Content Based Retrieval on 3D Face Data

Ezgi Mercan

Motivation

- Indrivati Atmosukarto's Thesis:
 - Global 2D azimuth-elevation angles histograms are successfully used in 3D shape quantification for deformational plagiocephaly and classification of 22q11.2DS.
 - Can we use azimuth-elevation angles histograms for retrieval?

Image Acquisition: 3dMD

About the Data

- 'us' database: 14 head meshes of 12 people.
- Data is limited
 - Hard to find similarity
 - No ground truth: survey.

Methodology

Pose Normalized Heads

Masking

Histograms

Feature Extraction

- Compute the azimuth and elevation angles of the surface normal vectors of each point on the mesh.
- Construct 2D histograms of angles.

Query for Carrie - eyes

Contesti /2

Retrieval Results:

Ground Truth:

Kalast

Jiastir

Query for Jia - mouth

Discussion

- Ground truth: people's perception of similarity.
- Azimuth & Elevation angles may not correspond to human's perception of similarity.
- Database is too small to derive a statistically significant result.

Future Work

- Alternative features: Gaussian Curvature, Lynn's method of distance matrices.
- Larger databases: FaceBase collaborator Seth Weinberg's data repository of 3500 healthy Caucasian individuals.
- User friendly GUI.