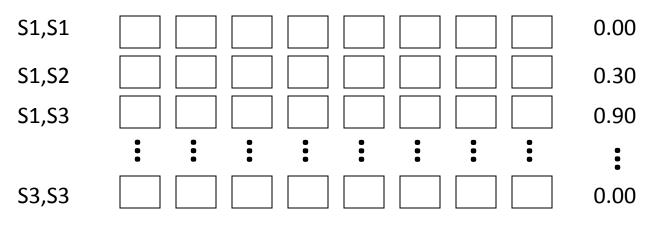

The Codebook

- Out of all the clusters found in all N brains, create a single brain that has a representation of each unique cluster. This is the codebook.
- Then for each of the N brains use the codebook to create a subject-specific vector representing each of those clusters.
- In the case where the codebook has a given cluster, but that particular subject misses it, that whole portion of this subject's codebook will be empty.
- Otherwise, the other parts of this subject's codebook will be filled with the properties of this subject's clusters.

1. Uniform Feature Representation



2. Concatenate Codebook Features


45

3. Create Eigenfeatures

4. Estimate a Function

We want to estimate a function that takes a pair of region vectors from two subjects and computes their similarity score.

Linear function using linear regression

Non-linear function using generalized regression neural networks (GRNN)

5. Test Function Performance

The Pearson Correlation Coefficient (CC)

$$\frac{\sum_{i=1}^{n} \left(\widehat{y}_{i} - \mu_{\widehat{y}}\right) \left(y_{i} - \mu_{y}\right)}{\left(n-1\right) s_{\widehat{y}} s_{y}}$$

The Average Absolute Error (A-ABSE)

$$\sum_{i=1}^{n} \left[y_i - \hat{y}_i \right]$$

n

The Root Mean Square Error (RMSE)

$$\sqrt{\frac{\sum_{i=1}^{n} \left[y_i - \hat{y}_i\right]^2}{n}}$$

Data Set

fMRI data (Central-Cross)

- -- 23 subjects
- -- Face Recognition task

Human Expert Generated Pairwise Similarity Matrix

Overall Function Performance

		Original Codebook Features		Eigenfeatures	
		Linear	Non-Linear	Linear	Non-Linear
		Function	Function	Function	Function
		1			
Training	A-ABSE	1.82	0	2.11	0.58
	RMSE	2.25	0	2.57	0.82
	CC	0.52	1	0.35	0.96
Testing	A-ABSE	2.26	1.74	2.18	1.36
	RMSE	2.83	2.32	2.67	1.77
	CC	0.23	0.59	0.25	0.76

overfitting!

Contributions

- 1. Created a similarity retrieval system for multimodal brain images
 - I. fMRI, ERP, and combined fMRI-ERP
 - II. User interface
- 2. Developed feature extraction methods for fMRI and ERP data
- 3. Developed pair-wise similarity metrics
- 4. Simulated human expert similarity scores