Learning to Compute the Symmetry Plane for Human Faces

Jia Wu (jiawu@uw.edu) ACM-BCB '11, August 2011

Landmark by medical experts

Landmarks labeled by experts

Standard symmetry plane

Flow chart for training

10 kinds of landmarks.

- Nose: ac (nose side), prn, sn,se
- Eyes: en, ex
- Mouth: (li,ls), ch,
 sto
- Chin: slab

Positive/negative samples

Training for en: the inner corners of the eyes

Training for prn: most protruded point of nasal tip

Features: mean and Gaussian curvatures for original head and smoothed head

Flow chart

Interesting points prediction

Prediction of en: the inner corners of the eyes Prediction of prn: most protruded point of nasal tip

Connected regions

Connected regions for en: each color means one region

Connected regions for prn: each color means one region

Flow chart

How to define "good" symmetric regions

- A "good" pair of regions should be symmetric to the standard symmetry plane
- A "good" single region should have the center on the standard symmetry plane

"good" regions for en

"good" regions for prn

Feature for regions

 $Csingle_m = [Num_m, \lambda_{m1}, \lambda_{m2}, \lambda_{m3}]$

Principal component analysis and eigenvalues

$$Cpair_{m,n} = [|Num_{m} - Num_{n}|, |\lambda_{m1} - \lambda_{n1}|, |\lambda_{m2} - \lambda_{n2}|, |\lambda_{m3} - \lambda_{n3}|, D(C_{m}, C_{n})]$$

Flow chart for training

Procedure for New data

Procedure for New Images

Centers of good regions

Centers for constructing plane of symmetry

Result: Plane of symmetry

Experiments

- Compare the plane of symmetry to
 - Ground truth (plane determined by expert labeled landmarks)
 - Mirror method in literature
- Ground truth dataset 1
- Ground truth dataset 2
- Cleft dataset

Mirror method in literature

Computing the symmetry plane

Figure 3. Registration of the original and mirrored data and computation of the symmetry plane by means of corresponding points.

Results compare to ground truth

our method Angle:4.03°

mirror method Angle:2.15°

- Yellow: overlapping with ground truth
- Green: ground truth
- Purple: extra from each method

Results compare to ground truth

- Green: ground truth -> false negative
- Purple: extra from each method -> false positive

Ground truth dataset 2

Cleft dataset

Learning method

Mirror

method

Questions?