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AbstractÐIn this paper, we present a general example-based framework for detecting objects in static images by components. The

technique is demonstrated by developing a system that locates people in cluttered scenes. The system is structured with four distinct

example-based detectors that are trained to separately find the four components of the human body: the head, legs, left arm, and right

arm. After ensuring that these components are present in the proper geometric configuration, a second example-based classifier

combines the results of the component detectors to classify a pattern as either a ªpersonº or a ªnonperson.º We call this type of

hierarchical architecture, in which learning occurs at multiple stages, an Adaptive Combination of Classifiers (ACC). We present results

that show that this system performs significantly better than a similar full-body person detector. This suggests that the improvement in

performance is due to the component-based approach and the ACC data classification architecture. The algorithm is also more robust

than the full-body person detection method in that it is capable of locating partially occluded views of people and people whose body

parts have little contrast with the background.

Index TermsÐObject detection, people detection, pattern recognition, machine learning, components.

æ

1 INTRODUCTION

IN this paper, we present a general example-based
algorithm for detecting objects in images by first locating

their constituent components and then combining the
component detections with a classifier if their configuration
is valid. We illustrate the method by applying it to the
problem of locating people in complex and cluttered scenes.
Since this technique is example-based, it can easily be used
to locate any object composed of distinct identifiable parts
that are arranged in a well-defined configuration, such as
cars and faces.

The general problem of object detection in static images

is a difficult one as the object detection system is required to

distinguish a particular class of objects from all others. This

calls for the system to possess a model of the object class

that has high interclass and low intraclass variability.

Further, a robust object detection system should be able to

detect objects in uneven illumination, objects which are

rotated into the plane of the image, and objects that are

partially occluded or whose parts blend in with the

background. Under all of the above conditions, the outline

of an object is usually altered and its complete form may not

be discernible. However, in many cases, the majority of the

object's defining parts may still be identifiable. If an object

detection system is designed to find objects in images by

locating the various parts of the object, then it should be
able to deal with such anomalies.

In this paper, we focus on the problem of detecting
people in images; such a system could be used in
surveillance systems, driver assistance systems, and image
indexing. Detecting people in images is more challenging
than detecting many other objects due to several reasons:
First, people are articulate objects that can take on a variety
of shapes and it is nontrivial to define a single model that
captures all of these possibilities. The ability to detect
people when the limbs are in different relative positions is a
desirable trait of a robust person detection system. Second,
people dress in a variety of colors and garment types (skirts,
slacks, etc.), which leads to high intraclass variation in the
people class, that would make it difficult for color or fine
scale edge-based techniques to work well. The pictures of
people in Fig. 1 illustrate the issues outlined above.

1.1 Previous Work

The approach we adopt builds on previous work in the
fields of object detection and classifier combination algo-
rithms. This section reviews relevant results in these fields.

1.1.1 Object Detection

The object detection systems that have been developed to
date fall into one of three major categories. The first
category consists of systems that are model-based, i.e., a
model is defined for the object of interest and the system
attempts to match this model to different parts of the image
in order to find a fit [27]. The second type are image
invariance methods which base a matching on a set of
image pattern relationships (e.g., brightness levels) that,
ideally, uniquely determine the objects being searched for
[21]. The final set of object detection systems are character-
ized by their example-based learning algorithms [24], [22],
[23], [18], [19], [16], [14]. These systems learn the salient
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features of a class from sets of labeled positive and negative
examples. Example-based techniques have also been suc-
cessfully used in other areas of computer vision, including
object recognition [13].

People Detection in Images. Most people detection
systems reported on in the literature either use motion
information, explicit models, a static camera, assume a
single person in the image, or implement tracking rather
than pure detection; relevant work includes [8], [10], [7].

Papageorgiou et al. have successfully employed exam-
ple-based learning techniques to detect people in complex
static scenes without assuming any a priori scene structure
or using any motion information. Their system detects the
full body of a person. Haar wavelets [12] are used to
represent the images and Support Vector Machine (SVM)
classifiers [25] are used to classify the patterns. Details are
presented in [16], [15], and [14].

Papageorgiou's system has reported successful results
detecting frontal, rear, and side views of people, indicating
that the wavelet-based image representation scheme and
the SVM classifier are well-suited to this particular
application. However, the system's ability to detect partially
occluded people or people whose body parts have little
contrast with the background is limited.

Component-Based Object Detection Systems. Previous
research suggest that some of these problems associated
with Papageorgiou's full-body detection system may be
addressed by taking a component-based approach to
detecting objects. A component-based object detection
system is one that searches for an object by looking for its
identifying components rather than the whole object. An
example of such a system is a face detection system that
finds a face when it locates a pair of eyes, a nose, and a
mouth in the proper configuration.

Component-based approaches to object detection have
been described in the past but their application to the
problem of locating people in images is fairly limited. For
component-based face detection systems see [20], [11], and

[26]. Systems in [11] and [26] have the ability to explicitly
deal with partial occlusions. These systems have two
common features: They all have component detectors that
identify candidate components in an image and they all
have a means to integrate these components and determine
if together they define a face In [4] and [5], the authors
describe a system that uses color, texture, and geometry to
localize horses and naked people in images. The system can
be used to retrieve images satisfying certain criteria from
image databases but is mainly targeted towards images
containing one object. Methods of learning these ªbody
plansº from examples are described in [4].

It is worth mentioning that a component-based object
detection system for people is harder to realize than one for
faces because the geometry of the human body is less
constrained than that of the human face. This means that
not only is there greater intraclass variation concerning the
configuration of body parts, but also that it is more difficult
to detect body parts in the first place since their appearance
can change significantly when a person moves.

1.1.2 Classifier Combination Algorithms

Recently, a great deal of interest has been shown in
hierarchical classification structures, i.e., data classification
devices that are a combination of several other classifiers. In
particular, two methods have received considerable atten-
tionÐbagging and boosting. Both of these algorithms have
been shown to increase the performance of certain
classifiers for a variety of data sets [2], [6], [17], [1]. Despite
the well-documented practical success of these algorithms,
the reasons why they work so well is still open to debate.

1.2 Component-Based People DetectionÐOur
Approach

The approach we take to detecting people in static images
borrows ideas from the fields of object detection in images
and data classification. In particular, the system detects the
components of a person's body in an image, i.e., the head, the
left and right arms, and the legs, instead of the full body. The
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Fig. 1. These images demonstrate some of the challenges involved with detecting people in still images with cluttered backgrounds. People are

nonrigid objects and dress in a wide variety of colors and garment types. Additionally, people may be rotated in depth, partially occluded, or in motion

(i.e., running or walking).



system then checks to ensure that the detected components
are in the proper geometric configuration and then combines
them using a classifier. This approach of integrating
components using a classifier promises to increase accuracy
based on the results of previous work in the field.

We introduce a new hierarchical classification architecture
where example-based learning is conducted at multiple
levels, called an Adaptive Combination of Classifiers (ACC).
Specifically, it is composed of distinct example-based compo-
nent classifiers trained to detect different object parts, i.e.,
heads, legs, and left and right arms, at one level and a similar
example-based combination classifier at the next. The combina-
tion classifier takes the output of the component classifiers as
its input and classifies the entire pattern under examination
as either a ªpersonº or a ªnonperson.º It bears repeating that
since the classifiers are example-based, this system can easily
be modified to detect objects other than people.

A component-based approach to detecting people is
appealing and has the following advantages over existing
techniques:

. It allows for the use of the geometric information
concerning the human body to supplement the
visual information present in an image and thereby
improve the overall performance of the system.
More specifically, the visual data in an image is used
to detect body components and knowledge of the
structure of the human body allows us to determine
if the detected components are proportioned cor-
rectly and arranged in a permissible configuration.
In contrast, a full-body person detector relies solely
on visual information and does not take full
advantage of the known geometric properties of
the human body. In particular, it employs an implicit
and fixed representation of the human form and
does not explicitly allow for variations in limb
positions [16], [15], [14].

. Sometimes it is difficult to detect the human body
pattern as a whole due to variations in lighting and
orientation. The effect of uneven illumination and
varying viewpoint on body components (like the
head, arms, and legs) is less pronounced and, hence,
they are comparatively easier to identify.

. The component-based framework directly addresses
the issue of detecting people that are partially
occluded or whose body parts have little contrast
with the background. This is accomplished by
designing the system, using an appropriate classifier
combination algorithm, so that it detects people even
if all of their components are not detected.

. The structure of the component-based solution
allows for the convenient use of hierarchical classi-
fication machines to classify patterns which have
been shown to perform better than similar single
layer devices for certain data classification tasks [2],
[6], [17], [1].

The rest of the paper is organized as follows: Section 2
describes the system in detail. Section 3 reports on the
performance of our system. In Section 4, we present
conclusions along with suggestions for future research in
this area.

2 SYSTEM DETAILS

2.1 Overview of System Architecture

The section explains the overall architecture and operation
of the system by tracing the detection process when the
system is applied to an image; Fig. 2 is a graphical
representation of this procedure.

The system starts detecting people in images by selecting
a 128� 64 pixel window from the top left corner of the
image as an input. This input is then classified as either a
ªpersonº or a ªnonperson,º a process which begins by
determining where and at which scales the components of a
person, i.e., the head, legs, left arm, and right arm, may be
found within the window. All of these candidate regions
are processed by the respective component detectors to find
the strongest candidate components.

The component detectors process the candidate regions
by applying the Haar wavelet transform to them and then
classifying the resultant data vector. The component
classifiers are quadratic Support Vector Machines (SVM)
which are trained prior to use in the detection process (see
Section 2.2). The strongest candidate component is the one
that produces the highest positive raw output, referred to in
this paper as the component score, when classified by the
component classifiers. If the highest component score for a
particular component is negative, i.e., the component
detector in question did not find a component in the
geometrically permissible area, then a component score of
zero is used instead. The raw output of an SVM is a rough
measure of how well a classified data point fits in with its
designated class and is defined in Section 2.2.1. The highest
component score for each component is fed into the
combination classifier which is a linear SVM. The combina-
tion classifier processes the scores to determine if the
pattern is a person.

This process of classifying patterns is repeated at all
locations in an image by shifting the 128� 64 pixel window
across and down the image. The image itself is processed at
several sizes, ranging from 0.2 to 1.5 times its original size.
This allows the system to detect various sizes of people at
any location in an image.

2.2 Details of System Architecture

2.2.1 First StageÐIdentifying Components of People

in an Image

When a 128� 64 pixel window is evaluated by the system,
the individual component detectors are applied only to
specific areas of the window and only at particular scales,
since the relative proportions must match and the approx-
imate configuration of body parts is known a priori. This is
necessary because even though a component detection is
the strongest in a particular window under examination (it
has the highest component score), it does not imply that it is
in the correct position, as illustrated in Fig. 3. The centroid
and boundary of the allowable rectangular area for a
component detection (relative to the upper left-hand corner
of the 128� 64 pattern) determine the location of the
component and the width of the rectangle is a measure of a
component's scale.

We calculated the geometric constraints for each compo-
nent from a sample of the training images, tabulated in

MOHAN ET AL.: EXAMPLE-BASED OBJECT DETECTION IN IMAGES BY COMPONENTS 351



Table 1 and shown in Fig. 4, by taking the means of the

centroid and top and bottom boundary edges of each

component over positive detections in the training set. The

tolerances were set to include all positive detections in the

training set. Permissible scales were also estimated from the

training images. There are two sets of constraints for the

arms, one intended for extended arms and the other for

bent arms.

Wavelet functions are used to represent the components

in the images. Wavelets are a type of multiresolution

function approximation that allow for the hierarchical

decomposition of a signal [12]. When applied at different

scales, wavelets encode information about an image from

the coarse approximation all the way down to the fine

details. The Haar basis is the simplest wavelet basis and

provides a mathematically sound extension to an image
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Fig. 2. Diagrammatic description of the operation of the system.



invariance scheme [21]. Haar wavelets of two different
scales (16� 16 pixels and 8� 8 pixels) are used to generate

a multiscale representation of the images. The wavelets are
applied to the image such that they overlap 75 percent with
the neighboring wavelets in the vertical and horizontal
directions; this is done to increase the spatial resolution of

our system and to yield richer representation. At each scale,
three different orientations of Haar wavelets are used, each
of which responds to differences in intensities across

different axes. In this manner, information about how
intensity varies in each color channel (red, green, and blue)
in the horizontal, vertical, and diagonal directions is
obtained. The information streams from the three color

channels are combined and collapsed into one by taking the
wavelet coefficient for the color channel that exhibits the
greatest variation in intensity at each location and for each
orientation. At these scales of wavelets there are 582 features

for the 32� 32 pixel window for the head and shoulders
and 954 features for the 48� 32 pixel windows representing
the lower body and the left and right arms. This method
results in a thorough and compact representation of the

components, with high interclass and low intraclass
variation.

We use support vector machines (SVM) to classify the
data vectors resulting from the Haar wavelet representation
of the components. SVMs were proposed by Vapnik [25]
and have yielded excellent results in various data classifica-
tion tasks, including people detection [16], [14] and text
classification [9]. Traditional training techniques for classi-
fiers like multilayer perceptrons use empirical risk mini-
mization and lack a solid mathematical justification. The
SVM algorithm uses structural risk minimization to find the
hyperplane that optimally separates two classes of objects.
This is equivalent to minimizing a bound on generalization
error. The optimal hyperplane is computed as a decision
surface of the form:

f�x� � sgn g�x�� �; �1�
where

g�x� �
Xl�
i�1

yi�iK�x;x�i � � b
 !

: �2�

In (2), K is one of many possible kernel functions, yi 2
fÿ1; 1g is the class label of the data point x�i , and fx�i gl

�
i�1 is a

subset of the training data set. The x�i are called support
vectors and are the points from the data set that define the
separating hyperplane. Finally, the coefficients �i and b are
determined by solving a large-scale quadratic programming
problem. One of the appealing characteristics of SVMs is
that there are just two tunable parameters, Cpos and Cneg,
which are penalty terms for positive and negative pattern
misclassifications, respectively. The kernel function K that
is used in the component classifiers is a quadratic
polynomial and is K�x;x�i � � �x � x�i � 1�2.

In (1), f�x� 2 fÿ1; 1g is referred to as the binary class of
the data point x which is being classified by the SVM. As (1)
shows, the binary class of a data point is the sign of the raw
output g�x� of the SVM classifier. The raw output of an
SVM classifier is the distance of a data point from the
decision hyperplane. In general, the greater the magnitude
of the raw output, the more likely a classified data point
belongs to the binary class it is grouped into by the
SVM classifier.
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Fig. 3. It is very important to place geometric constraints on the location
and scale of component detections. Even though a detection may be the
strongest in a particular window examined, it might not be at the proper
location. In this figure, the shadow of the person's head is detected with
a higher score than the head itself. If we did not check for proper
configuration and scale, component detections like these would lead to
false alarms and/or missed detections of people.

TABLE 1
Geometric Constraints Placed on Each Component

All coordinates are relative to the upper left-hand corner of a 128� 64 rectangle.



The component classifiers are trained on positive images
and negative images for their respective classes. The
positive examples are of arms, legs, and heads of people
in various environments, both indoors and outdoors and
under various lighting conditions. The negative examples
are taken from scenes that do not contain any people.
Examples of positive images used to train the component
classifiers are shown in Fig. 5.

2.2.2 Second StageÐCombining the Component

Classifiers

Once the component detectors have been applied to all
geometrically permissible areas within the 128� 64 pixel
window, the highest component score for each component
type is entered into a data vector that serves as the input to
the combination classifier. The component score is the raw

output of the component classifier and is the distance of the

test point from the decision hyperplane, a rough measure of

how ªwellº a test point fits into its designated class. If the

component detector does not find a component in the

designated area of the 128� 64 pixel window, then zero is

placed in the data vector.
The combination classifier is a linear SVM classifier. The

kernel K that is used in the SVM classifier and shown in (2)

has the form K�x;x�i � � �x � x�i � 1�. This type of hierarch-

ical classification architecture where learning occurs at

multiple stages is termed an Adaptive Combination of

Classifiers (ACC). Positive examples were generated by

processing 128� 64 pixel images of people at one scale and

taking the highest component score (from detections that

are geometrically allowed) for each component type.
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Fig. 4. Geometric constraints that are placed on the different components. All coordinates are relative to the upper left-hand corner of a

128� 64 rectangle. (a) Illustrates the geometric constraints on the head, (b) the lower body, (c) an extended right arm, and (d) a bent right arm.



3 RESULTS

We compare the performance of our component-based
person detection system to that of other component-based
person detection systems that combine the component
classifiers in different ways and the full-body person
detection system that is described in [16] and [14] and
reviewed in Section 1.1.1.

3.1 Experimental Setup

All of the component-based detection systems that were
tested in this experiment are two tiered systems. Specifi-
cally, they detect heads, legs, and arms at one level and at
the next they combine the results of the component
detectors to determine if the pattern in question is a person
or not. The component detectors that were used in all of the
component-based people detection systems are identical
and are described in Section 2.2.1. The positive examples for
training these detectors were obtained from a database of
pictures of people taken in Boston and Cambridge,
Massachusetts, with different cameras, under different
lighting conditions, and in different seasons. This database
includes images of people who are rotated in depth and
who are walking, in addition to frontal and rear views of
stationary people. The positive examples of the lower body
include images of women in skirts and people wearing full
length overcoats as well as people dressed in pants.
Similarly, the database of positive examples for the arms
were varied in content, including arms at various positions
in relation to the body. The negative examples were
obtained from images of natural scenery and buildings that
did not contain any people. The head and shoulders
classifier was trained with 856 positive and 9,315 negative
examples, the lower body with 866 positive and 9,260 nega-
tive examples, the left arm with 835 positive and
9,260 negative examples, and the right arm with 838 positive
and 9,260 negative examples.

3.1.1 Adaptive Combination of Classifiers-Based

Systems

Once the component classifiers were trained, the next step
in evaluating the Adaptive Combination of Classifiers
(ACC)-based systems was to train the combination classi-
fier. Positive and negative examples for the combination
classifier were collected from the same databases that were
used to train the component classifiers. A positive example
was obtained by processing each image of a person at a
single appropriate scale. The four component detectors
were applied to the geometrically permissible areas of the

image at the allowable scales. These geometrically permis-
sible areas were determined by analyzing a sample of the
training set images, as described in Section 2.2.1. There is no
overlap between these images and the testing set used in
this experiment. The greatest positive classifier output for
each component was recorded. When all four component
scores were greater than zero, they were assembled as a
vector to form an example. If all of the component scores
were not positive, then no vector was formed and the
window examined did not yield an example. The negative
examples were computed in a similar manner, except that
this process was repeated over the entire image and at
various scales. The images for the negative examples did
not contain people.

We used 889 positive examples and 3,106 negative
examples for training the classifiers. First, second, third,
and fourth degree polynomial SVM classifiers were trained
using the same training set and, subsequently, tested over
identical out-of-sample test data.

The trained system was run over a database containing
123 images of people to determine the positive detection
rate. There is no overlap between these images and the ones
that were used to train the system. The out-of-sample false
alarm rate was obtained by running the system over a
database of 50 images that do not contain any people. By
running the system over these 50 images, 796,904 windows
were examined and classified. The system was run over the
databases of test images at several different thresholds. The
results were recorded and plotted as Receiver Operating
Characteristic (ROC) curves.

3.1.2 Voting Combination of Classifiers-Based System

The other method of combining the results of the
component detectors that was tested is what we call a
Voting Combination of Classifiers (VCC). VCC systems
combine classifiers by implementing a voting structure
amongst them. One way of viewing this arrangement is that
the component classifiers are weak experts in the matter of
detecting people. VCC systems poll the weak experts and
then based on the results, decide if the pattern is a person.
For example, in a possible implementation of VCC, if a
majority of the weak experts classify a pattern as a person,
then the system declares the pattern to be a person.

In the incarnation of VCC that is implemented and tested
in this experiment, a positive detection of the person class
results only when all four component classes are detected in
the proper configuration. The geometric constraints placed
on the components are the same in the ACC- and VCC-based

MOHAN ET AL.: EXAMPLE-BASED OBJECT DETECTION IN IMAGES BY COMPONENTS 355

Fig. 5. The top row shows examples of ªheads and shouldersº and ªlower bodiesº of people that were used to train the respective component

detectors. Similarly, the bottom row shows examples of ªleft armsº and ªright armsº that were used for training purposes.



systems. For each pattern that the system classifies, the
system must evaluate the logic presented below:

Person � Head & Legs & Left arm & Right arm; �3�
where a state of true indicates that a pattern belonging to the
class in question has been detected.

The detection threshold of the VCC-based system is
determined by selecting appropriate thresholds for the
component detectors. The thresholds for the component
detectors are chosen such that they all correspond to
approximately the same positive detection rate, estimated
from the ROC curves of each of the component detectors
shown in Fig. 6. These ROC curves were calculated in a
manner similar to the procedure described earlier in
Section 3.1.1. A point of interest is that these ROC curves
indicate how discriminating the individual components of a
person are in detecting the full body. The legs perform the
best, followed by the arms and the head. The superior
performance of the legs may be due to the fact that the
background of the lower body in images is usually either
the street, pavement, or grass and, hence, is relatively
clutter free compared to the background of the head and
arms.

3.1.3 Baseline System

The system that is used as the ªbaselineº for this
comparison is a full-body person detector. Details of this
system, which was created by Papageorgiou et al. are
presented in [16], [14], and [15]. It has the same architecture
as the individual component detectors used in our system,
described in Section 2.2.1, but is trained to detect
full-body patterns and not separate components. The
quadratic SVM classifier was trained on 869 positive and
9,225 negative examples.

3.2 Experimental Results

We compare the ACC-based system, the VCC-based
system, and the full-body detection system. The
ROC curves of the person detection systems are shown in
Fig. 7 and explicitly capture the tradeoff between accuracy
and false detections that is inherent to every detector. An
analysis of the ROC curves suggest that a component-based
person detection system performs very well and signifi-
cantly better than the baseline system at all thresholds. It
should be emphasized that the baseline system uses the
same image representation scheme (Haar wavelets) and
classifier (SVM) that the component detectors used in the
component-based systems. Thus, the improvement in
performance is due to the component-based approach and
the algorithm used for combining the component classifiers.

For the component-based systems, the ACC approach
produces better results than VCC. In particular, the
ACC-based system that uses a linear SVM to combine the
component classifier is the most accurate. This is related to
the fact that higher degree polynomial classifiers require
more training examples in proportion with the higher
dimensionality of the feature space to perform at the same
level as the linear SVM. During the course of the
experiment, the linear SVM-based system displayed a
superior ability to detect people even when one of the
components was not detected, in comparison to the higher
degree polynomial SVM-based systems. A possible expla-
nation for this observation may be that the higher degree
polynomial classifiers place a stronger emphasis on the
presence of combinations of components, due to the
structure of their kernels. The second, third, and fourth
degree polynomial kernels include terms that are products
of up to two, three, and four elements (which are
component scores).
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Fig. 6. ROC curves illustrating the ability of the component detectors to correctly indentify a person in an image. The positive detection rate is plotted

as a percentage against the false alarm rate which is measured on a logarithmic scale. The false alarm rate is the number of false positive detections

per window inspected.



It is also worth mentioning that the database of test

images that were used to generate the ROC curves did not

just include frontal views of people, but also contained a

variety of challenging images. Included are pictures of

people walking and running, occluded people, people

where portions of their body has little contrast with the

background, and slight rotations in depth. Fig. 8 is a

selection of these images.

Fig. 9 shows the results obtained when the system was

applied to images of people who are partially occluded or

whose body parts blend in with the background. In these

examples, the system detects the person while running at a

threshold that, according to the ROC curve shown in Fig. 7,

corresponds to a false detection rate of less than one false

alarm for every 796,904 patterns inspected. Fig. 10 shows
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Fig. 7. ROC curves comparing the performance of various component-based people detection systems using different methods of combining the
classifiers that detect the individual components of a person's body. The positive detection rate is plotted as a percentage against the false alarm
rate which is measured on a logarithmic scale. The false alarm rate is the number of false positives detections per window inspected. The curves
indicate that the system in which a linear SVM combines the results of the component classifiers performs best. The baseline system is a full-body
person detector similar to the component detectors used in the component-based system.

Fig. 8. Samples from the test image database. These images demonstrate the capability of the system. It can detect running people, people who are

slightly rotated, people whose body parts blend into the background (bottom row, second from rightÐthe person is detected even though the legs are

not), and people under varying lighting conditions (top row, second from leftÐone side of the face is light and the other dark).



the result of applying the system to sample images with
clutter in the background.

3.3 Extension of the System

In the component-based object detection system presented
in this paper, the constraints that are placed on the size and
relative location of the components of an object are
determined manually. As explained in Section 2.2.1, the
constraints were calculated from the training examples.
While this method produced excellent results, it is possible
that it may suffer from a bias introduced by the designer.
Therefore, it is desirable for the system to learn the
geometric constraints to be placed on the components of
an object from examples. This would make it easier to apply
this system to other objects of interest. Also, such an object
detection system would be an initial step toward a more
sophisticated component-based object detection system in
which the components of an object are not predefined.

We created a component-based object detection system
that learns the relative location and size of an object's
components from examples in order to explore the viability
and performance of such a system. In the new system,
the geometrically permissible areas are learned by
SVM classifiers from training examples. Thus, instead of
checking the candidate coordinates of a window against the
constraints listed in Table 1, the coordinates are fed into an
SVM classifier. The output of the each geometric classifier
determines whether the window is permissible for the
particular component. The coordinates that are fed into the
geometric classifiers are the location of the top left corner
and bottom right corner of the window, relative to the top
left corner of the 128� 64 pixel window, i.e., four dimen-
sional feature vectors.

The kernel function K in (2) that is used in the geometric
classifiers is a fourth degree polynomial and has the form
K�x;x�i � � �x � x�i � 1�4. We trained the geometric classifiers
for each component on 855 positive and 9,000 negative

examples, from the same databases of images used to train
the component classifiers.

This new system was tested on the same database as the
system presented earlier. Fig. 11 compares the ROC curves
for the two systems. Where the performance of the two
system is very similar, the system that learns the geometry
of an object performs better at higher thresholds. An added
advantage of the system that learns the relative location and
size of the components of an object is that one can change
the size of the geometrically permissible area by varying the
penalty parameters, Cpos and Cneg, for the misclassifica-
tion of positive and negative examples during training [25],
[3]. This results in different geometric classifiers and, hence,
different geometrically permissible areas. ROC curves
corresponding to different penalty terms are shown in
Fig. 11.

4 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a component-based person
detection system for static images that is able to detect
frontal, rear, slightly rotated (in depth) and partially
occluded people in cluttered scenes without assuming any
a priori knowledge concerning the image. The framework
described here is applicable to other domains besides
people, including faces and cars.

A component-based approach handles variations in
lighting and noise in an image better than a full-body
person detector and is able to detect partially occluded
people and people who are rotated in depth, without any
additional modifications to the system. A component-based
detector looks for the constituent components of a person
and if one of these components is not detected, due to an
occlusion or because the person is rotated into the plane of
the image, the system can still detect the person if the
component detections are combined using an appropriate
hierarchical classifier.
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Fig. 9. Results of the system's application to images of partially occluded people and people whose body parts have little contrast with the

background. In the first image, the person's legs are not visible, in the second image, her hair blends in with the curtain in the background, and in the

last image, her right arm is hidden behind the column.



The hierarchical classifier that is implemented in this

system uses four distinct component detectors at the first

level, that are trained to find, independently, components of

the ªpersonº object, i.e., heads, legs, and left and right arms.

These detectors use Haar wavelets to represent the images

and Support Vector Machines (SVM) to classify the

patterns. The four component detectors are combined at

the next level by another SVM. We call this type of

hierarchical classification architecture, in which learning
occurs at more than two levels, an Adaptive Combination of

Classifiers (ACC). It is worth mentioning that one may use

classification devices other than SVM's in this system; a

comparative study in this area to determine the perfor-

mance of such implementations would be of interest.
The system is very accurate and performs significantly

better than a full-body person detector designed along

similar lines. This suggests that the improvement in

performance is due to the component-based approach and

the ACC classification architecture we employed. (Further

work in this area to quantitatively determine how much of

the improvement can be attributed to the component-based

approach and how much is due to the ACC classification

architecture would be useful.) The superior performance of

the component-based approach can be attributed to the fact

that it operates with more information about the object class

than the full-body person detection method. Specifically,
where both systems are trained on positive examples of the

human body (or human body parts in the case of the

component-based system), the component-based algorithm

incorporates explicit knowledge about the geometric prop-

erties of the human body and explicitly allows for variations

in the human form.
This paper presents a valuable first step but there are

several directions in which this work could be extended. It
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Fig. 10. Results from the component-based person detection system. The solid boxes outline the complete person and the dashed rectangles
identify the individual components. People may be missed by the system because they are either too large or too small to be processed by the
system (top rightÐperson on the right) because several parts of their body may have very little contrast with the background (bottom leftÐperson on
the left) or because several parts of their body may be occluded (bottom rightÐperson second from the left).



would be useful to test the system described here in other
domains, such as cars and faces. Since the component-based
systems described in this paper were implemented as
prototypes, we could not gauge the speeds of the various
algorithms accurately. It would be interesting to learn how
the different algorithms compare with each other in terms
of speed. It would also be interesting to study how the
performance of the system depends on the choice of the
SVM kernels and the number of training examples. While
this paper establishes that this system can detect people
who are slightly rotated in depth, it does not determine,
quantitatively, the extent of this capability; further work in
this direction would be of interest. Along similar lines, it
would be useful to investigate if the approach described in
this paper could be extended to detect objects from an
arbitrary viewpoint. In order to accomplish this, the system
would have to have a richer understanding of the geometric
properties of an object, that is to say, it would have to be
capable of learning how the various components of an
object change in appearance with a change in viewpoint
and also how the change in viewpoint affects the geometric
configuration of the components.
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