
Common Low-level Operations 
for Processing & Enhancement 
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Histogram Equalization 

• A histogram of image I is a data structure h 
   in which h(i) is the number of pixels in I that 
   have value i. Usually 0 <= i <= 255. 
 
• A normalized histogram is a histogram in which 
   each value is divided by the total number of  
   pixels in the image. These normalized values 
   are often thought of as probabilities Pr(i) of the 
   different pixel values.  
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Example of Normalization 
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0    1    2    3    4 0    1    2    3    4 

1                                                               .1 

2     2          2                                            .2    .2        .2 

3                                                                                                                            .3 

   original histogram                                  normalized histogram 
5 gray tones, 10 pixels                          probability of each gray tone 

What’s the probability of a pixel having value 3 in the image? 



Histogram Equalization Operator 

4 

• Goal: transform the gray tones of the image so that 
   they are all approximately equally likely 
 
• Method: use a transformation function T(r) to 
   transform each gray tone r of the L gray tones. 

T(r) = (L – 1) ∑  Pr(w)         discrete form we use 
 
 
T(r) = (L – 1)     Pr(w) dw   continous form (CDF)   

  r 
 
w=0 

∫
r 

0 



Small Example 
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0     1      2                      L = 3 graytones 

1 

2 

3 

.33 

.5 

.17 

T(0) = 2(.33) = .66                          = 1 
T(1) = 2(.33 + .5) = 1.66                = 2 
T(2) = 2(.33 + .5 + .17) = 2.0         = 2 

Why is the new histogram not a perfect uniform distribution? 



CT  Abdomen Image Example 

original image              equalized image 
and histogram              and histogram 
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 Images and Histograms* 

  

  

CT                                   MRI 

*from Medical Image Analysis by Dhawan 7 



Histogram Equalization 
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Image Averaging and Subtraction 
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•  If images are noisy, multiple images may be taken and 
   averaged to produce a new image that is smoothed. 
 
•  Image subtraction to show differences over time or 
   with and without a dye or tracer. 

 
 



Image Averaging Masks 
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For each pixel of the input, the output is the mean of the pixels in 
its 4-neighborhood or 8-neighborhood. 
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Weighted Image Averaging 
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original image f                     output image g 
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Median Filter 
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Laplacian: Second Order Gradient for 
Edge Detection 
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Image Sharpening with Laplacian 
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Apply a Laplacian and 
add it to the original 
image to enhance the 
edges. 
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Micro-calcification Enhancement* 

* Using adaptive neighborhood processing, from Dhawan book. 

original mammogram                      enhancement                        histogram equalization 
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Frequency-Domain Methods 

• Convert the image from the spatial domain to the 
   frequency domain via a Fourier Transform 
 
• Apply filters in the frequency domain 
 

• Convert back to the spatial domain 
 

• Used to emphasize or de-emphasize specified frequency 
   components 
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Fourier Transform Basics 
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• complex numbers 
• complex exponentials 
• Euler’s formula 
• nth roots of unity 
• orthogonal basis 
• 1D discrete Fourier transform 
• 2D discrete Fourier transform 
• examples 



Complex Numbers (Review) 
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• Some equations have no real roots:   x2 = -1 
• Mathematicians handle this by defining an 
   imaginary number i which is the square root of -1 
• Complex numbers are of the form a + bi, where a and b are real 
• Complex numbers may be added and multiplied 
• The complex number a + bi can be viewed as a 2D vector [a,b] 
• Complex numbers are used heavily in physics and EE. 



Complex Exponentials 
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• Euler’s Formula: eiθ = cos θ + i sin θ 
• Thus raising e to a power corresponds to taking  
   the sine and cosine of an angle 
• eiθ  is a periodic function; when θ  = 0 or multiples 
  of 2π, it has value 1. 
• ω = e-2π i/n is an n-th root of one for any integer n 
Example with n = 8 
    • ω0 = (e-2π i/8)0 = 1 

• ω1 = (e-2π i/8)1 = e(-π/4)i  = cos(-π/4) + isin(-π/4) =  
                                              sqrt(2)/2 – sqrt(2)/2i 
• ω2 = (e-2π i/8)2 = e(-π/2)i  = cos(-π/2) + isin(-π/2) = -i 
• etc. 



nth roots of unity for n = 8 
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ω0 = 1 

ω1  

ω2 = -i 

ω3 

ω4 = -1 

ω5 

ω6 = i 

ω7 

Generated from the principal root ω = e-2π i/n  



Orthogonal Basis 
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• Start with the first root (1) and take its first n powers to 
   get the n-dimensional vector [1, 1, 1, ... , 1]  
• Repeat with each of the other roots for a given n. The 
   second root ω gives the vector [1, ω, ω2, ..., ωn-1]. 
• For the example n=8, there are 8 orthogonal vectors: 

• [1, 1, 1, 1, 1, 1, 1, 1] 
• [1, ω, ω2, ..., ω7] 
• [1, ω2, ω4, ..., ω14] 
• [1, ω3, ω6, ..., ω21] 
• ... 
• [1, ω7, ω14, ..., ω49] 



1D Discrete Fourier Transform 
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original  
vector basis as a matrix 

Fourier 
coefficients 



2D Discrete Fourier Transform 
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• Detect the frequency components of the image in both the 
  horizontal and vertical directions 
• First apply the 1D discrete Fourier transform to each row of 
  the image, producing an intermediate image or row transforms 
• Then apply the 1D discrete Fourier transform to each column 
  of the intermediate image 
• The result is the 2D discrete Fourier transform of the image, 
   which is an image in the frequency domain. 



Filtering with the Fourier Transform 
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1. Compute the 2D discrete Fourier transform of the image 
2. Apply an image operator to the transformed image 
3. Computer the inverse 2D discrete Fourier transform of 
       the result of the image operator 

Two most common filters: 
1. low-pass filtering zeroes out the frequency 
       components above a threshold  
2. high-pass filtering zeroes out the frequency 
       components below a threshold 
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Example from Steve Tanimoto’s Book 
Low-Pass Filter: Smooths 
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High-Pass Filter: Finds Edges 



Low-Pass Filtering 

 

 

  

low-pass filter H(u,v) in the                        filtered MRI brain image 
        frequency domain                   

Fourier transform of  original   image            Fourier transform of filtered image 
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High-Pass Filtering 

 

 

high-pass filter                                      filtered image 

Fourier transform of filtered image 28 



Wavelet Transform 
 Fourier Transform only provides frequency 

information.  
 Wavelet Transform is a method for complete 

time-frequency localization for signal analysis 
and characterization. 

 Wavelet Transform : works like a microscope 
focusing on finer time resolution as the scale 
becomes small to see how the impulse gets 
better localized at higher frequency 
permitting a local characterization 
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Basics of Wavelets* 
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• Wavelets are a mathematical tool for hierarchically  
   decomposing functions. 
• They allow a function to be described in terms of 
   a coarse overall shape, plus details than range from 
   narrow to broad. 
• Wavelets represent the signal or image as a linear 
  combination of basis functions. 
• The simplest basis is the Haar wavelet basis. 

* Material from Stollnitz et al., Wavelets for Computer Graphics: A Primer Part 1. 



How the Haar Wavelet Transform 
Works in 1D 
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• Image Pyramid 
   level 2: original signal with 4 pixels:          [9 7 3 5] 
   level 1: averaged image with 2 pixels:       [  8    4 ] 
   level 0: averaged image with 1 pixel:         [     6    ] 
 
• To recover the original four pixels in level 2 from the two 
   pixels at level 1, use two detail coefficients +1 and -1.  
 

9 = 8 + (+1) 
7 = 8 – (+1) 
3 = 4 + (-1) 
5 = 4 – (-1) 
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level 2: [9 7 3 5] 
level 1: [  8    4 ] 
level 0: [     6    ] 

• To recover the two pixels in level 1 from the one 
   pixels at level 0, use one detail coefficient of 2. 
 
   8 = 6 + 2 
   4 = 6 - 2  
 
• The wavelet transform of the original 4-pixel image is 
   [ 6  2  1  -1 ] 
 
•  It has the same number of coefficients as the original 
   image, but it lets us reconstruct the image at any resolution. 



Idea of the Wavelet Hierarchy 
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level 4 
 
 
level 3 
 
 
level 2 
 
 
level 1 
 
 
level 0  



Haar Wavelet Decomposition  
of [9 7 3 5] 
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[9 7 3 5] 



Two-Dimensional Haar Wavelet 
Transform: Standard Decomposition 
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• First apply the 1D wavelet transform to each row of pixel values 
• This gives an average value along with detail coefficients for  
   each row 
• Next treat these transformed rows as an image and apply the  
   1D transform to each column 
• The resulting values are all detail coefficients except for the  
   single overall average coefficient  



Wavelet Decomposition of MRI Brain 
Image 
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the original MRI image 

3 –level decomposition 



 
Binary Image Analysis 

 
 

• used in a variety of applications:  
part inspection 
riveting 
fish counting 
document processing 
 

• consists of a set of image analysis operations 
   that are used to produce or process binary 
   images, usually images of 0’s and 1’s. 
 
       00010010001000 

00011110001000 
00010010001000 
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Example: red blood cell image 
• Many blood cells are 

separate objects 
 

• Many touch – bad! 
 

• Salt and pepper noise from 
thresholding 
 

• What operations are  
    needed to clean it up? 
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Results of analysis 
• 63 separate 

objects 
detected 

• Single cells have 
area about 50 

• Noise spots 
• Gobs of cells 



Useful Operations 
1. Thresholding a gray-tone image 

 
2.  Determining good thresholds  

 
3.  Filtering with mathematical morphology 

 
4.  Connected components analysis 

 
5.  Numeric feature extraction 

 
• location features 
• gray-tone features 
• shape features ... 
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Thresholding 

• Background is black 
 

• Healthy cherry is bright 
 

• Bruise is medium dark 
 

• Histogram shows two 
cherry regions (black 
background has been 
removed) 

gray-tone values 

 pixel 
counts 

0 256 
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Histogram-Directed Thresholding 

How can we use a histogram to separate an 
image into 2 (or several) different regions? 

Is there a single clear threshold? 2? 3? 
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Automatic Thresholding: Otsu’s Method 

Assumption: the histogram is bimodal 

t 

Method: find the threshold t that minimizes 
the weighted sum of within-group variances 
for the two groups that result from separating 
the gray tones at value t. 

Grp 1   Grp 2 
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Computing Within-Group Variance 

t 

See S&S text (Section 3.8) for the efficient recurrence relations; 
in practice, this operator works very well for true bimodal  
distributions and not too badly for others, but not the CTs. 

Grp 1   Grp 2 
• For each possible threshold t 
• For each group i (1 and 2) 

• compute the variance of its gray tones σi
2(t)  

• compute its weight qi(t) = ∑ P(τ)  
 
where P(τ) is the normalized histogram value for 
gray tone τ, normalized by sum of all gray tones 
in the image and called the probability of τ. 
 
• Within-group variance  = q1(t) σ1

2(t) + q2(t) σ2
2(t)  

  
τ in Grp i 
 

0                   255 



Thresholding Example 

original image                        pixels above threshold 
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Dilation expands the connected sets of 1s of a binary image. 
 
It can be used for  
 
   1. growing features 
 
 
   2. filling holes and gaps 

Mathematical Morphology 
(Dilation, Erosion, Closing, Opening) 

• Dilation 
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• Erosion 

Erosion shrinks the connected sets of 1s of a binary image. 
 
It can be used for  
 
   1. shrinking features 
 
 
   2. Removing bridges, branches and small protrusions 
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Structuring Elements 

A structuring element is a shape mask used in 
the basic morphological operations. 
 
They can be any shape and size that is 
digitally representable, and each has an origin. 

box 
hexagon disk something 

box(length,width)               disk(diameter) 
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Dilation with Structuring Elements 

The arguments to dilation and erosion are 

1. a binary image B 
2. a structuring element S 

dilate(B,S) takes binary image B, places the origin 
of structuring element S over each 1-pixel, and ORs 
the structuring element S into the output image at 
the corresponding position. 

0 0 0 0 
0 1 1 0 
0 0 0 0 

1 
1 1 

0 1 1 0 
0 1 1 1 
0 0 0 0 

origin B 
S 

dilate 

B ⊕ S 
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Erosion with Structuring Elements 

erode(B,S) takes a binary image B, places the origin  
of structuring element S over every pixel position, and 
ORs a binary 1 into that position of the output image only if 
every position of S (with a 1) covers a 1 in B. 

0 0 1 1 0 
0 0 1 1 0 
0 0 1 1 0 
1 1 1 1 1 

1 
1 
1 

0 0 0 0 0 
0 0 1 1 0 
0 0 1 1 0 
0 0 0 0 0 

B S 

origin 

erode 

B     S  
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Opening and Closing 

• Closing is the compound operation of dilation followed 
   by erosion (with the same structuring element) 
 
 
• Opening is the compound operation of erosion followed 
   by dilation (with the same structuring element) 
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Connected Components Labeling 
Once you have a binary image, you can identify and  
then analyze each connected set of pixels. 
 
The connected components operation takes in a binary image  
and produces a labeled image in which each pixel has the  
integer label of either the background (0) or a component. 

original           thresholded          opening+closing    components 
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Methods for CC Analysis 
1.  Recursive Tracking (almost never used) 

 
2.  Parallel Growing (needs parallel hardware) 

 
3.  Row-by-Row (most common) 

 
a. propagate labels down to the bottom, 
    recording equivalences 
 
b. Compute equivalence classes 
 
c. Replace each labeled pixel with the 
    label of its equivalence class. 
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Equivalent Labels 

0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 
0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 
0 0 0 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 
0 0 0 1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 

Original Binary Image 
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Equivalent Labels 

0 0 0 1 1 1 0 0 0 0 2 2 2 2 0 0 0 0 3 
0 0 0 1 1 1 1 0 0 0 2 2 2 2 0 0 0 3 3 
0 0 0 1 1 1 1 1 0 0 2 2 2 2 0 0 3 3 3 
0 0 0 1 1 1 1 1 1 0 2 2 2 2 0 0 3 3 3 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 3 3 3 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 3 3 3 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 

The Labeling Process:  
Left to Right, Top to Bottom 

1 ≡ 2 
1 ≡ 3 
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Labeling shown as Pseudo-Color 

connected 
components 
of 1’s from 
thresholded 
image 

connected 
components 
of cluster 
labels 
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