Head and Neck Lymph Node Region Delineation with Auto-segmentation and Image Registration

Chia-Chi Teng

Department of Electrical Engineering University of Washington

Outline

- Introduction
- Related Work
- Lymph Node Region Contouring with Image Registration
- Automatic Segmentation of Landmark Structures
- Geometrical Feature Based Similarity
- Results
- Conclusion

Context

3D Conformal Radiotherapy (beams are shaped to match the tumor)

Intensity Modulated Radiation Therapy (controls intensity in small volumes)

Target Volumes

GTV / CTV / PTV

Motivation

Improve the process of target volume delineation for radiation therapy planning.

Objective:

– Auto-contour lymph node regions.

Initial focus on head and neck.

Problem

Where are the lymph nodes?Where are the lymph node regions?

Solution

Create reference (canonical) models. Map reference nodal regions to patients.

System Overview

Image Registration

• Align the transformed reference image $f_R \circ \mathbf{g}$ to the target image f_T .

Find the optimal set of transformation parameters µ that maximize an image similarity function S:

$$\mu_{\text{optimal}} = \operatorname{argmax}_{\mu} S(\mu)$$

Mattes' Method

Similarity Function $S(\mu) = -mutual_information(f_R \circ \mathbf{g}, f_T)$ Transformation Function $\mathbf{g}(\mathbf{x}|\boldsymbol{\mu}) = \mathbf{R}(\mathbf{x} - \mathbf{x}_{C}) - \mathbf{T}(\mathbf{x} - \mathbf{x}_{C}) + \mathbf{D}(\mathbf{x}|\boldsymbol{\delta})$ $\mathbf{x} = [x, y, z]^T$ in the reference image coordinates.

Deformable Transformation

Control points (15*15*11). Each control point is associated with a 3element deformation vector δ_i , describing x-, y-, z-components of the deformation.

Project Target Lymph Regions

- Image registration aligns reference and target CT sets.
- Apply result transformation g to reference lymph node regions.
- Incorporate anatomical landmark correspondences.
- Use surface mesh of outer body contour, mandible, hyoid ...

Surface Warping

 Shelton's method used to find correspondences between surfaces.
 Energy based surface mesh warping.
 E(C) = E_{sim}(C) + αE_{str}(C) + βE_{pri}(C)

C is the function which maps points from reference surface S_R to target surface S_T .

Landmark Correspondence

• The deformation ζ at landmark points $\zeta_k = \boldsymbol{\omega}_k - \boldsymbol{\upsilon}_k$

 v_k : points from reference surface mesh S_R . $\boldsymbol{\varpi}_k$: corresponding locations on transformed reference surface $S_R \circ C$ matching the target surface mesh S_T .

 $S_R \circ C$

Surface S_T

 $\underline{\zeta_k} = \boldsymbol{\varpi}_k - \boldsymbol{\upsilon}_k$

Using Landmark Correspondence

- Deformation vectors D(λ_j) are modified according to landmark correspondences ζ_k in the proximity of the control points λ_j.
- Landmark structures align better.
- Faster convergence.

Compare Image Registration Results

Reference

Mattes

w/Landmark Target

Reference

Mattes

w/Landmark Target

Automatic Segmentation of Landmark Structures

- Given: Cancer radiation treatment patient's head and neck CT image.
- Find:
 - Skull base & thoracic inlet.
 - Anatomical structures:
 - cervical spine (white)
 - respiratory tract (dark green)
 - mandible (turquoise)
 - hyoid (yellow)
 - thyroid cartilage
 - internal jugular veins (pink)
 - carotid arteries (dark yellow)
 - sternocleidomastoid muscles (light green, orange)

Method

2D knowledge-based segmentation Based on Kobashi's work Dynamic thresholding Progressive landmarking Combined with 3D active contouring Do not require successful 2D segmentation on every axial slice Initialize with 2D segmentation result

2D Segmentation Results

21

2D/3D Iteration

Identify objects that are easy to find, use them to find harder ones.

2D/3D Iteration – cont.

23

Geometrical Feature-Based Similarity

- Given: A stored database DB of CT scans from prototypical reference head and neck cancer patients and a single query CT scan Q from a target patient.
- Find: Similarity between Q and each database image d in DB in order to find the most similar database images {d_s}.

Structures

- Outer body contour
- Mandible
- Hyoid
- Internal jugular veins

Feature Types

- Simple numeric 3D regional properties: volume and extents.
- Vector properties: relative location between structures.
- Shape properties: surface meshes of structures.

Features for Similarity Measure

- Volume and extents of the overall region
- Normalized centroid of hyoid and mandible
- 3D centroid difference vector between mandible and hyoid
- 2D centroid difference vectors between hyoid and jugular veins
- Surface meshes of mandible and outer body contour

Mesh Feature Distance

Register reference mesh S_R and target mesh S_T with Iterative Closest Point (ICP), result T.

Hausdorff distance between two aligned surface meshes, TS_R and S_T

 $d_h(TS_R, S_T) = \max_{p \in S_R} d(Tp, S_T)$

The Hausdorff distance is the maximum distance from any point in the transformed reference image to the test image.²⁸

Feature Vector Distance

Given feature vectors F_d and F_Q for model d and query Q in the feature vector space R^N.

$$D_F(F_d, F_Q) = \left[\sum_{i=1}^N w_i d_i (F_{d_i}, F_{Q_i})^2\right]^{\frac{1}{2}}$$

Evaluation

Surface mesh distance after full image registration D_H – slow.

■ Feature vector distance D_F – fast.

 $\operatorname{corr_coef}(D_{H'}, D_F)$ = 0.72

Images with small feature vector distance should produce the best results after registration.

Experiment Results

50 head and neck patient CT sets.
34 subjects are segmented.
20 subjects with lymph node regions drawn by experts.
Image registration

20 * (20 - 1) = 380 total cases.

Auto-segmentation Results

Correct Segmentations

Auto-segmentation cont.

Incorrect Segmentations

Carotid artery misidentified as jugular vein due to surgery.

Hyoid partly missing due to too low inter-slice resolution. ³³

Auto-segmentation cont.

	Successs	Failure	Incorrect	% of success
Cervical Spine	34	0	0	100.00%
Respiratory Tract	34	0	0	100.00%
Mandible	34	0	0	100.00%
Hyoid	34	0	0	100.00%
ThyroidCartilage	33	0	1	97.06%
Left Internal Jugular Vein	27	3	4	79.41%
Right Internal Jugular Vein	31	1	2	91.18%
Left Carotid Artery	25	9	0	73.53%
Right Carotid Artery	30	4	0	88.24%
Left SCM	24	10	0	70.59%
Right SCM	25	9	0	73.53%

Image Registration Results

Success/Failure

	Total cases	Successful	Success rate (%)
Mattes method	380	367	96.57%
New method using landmark correspondence	380	380	100.00%

Time of Convergence

	Average	Standard deviation
Mattes method	32 minutes	6 minutes
New method using		
landmark correspondence	26 minutes	5 minutes

Quantitative Evaluation -Surface Mesh Distance

$D_H(S_R \circ \mathbf{g}, S_T, n)$: Hausdorff distance n: lymph node region

Projected Region $S_R \circ g$ Color is distance to truth. Ground Truth: Expert Drawn Target Region S_T

Measurement in centimeter.

	Average	Standard deviation
Mattes method	1.02	0.51
New method using landmark		
correspondence	0.59	0.21

Measurement in centimeter.

Similarity Evaluation

- *R_H(i, Q)* : the *i*th ranked reference subject for target *Q* based on the image registration results, *D_H*.
- $R_F(i, Q)$: the *i*th ranked reference subject based on geometrical features, D_F .

 $P(R_F(1, Q) = R_H(1, Q)) = 80\%$ $P(R_F(1, Q) = R_H(2, Q)) = 10\%$ $P(R_F(1, Q) = R_H(3, Q)) = 4\%$

Similarity Evaluation Examples

Similarity Evaluation – Surface Mesh Distance

	Average	Standard deviation
D_H for the closest		
reference subject to		
each target based on		
feature distance	1.28	0.31
D_{H} for all reference		
and target subjects	2.59	0.90

Measurement in centimeter.

So its better to find the closest subject. 41

Qualitative Evaluation – 1.1

Clinically acceptable target projection.

w/ Landmark

Mattes

Expert Drawn

Qualitative Evaluation – 1.2

Clinically acceptable target projection.

w/ Landmark

Mattes

Expert Drawn

Qualitative Evaluation – 1.3

Clinically acceptable target projection.

w/ Landmark

Mattes

Expert Drawn

Qualitative Evaluation – 2

Clinically unacceptable target projection.

Mattes

Expert Drawn

w/ Landmark

Conclusion

Inter-subject image registration technique shows promise for lymph node region auto-contouring.

- Knowledge-based auto-segmentation is useful for head and neck CT.
- Fast similar subject search is possible and critical as reference database grows.

Future Work

- Integrate and evaluated in a clinical environment.
- Generalize to other types of cancer.
- Regional lymphatic involvement prediction.
- Improve image registration results.
- Improve auto-segmentation results.
 - Validation logic
 - Knowledge-based 3D active contour constraints

Acknowledgement

- Linda Shapiro
- Ira Kalet
- Jim Brinkley
- David Haynor
- David Mattes
- Mark Whipple
- Jerry Barker
- Carolyn Rutter
- Rizwan Nurani

Contributions

- The first auto target contouring tool for radiation therapy. (AMIA 2002)
- An auto-segmentation method combining 2D dynamic thresholding and 3D active contouring. (IEEE CBMS 2006)
- An image registration method using landmark correspondences in conjunction with mutual information optimization. (IEEE ISBI 2006)
- A patient similarity measurement using 3D geometrical features of anatomical structures. (IEEE ISBI 2007)