# Model-Based Organ Segmentation: Recent Methods

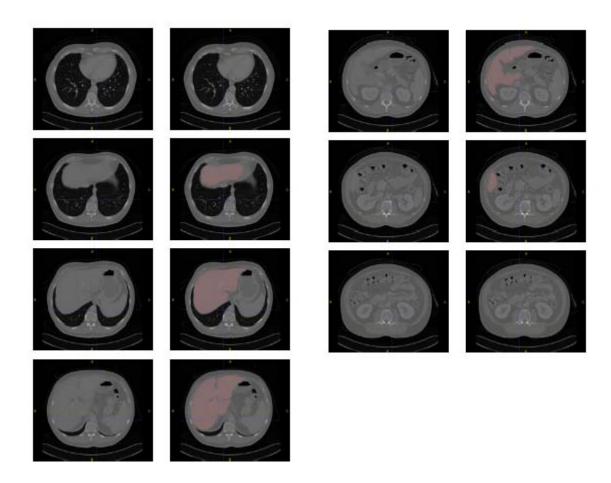
Jiun-Hung Chen
General Exam Paper
2009

#### **Problem Statement**

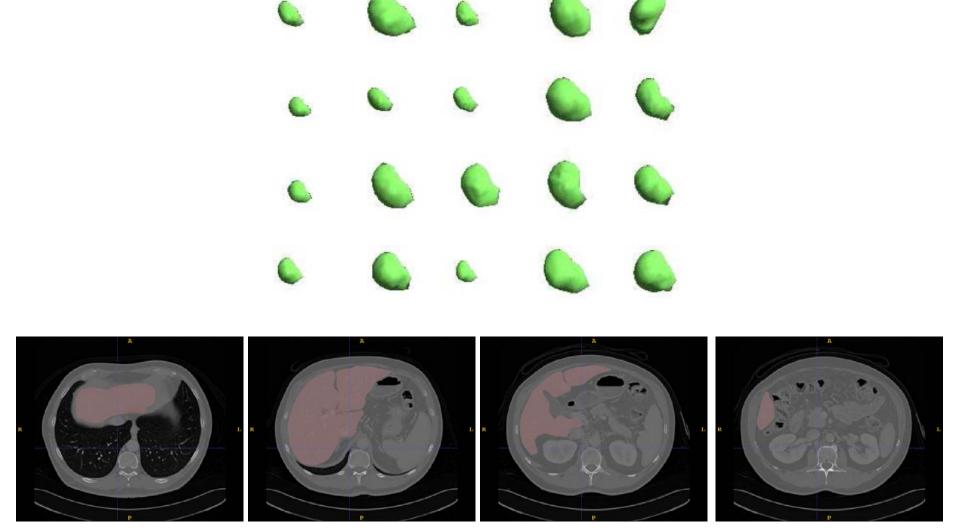
 Learn how to segment new, unseen CT images from a set of training CT images with ground truth organs marked.

 Goal: Minimize the training errors while generalizing to the new CT images

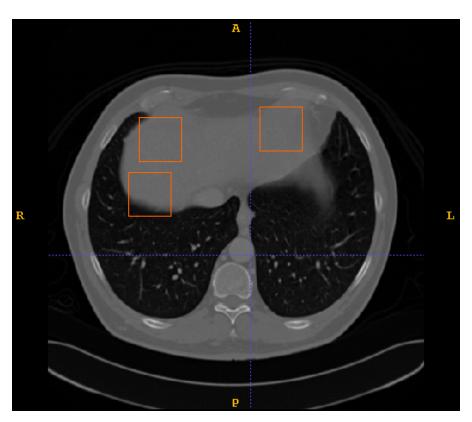
## Problem Organ: The Liver



#### Why Difficult? (Shape Variations)

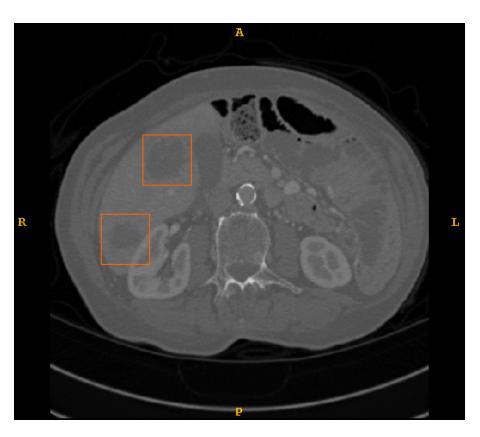


# Why Difficult? (Similar Appearances)



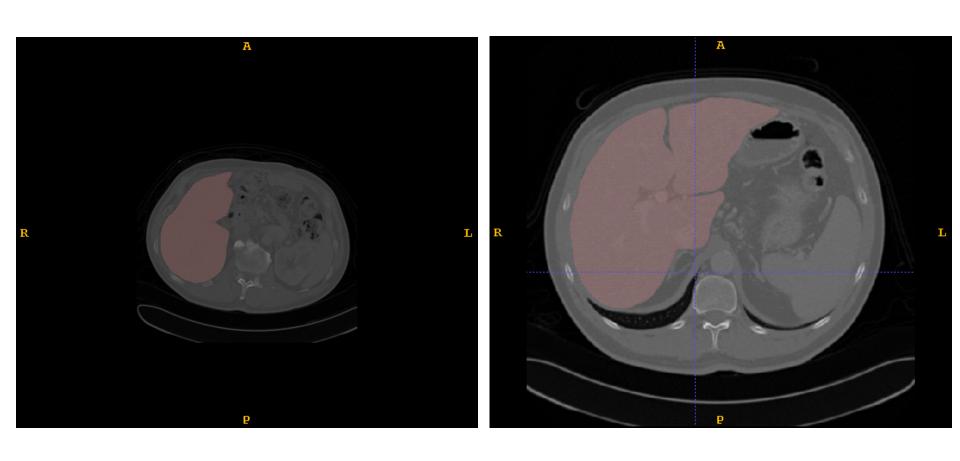


## Why Difficult? (Appearance Changes)





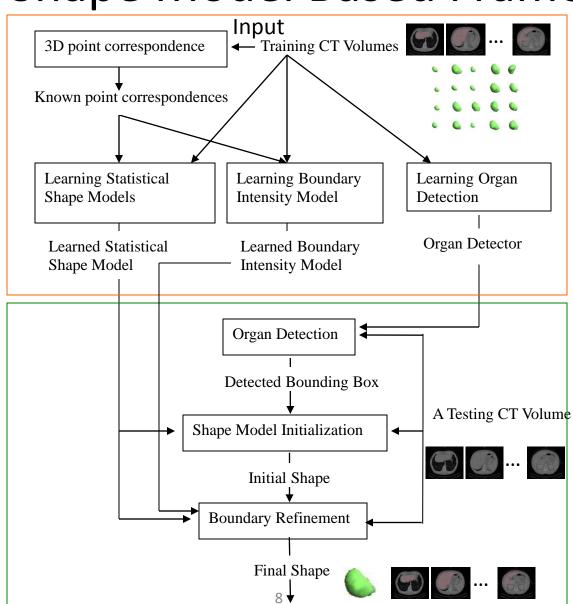
# Why Difficult? (Position Changes)



#### Active Shape Model Based Framework

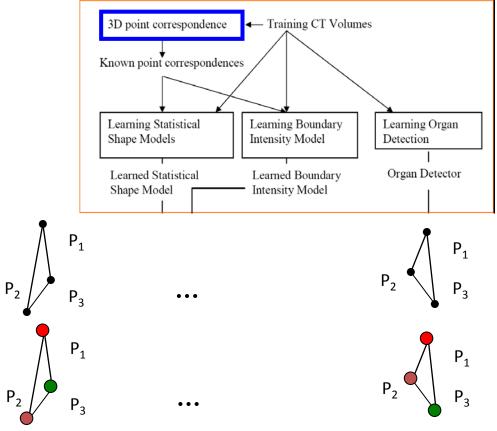
Training phase

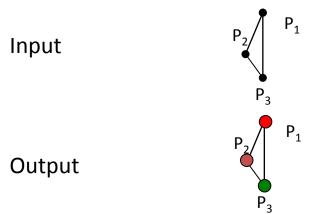
Testing phase

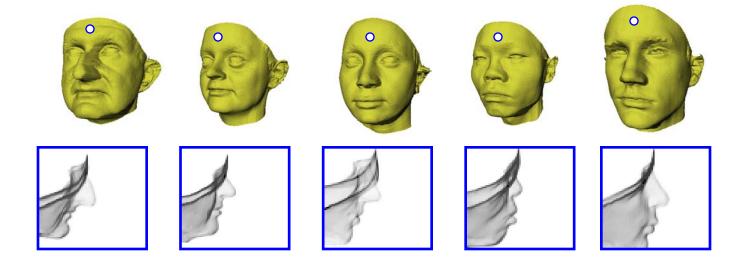


### Active Shape Models: Training

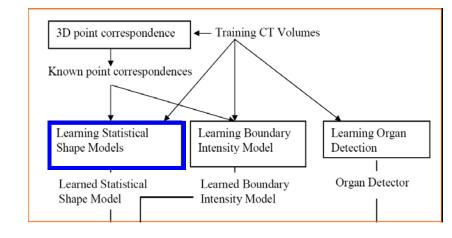
- Shapes are modeled in a training phase using a set of CT volumes whose ground truth segmentations are given.
- There are 4 steps to the training phase.
  - 1. Find 3D point correspondences on training meshes.
  - 2. Learn a statistical 3D shape model of the shapes.
  - 3. Learn a boundary intensity model for each vertex.
  - 4. Learn an organ detector that finds bounding boxes.



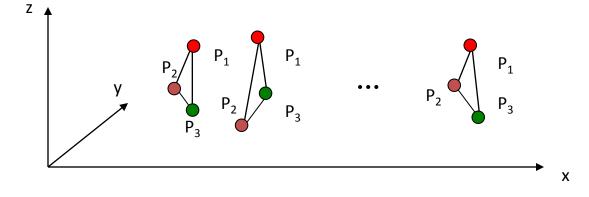




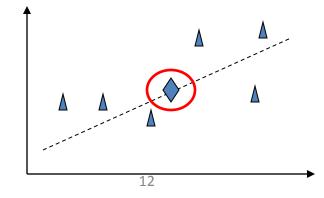
Corresponding points on head meshes plus their numeric (spin image) signatures from the work of Salvador Ruiz Correa.

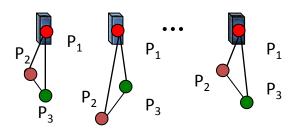






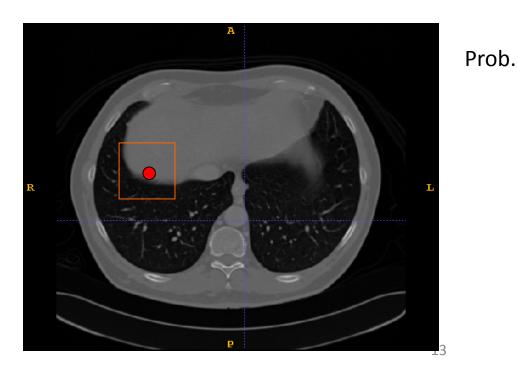
#### Output

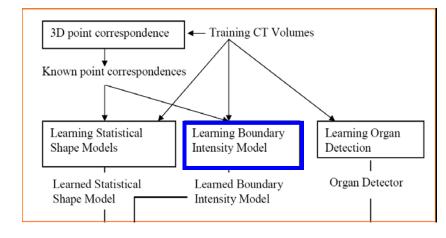




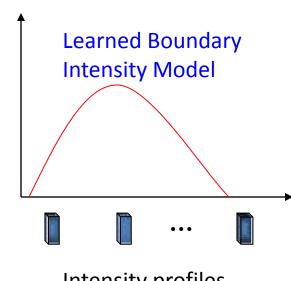
Intensity profiles

Input •



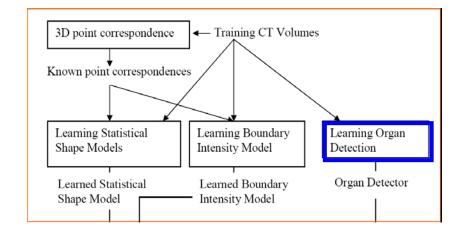


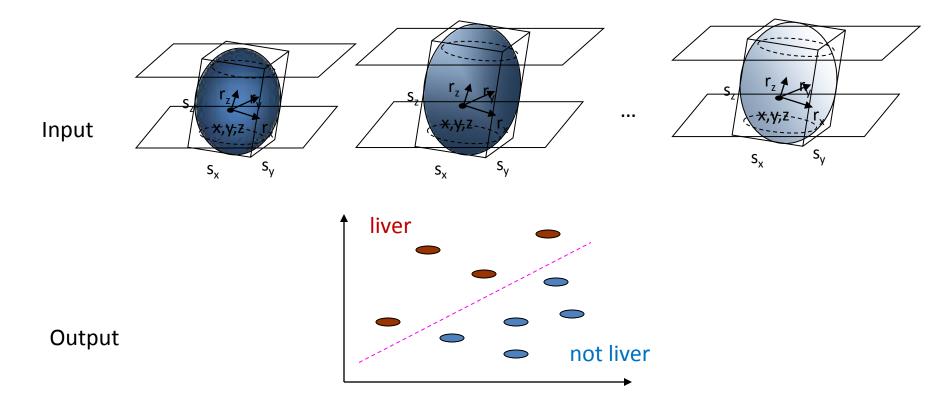
#### Output •



Intensity profiles

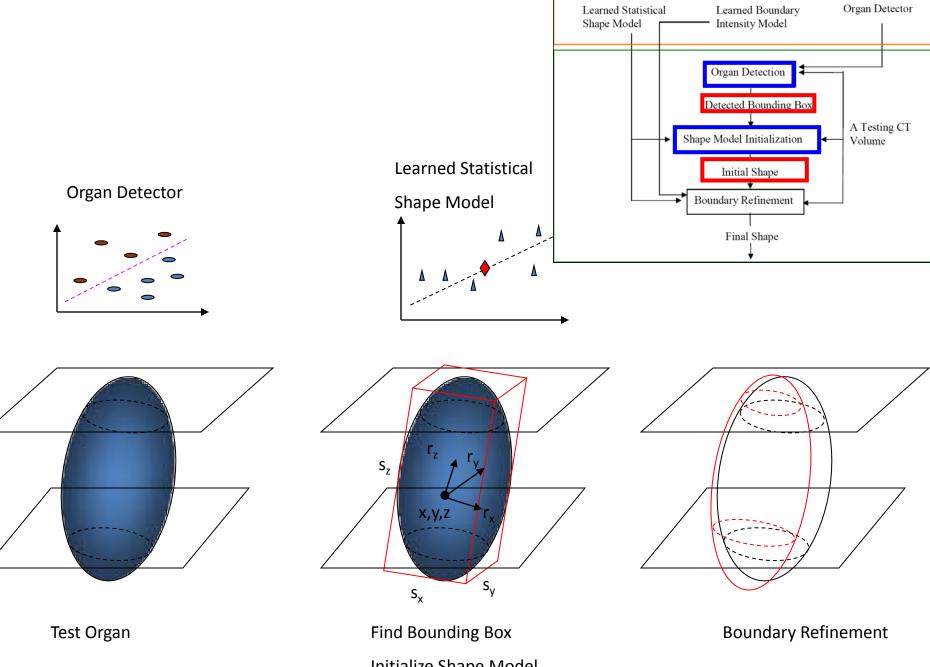
 Given a bounding box and the CT slices inside it, a classifier learns to decide if everything inside the box is liver or not.





#### Active Shape Models: Testing

- There are 3 steps to the testing phase
  - organ detection: use the learned organ detector to detect the organ in the testing volume and return a bounding box
  - shape model initialization: initialize the learned statistical model based on the detected bounding box
  - boundary refinement: use the learned boundary intensity model to estimate the refinement to the model for this shape



Initialize Shape Model

#### Methods for Point Correspondences

1. Principal Component Analysis (PCA)

PCA takes in the points of each shape in the training set. It produces a set of basis vectors (the components).

Each shape can then be represented as a linear combination of these components.

$$\tilde{x} = \overline{x} + \sum_{k=1}^{K} c_k b_k$$
 where  $\overline{x}$  is the mean shape

The optimal K projection axes  $b_k$ , k = 1 to K are the eigenvectors of the covariance matrix of the training set of points corresponding to the K largest eigenvalues.

# Intuitive Meaning of Principal Components

eigenvalue

eigenvalue

eigenvector corresponding to highest

eigenvector corresponding to second

eigenvalue

#### Eigenimages for Face Recognition

training images









mean image



Maan



MEF<sub>1</sub>





MEF<sub>a</sub>

3 eigenimages

linear approximations











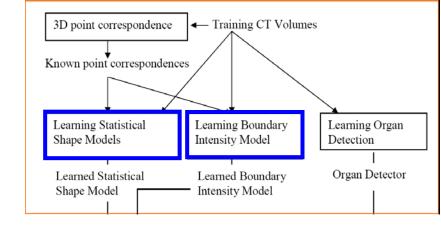


# 3D Point Correspond (MDL)

- Goal: Find 3D Point Correspondence
- Idea: Minimize MDL-based objective function
  - Evaluate the quality of the correspondence

$$F = \sum_{k=1}^{N} L_k \text{ with } L_k = \begin{cases} 1 + \log(\lambda_k/\lambda_{cut}), & \text{if } \lambda_k \ge \lambda_{cut} \\ \lambda_k/\lambda_{cut}, & \text{otherwise} \end{cases}$$

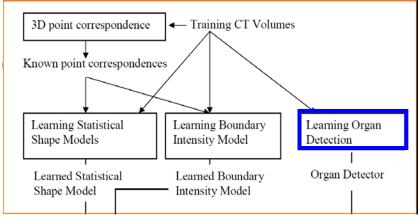
- The  $\lambda_k$ s are the eigenvalues from PCA.
- How: Gradient descent
  - Manipulate correspondences by parameterization and reparameterization.



- Statistical Shape Models
  - Principal Component Analysis (PCA)
  - Kernel PCA
- Boundary Intensity Models
  - □ Gaussian distribution
  - □ AdaBoosted histogram classifiers
  - ☐ Heuristics

Cootes et al. [IEEE PAMI 01], Twining et al. [BMVC'01] Cootes et al. [IEEE PAMI 01], Li [ICCV'05], Kainmuller et al. [MICCAI'07]

# Organ Dete (MSL)



- Goal: Find the bounding box
  - The parameter space is 9D.
  - 3D positions, 3D scales and 3D orientations.
- Idea
  - Uniform and exhaustive search is unnecessary
- How: decompose the problem into three steps
  - position estimation, position-scale estimation and finally position-scale-orientation estimation.

## Two ASM-based Systems

| Kainmuller et al. [MICCAI'07]                      | Ling et al. [CVPR'08]                                |  |  |
|----------------------------------------------------|------------------------------------------------------|--|--|
| Statistical Shape Models                           |                                                      |  |  |
| - PCA                                              | <ul> <li>PCA, hierarchical shape pyramids</li> </ul> |  |  |
| <ul><li>43 CT volumes</li></ul>                    | <ul><li>75 volumes</li></ul>                         |  |  |
| Boundary Intensity Model                           |                                                      |  |  |
| <ul><li>Heuristics</li></ul>                       | <ul> <li>A boundary classifier</li> </ul>            |  |  |
| Liver Detection                                    |                                                      |  |  |
| <ul> <li>Lungs detection and DICOM info</li> </ul> | <ul><li>MSL (marginal space learning)</li></ul>      |  |  |
| Performance                                        |                                                      |  |  |
| <ul> <li>Ranked first in a recent liver</li> </ul> | <ul> <li>5 fold cross validation</li> </ul>          |  |  |
| segmentation competition.                          | <ul> <li>1.59 mm (the average symmetric</li> </ul>   |  |  |
| <ul><li>10 testing volumes</li></ul>               | surface distance)                                    |  |  |
| <ul> <li>1.1mm (the average symmetric</li> </ul>   | <ul> <li>1.38 mm (the median)</li> </ul>             |  |  |
| surface distance)                                  | <ul><li>12 seconds.</li></ul>                        |  |  |
| <ul><li>15 minutes.</li></ul>                      |                                                      |  |  |

### **Experimental Setting**

#### Datasets:

- 4 types of organs (livers, left kidneys, right kidneys, spleens)
- 15-20 subjects
- Leave-one-out cross validation
- Measure the reconstruction error
- Metrics: Euclidean and Hausdorff distance

#### MDL with 2DPCA for 3D ← Training CT Volumes Point Correspondence MDL-2D Known point correspondences Tensor-based Statistical Learning Boundary Learning Organ Shape Models Intensity Model Detection Organ Detector Learned Boundary Learned Statistical Shape Model Intensity Model

MDL-based objective function

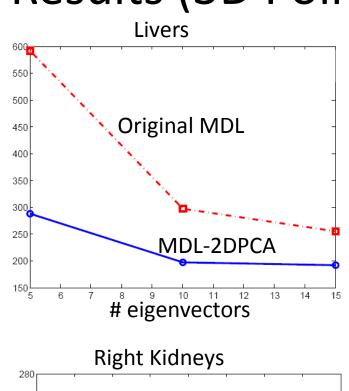
$$F = \sum_{k=1}^{N} L_k \text{ with } L_k = \begin{cases} 1 + \log(\lambda_k/\lambda_{cut}), & \text{if } \lambda_k \ge \lambda_{cut} \\ \lambda_k/\lambda_{cut}, & \text{otherwise} \end{cases}$$

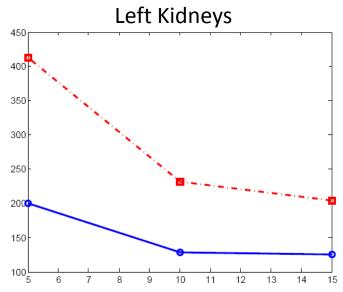
- Idea: Generalize the objective function to 2DPCA space
  - Replace eigenvalues from PCA with from 2DPCA
  - How: Gradient descent
- Comparisons: original MDL vs. MDL-2DPCA

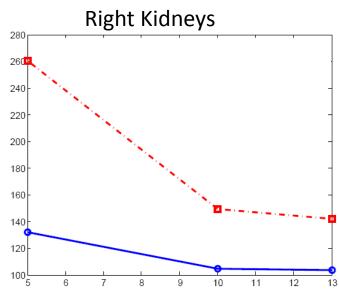
<sup>\*</sup> Chen and Shapiro [EMBC'09]

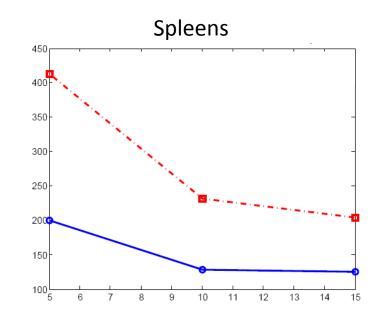
#### Results (3D Point Correspondences)

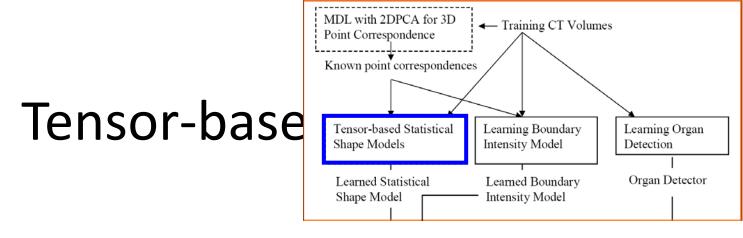
26









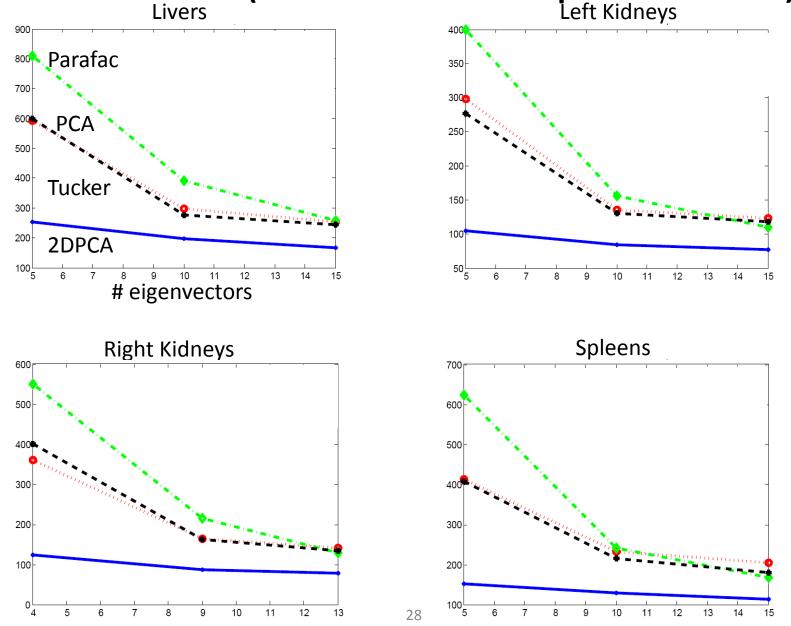


- Idea: Tensor-based dimension reduction methods
  - 2DPCA
  - Parafac model
  - Tucker decomposition
- Comparisons: PCA vs. Tensor-based dimension reduction

<sup>\*</sup> Chen and Shapiro [to appear in EMBC'09]

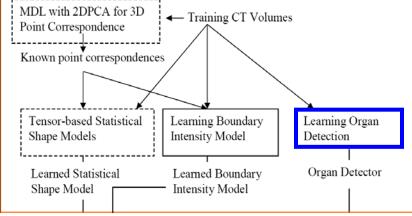
Results (Statistical Shape Models)

Livers



Reconstruction error

# Organ Det (Boosting Ap



- Idea: Classify whether an image block contains an organ of interest
- How:
  - Partition slices into non-overlapping 32x32 blocks
  - Global features: gray-tone histogram of the image slice and its slice index
  - Local features: the position of a block, the mean and variance of its intensity values, and its intensity histogram.
  - 20,000 SVM linear classifiers + Adaboosting
- Comparisons: Manual vs. Adaboosting

## Results (Organ Detection)

Livers (Training)

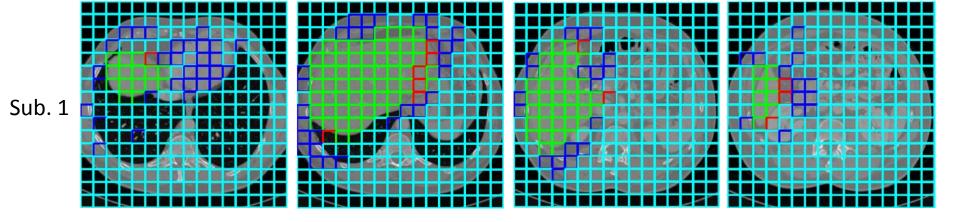
|                   | Positive (predicted) | Negative<br>(predicted) |
|-------------------|----------------------|-------------------------|
| Positive (actual) | 96.23%               | 3.77%                   |
| Negative (actual) | 4.57%                | 95.43%                  |

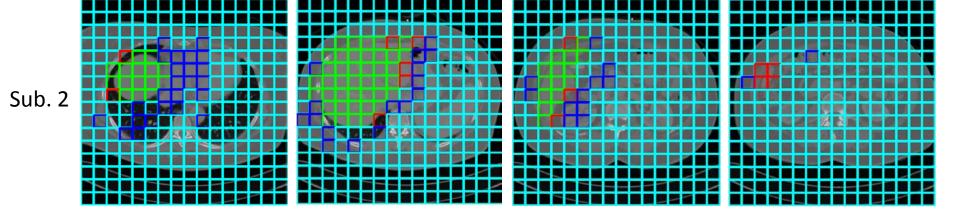
Livers (Testing)

|                   | Positive (predicted) | Negative (predicted) |
|-------------------|----------------------|----------------------|
| Positive (actual) | 91.23%               | 8.77%                |
| Negative (actual) | 6.57%                | 93.43%               |

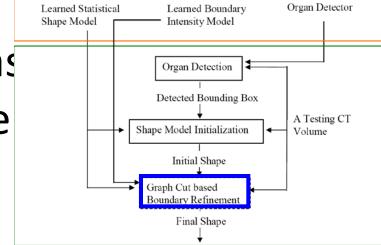


False Negative: Red, True Negative: Cyan





#### Graph Cuts Bas Boundary Refine



- Idea: Adding hard constraints to min s-t cuts
- Min s-t cuts with side constraints
  - NP-hard in general cases
  - Approximation algorithm: standard rounding algorithm
- Comparisons: with constraints vs. without constraints

## Results (Boundary Refinement)

**Initial Contour** Slice 1 Slice 2 without with