Multimodality PET/CT Imaging

Paul Kinahan Imaging Research Laboratory Director, PET/CT Physics Department of Radiology

Types of Images

Ceci n'est pas une pipe.

René Magritte The Treachery of Images 1928

Types of Images: Projection Imaging

Types of Images: Tomography

basilar tip aneurysm

coronal view

sagittal view

Two Types of Tomography

'Tomo' + 'graphy' = Greek: 'slice' + 'picture'

CT: Transmission

PET: Emission

Physics of PET and CT Imaging

The Electromagnetic Spectrum

Major Medical Imaging Modalities

<u>Modality</u>	Resolution (mm)	TX or EM*	<u>Mode</u>
X-ray	0.1 - 1.0	ТХ	Projection
Nuclear Medicine	10 – 20	EM	Projection
X-ray CT	0.5	ТХ	Tomographic
Ultrasound	0.3	TX (sound)	Tomographic
MRI	1	EM (RF)	Tomographic
SPECT	10	EM	Tomographic
PET	5	EM	Tomographic

*(TX = transmission, EM = emission)

How it works: Positron Emission

18**F** 18**()** $E = mc^2$ n = 511 keV n n n **`⊕β**+ Radioactive decay decays to stable form by ~2 mm converting a proton to a neutron and ejects a 'positron' to conserve Ğ⊕e electric charge positron annihilates with an electron, releasing two anti-~180 deg colinear high-energy photons detection system is ~1-5% efficient, and can be made quantitative

How it works: Scintillation

PET Detector Block

- PET scanners are assembled in block modules
- Each block uses a limited number of PMTs to decode an array of scintillation crystals

signal out to

processing

Typical PET Scanner Detector Ring

Inside GE Discovery STE PET/CT

6 x 8 crystals (axial by transaxial) Each crystal: 6.3 mm axial

4.7 mm transaxial

Scanner construction

BGO CRYSTALS

Axial: 4 blocks axially = 24 rings 15.7 cm axial extent

Transaxial:

70 blocks around = 560 crystals 88 cm BGO ring diameter 70 cm patient port

13,440 individual crystals

How it works: Timing coincidence

of tracer uptake

PET Image Formation Workflow

Effects of Attenuation: Patient Study

PET: without attenuation correction

PET: with attenuation correction (accurate)

CT image (accurate)

Errors in attenuation correction can dominate image quality

PET/CT Scanner Physiology

 CT images are also used for attenuation correction (CTAC) of the PET data

• Note that images are not really fused, but are displayed as fused or side-by-side with linked cursors

Basic PET/CT Architecture

Commercial/Clinical PET/CT Scanner

CT Scanner in Operation

64-slice CT, weight ~ 1 ton, speed 0.33 sec (180 rpm)

X-ray CT Tubes

• Rotating anode tube

(dissipates heat to allow higher beam currents)

Modern X-Ray Tube

Electron Collector: reduce off-focal radiation
• Lower patient dose

High Peak-Power Target & BearingsHigh peak-mA for fast rotation

Rotati speec	on typical I (s) mAs	mA need d	le	
0.5	200	400		
0.4	200	500	Largo Patient	
0.4	240	600	Large Fallent	
0.35	200	571	Large Patient	
0.35	240	686		
kVp	mA Small Spot	mA	Large Spot	
80	10-300	305-675		
100	10-310		315-770	
120	10-335	340-800		
140	10-335	3	340-715	

What are we looking at?

Molecular Imaging: Glu Metabolism

Imaging FDG uptake (PET) & anatomical localization (CT)

Function

Function+Anatomy and CTbased attenuation correction

Anatomy

Diagnostic Accuracy of PET/CT exceeds CT or PET only

Tumor entity	References	Purpose of the imaging studies	Number of patients	Accuracy (%)		
				PET/CT	PET	СТ
Head and neck	Chen <i>et al</i> . (2006) ³⁵	TNM staging	70	95	83 ^a	73 ^a
	Schoder <i>et al</i> . (2004) ³⁶	Lesion detection	68	96	90 ^a	ND
NSCLC	Lardinois <i>et al</i> . (2003) ²⁴	T stage N stage	40 37	98 84	80 ^a 87	78 ^a 64
	Shim <i>et al</i> . (2005) ³⁷	T stage N stage	106 106	86 84	ND ND	79 69 ^a
Colorectal	Kim <i>et al</i> . (2005) ¹⁰	Recurrence	51	88	71 ^a	ND
	Votrubova <i>et al</i> . (2006) ³⁸	Recurrence	84	90	75 ^a	ND
Lymphoma	Allen-Auerbach et al. (2004) ³³	(Re)staging	73	93	84 ^a	ND
	la Fougère <i>et al</i> . (2006) ³⁹	(Re)staging	50	99	98	89 ^a
Melanoma	Reinhardt <i>et al</i> . (2006) ³¹	(Re)staging	250	97	93 ^a	79 ^a
	Mottaghy et al. (2007) ⁴⁰	(Re)staging	102	91	92	ND
^a Statistically significant difference when compared with PET/CT. Abbreviations: NSCLC, non-small-cell lung cancer; ND, not						

determined; TNM, tumor node metastasis.

Weber et al. Nature Reviews Clinical Oncology 2008

PET with ¹⁸F-FDG is used for cancer imaging

Cancer diagnosis – and staging

- Currently ~ 92% of all PET/CT studies are for diagnosis and staging in oncology imaging
- About 5000 scanners world wide
- 2.5 millions scans done annually in US

Response to therapy of liver met gastric GIST

No morphological change in the metastasis

Castell and Cook, British J Cancer 2008

What are the advantages of PET/CT?

Sensitivity

Meikle PMB 2005

Quantitation

Linear with position and tracer concentration

Quantitation

0.0000

Linear with position and tracer concentration

Linear with position

CT

CT

Improvements and/or Artifacts

Resolution Effects

- Modified NEMA NU-2 Image Quality Phantom (30 cm x 23 cm cross section)
- Sphere diameters:1.0, 1.3, 1.7, 2.2, 2.8, 3.7 cm
- 4:1 target:background ratio and typical patient activity
- RC = measured / true

Resolution Effects

Image Reconstruction: Modeling Detector Blurring

Shape of detector blurring point spread function (PSF)

- Radially variant
- Asymmetric in transaxial direction
- Two-fold symmetric about FOV center

Spatially-Variant Image Resolution

standard OSEM OSEM with detector blurring modeled

Including improved physics modeling in image reconstruction

In principle can remove detector blurring

Phantom measurements: ringing artifact

Patient shifting

• Large change in attenuation going from spine to lung

?

Breathing Artifacts: Propagation of CT breathing artifacts via CT-based attenuation correction

Attenuation artifacts from CT can dominate true PET tracer uptake values

Image Smoothing: Noise vs. Resolution

- Always a trade-off in noise vs. resolution
- The choice of the best filter to use with the reconstruction algorithm depends on the clinical task
- There are no standards for choice of smoothing

Effect of changing smoothing

Image Quality

Image Quality

Image quality, for the purposes of medical imaging, can be defined as the ability to extract desired information from an image

- Harrison H. Barrett PNAS, 1993

Traditional measures: Resolution

- Point-spread function (PSF): Narrower is better
- Modulation transfer function (MTF), which is the absolute value of the frequency-space version of the PSF: Wider is better

- FWHM, FWTM, FW100M, etc but these can only approximate the PSF
- Bias is related to the PSF, but in a non-trivial way

Traditional measures: Noise

- Sensitivity: response to very low activity levels
- More counts -> lower noise -> Better SNR
- Noise Power Spectrum: noise power at each frequency
- Note that *apparent* noise in a single image, is not necessarily the same as *true* noise measured from multiple images.

Law of conservation of difficulty

- There are always trade-offs: In this case usually noise vs. resolution or bias
- looking at the range of values is important to be fair
- looking at the operating point may be the most important, but can be difficult to determine

How do you compare images?

- define task
 - detection
 - localization
 - estimation (quantitation)
 - shape discrimination
 - combinations of the above, etc.
- measure (quantitate) task performance
- these are often time consuming studies and can be difficult to perform properly
- we can in some cases use computer models of human performance -- so called 'model' or 'computational' observers -that are based on the human perceptual system

Detectability: Is it there?

Noiseless

lesion:background 1:1.2:1.5:2

10 kcounts

100 kcounts

2 kcounts

Decreased resolution

Noiseless

100 kcounts

10 kcounts

2 kcounts

Correlated Noise Introduced by Image Reconstruction

True Object

1M Counts

0.1M Counts

Uncorrelated

No Noise (reconstructed)

Correlated

Resolution Effect of Smoothing vs. Noise

Human abdomen simulation with 2cm diam. lesion 2:1 contrast

less smoothing (more noise)

more counts (less noise)

Image Quality

Image quality, for the purposes of medical imaging, can be defined as the ability to extract desired information from an image

- Harrison H. Barrett PNAS, 1993

Diagnostic Accuracy of PET/CT exceeds CT or PET only

Tumor entity	References	Purpose of the imaging studies	Number of patients	Accuracy (%)		
				PET/CT	PET	СТ
Head and neck	Chen <i>et al</i> . (2006) ³⁵	TNM staging	70	95	83 ^a	73 ^a
	Schoder <i>et al</i> . (2004) ³⁶	Lesion detection	68	96	90 ^a	ND
NSCLC	Lardinois <i>et al</i> . (2003) ²⁴	T stage N stage	40 37	98 84	80 ^a 87	78 ^a 64
	Shim <i>et al</i> . (2005) ³⁷	T stage N stage	106 106	86 84	ND ND	79 69 ^a
Colorectal	Kim <i>et al</i> . (2005) ¹⁰	Recurrence	51	88	71 ^a	ND
	Votrubova <i>et al</i> . (2006) ³⁸	Recurrence	84	90	75 ^a	ND
Lymphoma	Allen-Auerbach et al. (2004) ³³	(Re)staging	73	93	84 ^a	ND
	la Fougère <i>et al</i> . (2006) ³⁹	(Re)staging	50	99	98	89 ^a
Melanoma	Reinhardt <i>et al</i> . (2006) ³¹	(Re)staging	250	97	93 ^a	79 ^a
	Mottaghy et al. (2007) ⁴⁰	(Re)staging	102	91	92	ND
^a Statistically significant difference when compared with PET/CT. Abbreviations: NSCLC, non-small-cell lung cancer; ND, not						

determined; TNM, tumor node metastasis.

Weber et al. Nature Reviews Clinical Oncology 2008

Acknowledgements

UW Imaging Research Laboratory

