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Two-dimensional image motion is the projection of the three-dimensional motion of

objects, relative to a visual sensor, onto its image plane. Sequences of time-ordered

images allow the estimation of projected two-dimensional image motion as either

instantaneous image velocities or discrete image displacements. These are usually

called the opt~cal fZow field or the Lmage veloctty fzeld. Provided that optical flow is a

reliable approximation to two-dimensional image motion, it may then be used to

recover the three-dimensional motion of the visual sensor (to within a scale factor) and

the three-dimensional surface structure (shape or relative depth) through assumptions

concerning the structure of the optical flow field, the three-dimensional environment,

and the motion of the sensor. Optical flow may also be used to perform motion

detection, object segmentation, time-to-collision and focus of expansion calculations,

motion compensated encoding, and stereo disparity measurement. We investigate the

computation of optical flow in this survey: widely known methods for estimating optical

flow are classified and examined by scrutinizing the hypotheses and assumptions they

use, The survey concludes with a discussion of current research issues.

Categories and Subject Descriptors: 1.2.10 [Artificial Intelligence]: Vision and Scene

Understanding—motion; 1.3,1 [Computer Graphics]: Hardware—th-ee-dmzenszonal

&splays; 1.4.0 [Image Processing]: General—Lmage dzsplays, ~mage processing

soft ware; 1.4.8 [Image Processing]: Scene Analysis—time-uarying imagery; 1.4.10

[Image Processing]: Image Representation—lzierarch zeal; 1.5.0 [Pattern

Recognition]: General

General Terms: Algorithms, Measurement, Theory

Additional Key Words and Phrases: Disparity image displacement, image motion.

image velocity, multiple motions, parameter models, optical flow, transparency

1. INTRODUCTION times more general than optical flow,

A fundamental problem in processing se- such as parametric models of motion, or

quences of images is the computation of descriptors adapted to restricted con-

optical flow, an approximation to image texts, such as when elements of the ge-

motion defined as the projection of veloci- ometry of the scene or the motion of the
visual sensor are partially or completelyties of SD surface points onto the imag- .

ing plane of a visual sensor. Optical flow predetermined.

is often a convenient and useful image The importance of motion in visual

motion representation. However, there processing cannot be understated: ap-

exist other motion descriptors, some- proximations to image motion may be
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used to estimate 3D scene properties and
motion parameters from a ‘moving visual
sensor,l to perform motion segmenta-
tion, g to compute the focus of
expansion and time-to-collision, 3 to per-
form motion-compensated image encod-
ing,~ to compute stereo disparity,5 to
measure blood flow and heart-wall mo-
tion in medical imagery [Prince and
McVeigh 1992], and, recently, to measure
minute amounts of growth in corn
seedlings [Barren and Liptay 1994;
Liptay et al. 1995].

1See Hay [ 1966], Longuet-Higgins [ 1981], Longuet-
Higgins and Prazdny [ 1980], Prazdny [ 1979], Tsal

et al [ 1982], Tsai and Huang [ 1984], Adiv [ 1985],
Barron et al [1990], Negahdaripour and Lee [ 1992],
Heeger and Jepson [ 1992], Zhang and Faugeras

[ 1992], Zheng and Chellappa [ 1993], De Micheli et
al [ 1993], Glachetti et al. [ 1994], Fermin and Imiya
[ 1994], and Iram et al [ 1994]
‘See Black and Anandan [ 1990], Ogata and Sato
[ 1992], Relchardt et al. [ 1988], Murray and Buxton
[1987], Spacek [1986], Duncan and Chou [1992],

Jam [1984], Bouthemy and Francols [1993], Ancona
[ 1992], Rognone et al, [ 1992], and Enkelmann
[1990].
3See Regan and Beverley [ 1982], Overington [ 1987],
Subbarao [ 1990], Jain [ 1983], Sundareswaran
[ 1992], and Burlina and Chellappa [ 1994].
4See Carpentlerl and Storer [1992], Dubols [1985],
Mounts [ 1969], Musmann et al. [ 1985], Netravali
and Robbms [ 1979], and Zheng and Blostem [ 1993]
5See Barnard and Thompson [ 1980], Cormlleau-
Peres and Droulez [ 1990], Jenkm et al, [ 1991], and
Langley et al. [1991].

1.1 Motion and Structure Paradigms

Traditionally, approximations to image
motion have been used to infer egomo-
tion and scene structure. Towards this
end, different motion and structure
paradigms have been developed,
sometimes using optical flow as an inter-
mediate representation of motion, corre-
spondences between image features, cor-
relations, or properties of intensity struc-
tures. These paradigms are generally
classified into three main groups:

Velocity. Three-dimensional motion
and scene structure may be inferred from
two-dimensional velocity fields [Hay
1966; Longuet-Higgins and Prazdny
1980; Prazdny 19791 by relating the mo-
tion and structure par~meters ~o optical
flow. These parameters include instanta-
neous translation and rotation rates and
possibly surface parameters or relative
depth. Figure 1 shows one frame and its
corres~ondinz owtical flow field for the. u.

synthetic Yosemite fly-through sequence,
produced by Lynn Quam at SRI.

Disparity. Image disparities, either
established as image feature correspon-
dences or local correlations, may be used
to commte three-dimensional transla-
tion ve&ors, rotation matrices, and sur-
face attributes [Longuet-Higgins 1981;
Tsai et al. 1982],

Intensity. Image intensities and their
derivatives are sometimes used directly
to obtain motion and structure parame-
ters,G thus avoiding an explicit interme-
diate representation of image motion
such as optical flow or disparity fields.

Usually, relating image motion estimates
or intensity derivatives to three-dimen-
sional motion and structure parameters
results in sets of nonlinear equations. In
addition, each of these paradigms has its
merits and detractions. deDendin~ on the,.
intended use and the characteristics of

‘See Aloimonos and Brown [1986], Aloi-
monos and Ristigous [ 1986], Horn and Weldon
[ 1987], Negahda&pour and Horn [ 1987], Heel
[ 1990], and Zmner [ 1986]
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Figure 1. (a) A frame of the Yosemite fly-throuzh: image sequence generated by Lynn Quam at SRI; and
(b) Its optical flow.

.

the imagery. However, their evaluation
is beyond the scope of this survey.

1.2 Optical Flow

The initial hypothesis in measuring im-
age motion is that the intensity struc-
tures of local time-varying image regions
are approximately constant under mo-
tion for at least a short duration [Horn
and Schunck 1981]. Formally, if I(x, t) is
the image intensity function, then

~(X, t) = 1(X + 8x, t + ($t), (1.1)

where 8x is the displacement of the local
image region at (x, f) after time 8 t. Ex-
panding the left-hand side of this equa-
tion in a Taylor series yields

I(x, t) =I(x, t) + VI. 8X+ at~, + 02,

(1.2)

where VI = (It, II) and It are the flrst-
order partial derivatives of 1(x, t),and
02, the second and higher order terms,
which are assumed negligible. Subtract-
ing 1(x, t)on both sides, ignoring 02 and
dividing by dt yields

VI. V+ I,=O, (1.3)

where VI = (1X, I> ) is the spatial inten-
sity gradient and v = (u, u ) is the image

velocity.7 Equation (1.3) is known as the

optical fZow constraint equation, and de-

fines a single local constraint on image

motion (see Figure 2). In the figure the

normal velocity v ~ is defined as the vec-

tor perpendicular to the constraint line,
that is, the velocity with the smallest
magnitude on the optical flow constraint

line. This constraint is not sufficient to

compute both components of v as the
optical flow constraint equation is ill-
posed.8 That is to say, only v, , the mo-
tion component in the direction of the

local gradient of the image intensity

function, may be estimated. This phe-
nomenon is known as the aperture prob-
lem [Unman 1979] and only at image

locations where there is sufficient inten-

sity structure (or Gaussian curvature)

can the motion be fully estimated with
the use of the optical flow constraint
equation (see Figure 3). For example, the

velocity of a surface that is homogeneous
or containing texture with a single orien-
tation cannot be recovered optically.
Because the normal velocity is in the

7The row convention for vectors is used, thus x . y
= xy T represents inner product.
8The optical flow constraint equation is one linear
equation m the two unknowns v = (u, u).
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Figure 2. The optical flow constraint equation defines

a hne m veloclty space.

2
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Figure 3. Through apertures 1 and 3. only normal
motions of the edges formmg the square can be
estimated, due to a lack of local structure. Inside
aperture 2, at the corner point, the motion can be
fully measured as there M sufficient local structure;

both normal motions are vmlble.

direction of the spatial gradient YI,
Equation (1.3) allows one to write

– It TI
vl=—

llVIll~ “
(1.4)

Thus, the measurement of spatiotempo-
ral derivatives allows the recovery of nor-
mal image velocity.

From this definition, it becomes clear
that for optical flow to be exactly image

motion, a number of conditions have to
be satisfied. These are: a) uniform illu-
mination; b) Lam bertian surface re-
flectance, and c) pure translation parallel

to the image plane. Realistically, these
conditions are never entirely satisfied in
scenery. Instead, it is assumed that these
conditions hold locally in the scene and,
therefore, locally on the image plane. The
degree to which these conditions are sat-
isfied partly determines the accuracy
with which optical flow approximates im-
age motion. Alternatively, one can mea-
sure the displacement of small image
patches, for example by correlation, in
short image sequences (usually two or
three frames). Such image displacements
constitute a valuable approximation to
image velocity when certain conditions
are met. In particular, the ratio of sensor
translational speed to absolute environ-
mental depth, the 3D vertical and hori-
zontal sensor rotations, and the time in-
terval between frames must be small
quantities [Adiv 1985]. Optical flow may
also be computed as the disparity field
where, given two stereo images or two
adjacent images in some sequence, fea-
tures of interest in the images are ex-
tracted and matched via a correspon-
dence process.

Essentially, performing 2D motion de-
tection involves the processing of scenes
where the sensor is moving within an
environment containing both stationary

ACM Comput]ng Surveys, Vol 27, No 3, September 1995
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and nonstationary objects. Furthermore,
visual events such as occlusion, transpar-
ent motions, and nonrigid objects in-
crease the inherent complexity of the
measurement of optical flow.

1.3 Hierarchical Processing

Traditionally, optical flow was computed
using only one scale of resolution, usu-
ally defined by the visual sensor [Horn
and Schunck 1981], leading to the prob-
lem of measuring large image motions.
In this case, because of low sampling
rates and aliasing effects, Equation (1.3)
becomes inappropriate. A general way of
circumventing this problem is to apply
optical flow techniques in a hierarchical,
coarse-to-fine framework. Hierarchical
frameworks allow the images to be de-
composed in different scales of resolution
in the form of Gaussian or Laplacian
pyramids.g Because of a low-frequency
representation at coarser resolutions, the
optical flow constraint equation becomes
applicable in the case of large image mo-
tions [Kearney et al. 1987]. In addition to
handling fast motions, hierarchical pro-
cessing also offers increased computa-
tional efficiency. In such frameworks,
velocity or displacement estimates are
cascaded through each resolution level as
initial estimates subject to refinement.
At the coarsest level, initial estimates
are computed and then projected onto a
finer level of resolution and refined once
again. The final estimates are obtained
when the refinement reaches the finest
level of resolution (see Figure 4). Hierar-
chical processing is applicable to most
optical flow techniques. For example,
Glazer [1981] adapted Horn and
Schunck’s differential technique to such
a framework, Anandan [1989] used a hi-
erarchical area-based correlation method,
Heeger [1988] proposed a hierarchical
energy-based filtering technique in a
Gaussian pyramid, and Bergen et al.

‘See Anandan [1989], Battiti
mann [1986], Glazer [1987].

et al. [1991], Enkel-

[1992] proposed hierarchical parametric
models for optical flow.

1.4 Problems and Issues

Much progress has been made in optical
flow computation and yet, its accurate
estimation remains difficult because of
numerous theoretical and practical rea-
sons. Theoretically, we believe that opti-
cal flow, as an approximation to image
motion, largely determines the lower
bound on accuracy. In addition, scene
properties such as surface reflectance and
informative image events such as trans-
parency and occlusion were, until re-
cently, not adequately dealt with in most
models of image motion.

Optical Flow and Image Motion. The
interpretation of intensity variation as
pure relative motion is restrictive be-
cause velocity is a geometric quantity in-
dependent of illumination conditions.
Hence, estimating optical flow from in-
tensity variation only approximates
image motion. Conditions which make
optical flow different from image motion
include the absence of texture, in which
case optical flow is zero, and when the
true motion field violates the brightness
consistency model used for its approxi-
mation [Horn 1987]. Uniform scene illu-
mination and Lambertian surface
reflectance are either explicitly or implic-
itly assumed in most current optical flow
methods which use some form of the
brightness consistency assumption.
Highlights, shadows, variable illumina-
tion, and surface translucency are phe-
nomena violating the assumption and
have only been studied to a limited ex-
tent .10

Occluding Surfaces and Independently
Moving Objects. The problem posed by
occluding surfaces is currently being ad-
dressed by the research community. Oc-
clusion is difficult to analyze, despite the
fact that occlusion constitutes an impor-
tant source of visual information: optical

10See Mukawa [1993], Bergen et al. [1992], Fleet
and Jepson [1990], and Jepson and Black [1993].
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flow at occlusion boundaries maybe used
to determine the direction of translation
[Longuet-Higgins and Prazdny 1980] and
segment the scene into independently
moving surfaces [Adiv 1985; Thompson
and Pong 1990; Yang and Adelson 1994].
Until recently, most optical flow tech-
niques relied on a single-surface hypoth-
esis [Horn and Schunck 1981], which is a
rare visual event. The difficulty of han-
dling occlusion lies in the fact that image
surfaces may appear or disappear in time,
misleading tracking processes and caus-
ing numerical artifacts in intensity
derivatives.

Transparency. Transparent motions
created by physically translucent sur-

faces are also found in imagery. The

problem posed by transparent motions is
mainly one of handling multiple motion
distributions. Classical approaches to op-

tical flow measurement which use single
motion models are clearly inadequate
[Barren et al. 1994]. Recently, mixed dis-

tributions and superposition principles
have been applied to transparent mo-
tions [Bergen et al. 1992; Jepson and
Black 1993; Shizawa and Mase 1991].

Practical issues in computing optical flow

were addressed in a recent study [Barren
et al. 1994] that analyzed nine tech-
niques dating from 1981 to 1990, for ac-
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curacy, density, and reliability of mea-
11 To test the implementa-surements.

tions of these algorithms, both synthetic
and real data were used. The observed
performance of these algorithms led to
the following conclusions:

PrefWering and Differentiation. Tem-
poral smoothing is required in order to
avoid aliasing, and numerical differentia-
tion must be done carefully. The often-
stated requirement that differential
methods require image intensity be
nearly linear with motions less than one
spatial unit per frame arises from the
use of only two frames, poor numerical
differentiation, or input imagery cor-
rupted by temporal aliasing. With two
frames, derivatives are estimated using
simple backward differences that are ac-
curate only when the input is highly
oversampled and the intensity structure
is nearly linear. When temporal aliasing
cannot be avoided, hierarchical methods,
operating in a coarse-to-fine manner,
provide better results.

Reliability Measures. The need for
confidence measures to indicate the reli-
ability of computed velocities cannot be
understated. These confidence measures
can be used to threshold optical flow
fields or to weight velocities in post-mea-
surement processing (in a motion and
structure calculation, for example). Most
current differential methods do not pro-
vide confidence measures. However, in
Barron et al.’s study [1994], the smallest
eigenvalue of a least-squares matrix
[Simoncelli et al. 1991] was used success-
fully. Other possibilities, including the
determinant of a Hessian matrix (Gaus-
sian curvature) [Waxman et al. 1988],
the condition number of a solution ma-
trix [Fleet and Jepson 1990; Uras et al.
1988], the magnitude of local image gra-
dients, the principal curvature values

11See Horn and Schunck [1981], Nagel [1983a,
1987], Uras et al. [1988], Lucas and Kanade [1981],
Fleet and Jepson [1990], Fleet [1992], Heeger

[19881, Anandan [19891, Singh [ 1990], and Waxman
et al. [1988].

[Anandan 1989], and the eigenvalues of a
covariance matrix [ Singh 1992] were ex-
amined [Barren et al. 1994].

Accuracy. Hierarchical correlation
methods constitute robust motion mea-
surement schemes for image sequences
with significant contrast changes or large
displacements and severe aliasing.lz The
test image sequences used by Barron et
al. [1994] are all appropriately sampled
with small motions (typically between one
and four pixels per frame) and were fa-
vorable to differential approaches. In
spite of this, and as opposed to differen-
tial-based test results, their experiments
demonstrate that correlation methods ex-
perience difficulty with subpixel motions
as their error depends on the closeness of
image motion to an integer number of
pixels. Hierarchical differential-based
methods (using image warping or regis-
tration) may provide an alternative to
correlation methods.

One of the purposes of Barron et al.’s
study [1994] was to analyze the perfor-
mance of different optical flow methods
and to encourage others to compare nu-
merical results with theirs. Towards this
end, several authors now compare the
performance of their techniques with
those of this study for the same image

Is In addition, some eXperi-sequences.
mental work evaluating differential
techniques has recently appeared
[Handschack and Klette 1995]. Unfortu-
nately, a quantitative analysis is often
impossible for real image data (to obtain
the correct optical flow, one needs the
three-dimensional motion parameters as
well as the three-dimensional depth val-
ues everywhere). In this case, only a
qualitative analysis may be performed,

12Dutta et al.’s stop-and-shoot sequences constitute
interesting image sequence examples [ 1989].
“;See Bober and Kittler [1994], Haglund [1992],
Weber and Malik [1993], Liu et al. [1993], Black
and Jepson [1994], Xlong and Shafer [1994],
Haddadi and Kuo [1992], and Fleet and Langley
[1995b].
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but it was observed that some optical
flow fields, while being less accurate
quantitatively, may appear better quali-
tatively, such as those obtained with
methods incorporating global smoothing
constraints. An obvious way to evaluate
optical flow computations and yet avoid a
quantitative analysis is to use the com-
puted optical flow field in a motion and
structure calculation and examine the
accuracy of the 3J) motion parameters.
De Micheli et al. [1993] used optical flow
fields obtained with the method of Uras
et al. [1988] to estimate time-to-collision
and angular velocity in a Kalman filter
framework with good accuracy. More re-
cently, Barron and Eagleson [1995] have
proposed a motion and structure algo-
rithm to compute general first- and sec-
ond-order 3D motion and structure

parameters from time-varying optical
flow, also in a Kalman filter framework.

1.5 Scope and Purpose

There exist numerous computational
models for estimating image velocity,
which we classify into the following main
groups: intensity-based differential meth -
ods,l~ frequency-based filtering
methods,15 and correlatiombased meth -
ods. 16 In addition, there exist methods

for the computation of discontinuous
or multiple-valued optical flow and tech-
niques for performing temporal refine-
ments of motion estimates as more infor-
mation becomes available through the
image-acquisition process. These meth-

liSee Longuet-Hlggms and Prazdny [ 1980], Horn
and Schunck [ 1981], Lucas and Kanade [ 1981], Tre-
tiak and Pastor [ 1984], Enkelmann [ 1986], Glazer
[ 1987b, 1987a], Nagel [ 1983b, 1987, 1989], Uras et
al. [ 1988], Alsbett [ 1989], Tmtarelll and Sandml
[1990]. Schnorr [1991, 1992], S~moncell~
[ 1991], Sobey and Srmlvasan [1991], Black [1992].
Bergen et al. [ 1992], and Fleet and Langley [ 1995 b].
I“See Fleet and Jepson [ 1990], Grzywacz and Yullle
[ 1990], Heeger [ 1988]. and Watson and Ahumada
[1985]
15 see Anandan [1989], Barnard and Thompson

[ 1980], Kalivas and Sawchuk [ 1991], Korles and
Zimmerman [1986], Scott [ 1987], Smgh [ 1990], and
Sutton et al [ 1983]

ods are classified into the following
groups: multiple motion methods and
temporal refinement methods.

Most of these approaches can be un-
derstood as being comprised of three con-
ceptual stages of processing: prefiltering
(low-pass or band-pass) in order to ex-
tract signal structures of interest and to
enhance the signal-to-noise ratio, mea-
surement t extraction of the basic image
structures, such as spatiotemporal
derivatives or local correlation surfaces,
and measurement integration either by
regularization, correlation, or a least
squares computation. These approaches
are thought to be broadly equivalent
[Adelson and Bergen 1985, 1986] al-
though differences in implementation can
lead to significant differences in perfor-
mance. Given this particular classifica-
tion, this survey covers the optical flow
techniques that do not require solving
the correspondence problem. Hence, ar-
eas that are not covered by this survey
are feature-based matching methods in-
volving the correspondence problem and
stereo approaches to image motion.

One of the most fundamental uses for
optical flow is the computation of 3D
motion and structure. Typically, these
reconstruction algorithms are ill-condi-
tioned17 and the accuracy of optical flow
becomes of extreme importance. Achiev-
ing more accurate optical flow calcula-
tions requires not only careful attention
to details, but also that realistic imaging
properties be taken into account. In this
survey, we examine both older and newer
approaches to optical flow, with particu-
lar attention devoted to how the newer
approaches address the accuracy, den-
sity, and reliability issues raised by
Barron et al. [ 1994]. A recent survey
[Aggarwal and Nandhakumar 1988]
shows the current state-of-the-art up to
1988 not only for optical flow algorithms,
but also for feature-based motion algo-
rithms that require a solution to the cor-
respondence problem, and for motion and

lTAs opposed to the computation of optical flow,
whmh is L1l-powd,
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structure algorithms based on these two
paradigms.

2. OPTICAL FL(3W TECHNIQUES

We survey the following classes of optical
flow techniques: a) intensity-based differ-
en tial methods, b) multiconstraint meth-
ods > c) frequency-based methods, d)
correlation-based methods, e) multiple
motion methods, and f) temporal refine-
ment methods. The boundaries between
each class of methods are not always
clear: Weng’s method [1990] incorporates
both phase-based and feature-based
matching whereas Waxman et al.’s [ 1988]
applies a differential scheme on time-
varying edge maps. We classify the for-
mer as a phase-based method and the
latter as a differential method. In addi-
tion, multiple motion and temporal re-
finement methods for optical flow overlap
with other classes. However, their impor-
tance dictates that they be covered sepa-
rately. Following this classification, we
describe representative examples of cur-
rent state-of-the-art work in optical flow
measurement.

2.1 Differential Methods

Differential techniques compute image
velocity from spatiotemporal derivatives
of image intensities. The image domain
is therefore assumed to be continuous (or
differentiable) in space and time. Global
and local first- and second-order methods
based on Equation (1.3) can be used to
compute optical flow. Global methods use
(1.3) and an additional global constraint,
usually a smoothness regularization
term, to compute dense optical flows over
large image regions. ls Local methods use
normal velocity information in local
neighborhoods to perform a least squares
minimization to find the best fit for v.
The size of the neighborhood for obtain-
ing a velocity estimate determines
whether each individual technique is lo-
cal or global. A surface or contour model

18Often, the entire image is considered.

may also be used to integrate normal
velocities into full velocity. Occlusion,
manifested by discontinuous optical flow,
can be analyzed by line processes, mixed
velocity distribution, or parametric mod-
els. These techniques perform the seg-
mentation of optical flow into regions cor-
responding to various independently
moving objects or surfaces. Large 2D mo-
tions may be analyzed in a hierarchical
framework, possibly in conjunction with
warping methods.

2.1.1 Global Methods

Often, an explicit use of (1.3) is made in
conjunction with a regularization term

(usually a smoothness constraint).lg
Combined, they form a functional which
is minimized over the image domain.
Regularization by requiring a slowly
varying optical flow field was first intro-
duced by Horn and Schunck [1981] to
disambiguate normal measurements. It
was justified by the claim that neighbor-
ing velocities, if corresponding to the
same object surface, should be nearly
identical. These constraints were used to
define an error functional:

/( (VI. v + 1,)2 + A’ tr((Vv)~(Vv))) dx
D

(2.1)

over a domain of interest D, where v =
(u, u). The solution for v is given as a set
of Gauss-Seidel equations which are
solved iteratively. Uniform illumination
(at least locally) in the image domain of
interest, orthographic projection, and
pure translational motion parallel to the
scene are conditions that must be met for
the brightness constancy assumption
(dI/dt = O) to be satisfied. These hy-
potheses reduce the set of admissible vi-
sual events to restricted cases of realistic
time-varying imagery and motivate the

‘9 See Aisbett [1989], Bergen et al. [1992], Enkel-
mann [1986], Glazer [1987b, 1987a], Horn and
Schunck [1981], Nagel [1983a, 1983b, 1987],
Schnorr [1991, 1992].

ACM Computmg Surveys, Vol. 27, No 3, September 1995



442 0 S. S. Beauchem in and J. L. Barren

investigation of constraints generating
more applicable equations. For instance,
motion may cause a change in the den-
sity of features in a local image neighbor-
hood. Schunck [ 1985] accounts for this by
modifying ( 1.3), using the continuity
equation from fluid dynamics and trans-
port theory to obtain:

W. V+ I(U1+ U,)= –It. (2.2)

This equation is equivalent to (1.3) but
for an additional term containing flow
divergence which expresses expansion or
compression of an image neighborhood as
it undergoes an affine transformation.zo
Nagel [ 1989] suggests that the optical
flow constraint equation should be ex-
plicitly based on the geometric properties
of the 3D scene and derives

““v+’=’’t=a ’23)
where P is a 3D environmental point, P
is its 3D velocity, and ii is a unit vector
along the line-of-sight axis. This equation
assumes a known scene geometry. An
experimental evaluation of these con-
straints [Equations (1.3), (2.2), and (2.3)]
in Willick and Yang [1989] demonstrates
that ( 1.3) has slightly better accuracy
when applied to ray-traced synthetic
data. Negahdaripour and Yu [1993] pro-
pose replacing (1.3) with a more general
constraint that models a linear temporal
transformation of the image intensity
values. Prince and McVeigh [1992] derive
the variable brightness optical flow equa-
tion for an application using MR (mag-
netic resonance) image sequences. This
equation accounts for the fact that dI/dt
# O in these images by modeling inten-
sity changes over time as a function of
MR parameters, motion, and an initial
magnetically induced tag pattern.
Luettgen et al. [1994] present a multi-

‘(’An affine transformation includes translation, ro-
tation, and foreshortemng and may be expressed
with SIX parameters the Image velocity and Its
first-order derivatives

scale stochastic algorithm to regularize
Horn and Schunck’s smoothness con-
straint. The algorithm is noniterative and
provides confidence measures (multiscale
error covariance statistics) to determine
the optimal resolution level of optical flow
fields. The framework is generalizable to
other regularization problems. Mukawa
[1990] proposes a regularization method
to compute optical flow with a global
smoothness constraint and other con-
straints that model both diffuse and
specular lighting effects (via Phong shad-
ing) for a moving object in a scene with
one light source. The term being regular-
ized is

+ /-Lx((ql–CIX)2+ (qy –CI,)2]
R

+ II Z(c: +C:)=o.
R

(2.4)

The first term incorporates Horn and
Schunck’s smoothness constraint [1981].
The second term is the optical flow con-
straint equation with an additional term
q that is the difference of diffuse and
specular luminance over time, as first
suggested by Cornelius and Kanade
[ 1983]. The third and fourth terms ex-
ploit a relationship between the spatial
derivatives of luminance (q, and qY ) and
the original image intensity derivatives:

q, = c1. and qj = CIY. c is a function that
involves computing the ratios of diffuse
luminance at different times. The fourth
term ensures that c varies smoothly. A,

w and ZJ are simply constants weighing
the relative importance of each term in
the minimization.

2.1.2 Local Models

Local models of velocity assuming single
motion patterns are also common. For
example, Lucas and Kanade use a local
constant model for v [1984, 1981] which
is solved as a weighted least squares so-
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lution to (1.3). Velocity estimates are

computed by minimizing

z W2(X)(VI(X, t) “ V + 1,(X, t))’, (2.5)
XER

where W(x) denotes a window function
and R is a spatial neighborhood. Solu-
tions for v are obtained in closed form.
Modifications suggested by Simoncelli et
al. [1991] allow the use of the eigenval-
ues of the least squares matrix involved
in solving (2.5) as confidence measures in
subsequent processing. Chu and Delp also
use a local least squares approach [1989]
and solve (1.3) with a total least squares
calculation that accounts for errors in It
and also for independent errors in It and

lY .Z1 Weber and Malik [1993] also use
total least squares in their multicon-
straint approach, Campani and Verri
[1990] use a local model that assumes
first-order variation in local motion mea-
surements: an overconstrained system of
equations is solved with least squares to
recover velocity and its spatial deriva-
tives. However, these local models tend
to react poorly in the presence of multi-
ple motions within the neighborhoods
over which they operate.

The aperture problem may be analyti-
cally resolved by differentiating the opti-
cal flow constraint equations to obtain
equations involving second-order inten-

22 These constraints gen-sity derivatives.
erally provide two or more equations in
the two components of v and, when non-
singular, can be used to obtain full mo-
tion estimates. For instance, Uras et al.
[1988] use the constraint

(VVI)VT = –VI, (2.6)

‘1 Consider fitting a line y = mx + b to noisy y
values. In standard least squares, this is accom-
plished by minimizing the vertical distance of each
y value from the fitted line assuming noiseless x
values. In total least squares, it is assumed that
there is noise in both the x and y values and the
technique minimizes the perpendicular distance of
y values from the fitted line [Zoltowski 1987].
22See Haralick and Lee [1983], Nagel [1983a, 19871,

Reichardt et al. [1988], Tretiak and Pastor [1984],
and Uras et al. [1988].

which results in an analytical expression
for both components of v at a single im-
age point. Nagel [1987] shows that image
points with high Gaussian curvature,
such as grayvalue corners, allows the re-
covery of full velocity in closed form.’d
Both Haralick and Lee [1983] and
Tretiak and Pastor [ 1984] use a combina-
tion of (1.3) and (2.6) to overcome the
aperture problem at individual image
points and to estimate full velocity.

Another local approach, which avoids
the need to estimate intensity deriva-
tives altogether, uses the Gauss diver-
gence theorem to convert the optical flow
constraint equation into

—– ~uIdydt + ~vIdxdt
s s

(2.7)

/
– I(uX + vy)dxdydt

v

/
+ Idxdy=O,

s

where S and V denote local integration
over surfaces and volumes of intensity
data [Gupta et al. 1993]. The size of the
surface and volume neighborhoods must
be sufficient to overcome the aperture
problem.

2.1.3 Surface Models

Pioneering work by Longuet-Higgins and
Prazdny [1980] examines the form of the
optical flow field for a moving monocular
observer in a rigid scene. They derive the
well known image velocity equation,
relating 3D motion and depth parame-
ters to 2D image motion (approximated
as optical flow). They show that these
parameters could be recovered from opti-
cal flow and its first- and second-order
derivatives. Longuet Higgins [ 1984] de-

23Gaussian curvature may be expressed as
det(VV1 ).
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rives the conditions necessary to recover
motion and structure from planar sur-
face motion. It is shown that two planes
with distinct surface orientations that are
engaged in different 3D motions may
have the same optical flow field. Wax-
man and Wohn [1985] describe the duaz
nature of these motion and structure pa-
rameters: one set of parameters can be
derived from the other. Subbarao and
Waxman [19851 demonstrate that these
solutions are unique over time. Horn
[1987] proves that multiple interpreta-
tions of a single optical flow field gener-
ated by arbitrarily shaped surfaces occur
only rarely.

A number of planar motion techniques
rely on normal velocity being available.24
Waxman and Wohn’s Velocity Functional
method [1985] assumes that a velocity at
a point on a curved surface can be ap-
proximated by a second-order Taylor
series expansion about that point. For
velocity v = ( ZL, u), one obtains

1 d2v
V(x, y)=v(o, o)+:+; +——

2 (7X2

r72v 1 l?2v
+— +–—

dx fly 2 ,Iyz “ (2.8)

Using the normal velocity constraint
equation, lj~ = v . n, a linear equation in
twelve unknowns, the two components of
v and their first- and second-order
derivatives, are obtained. Given twelve
or more normal velocities in a local
neighborhood on the curved surface,
these parameters can be recovered. In
the event that the local surface is planar,
then

~2v

[1

~zu

—=2— ,0 ,
(?X2 dx dy

‘~ The measurement of first-order spatiotemporal
density derivatives allows the computation of nor-
mal velocity

(72V H d2u
— ‘ oj2—2 (2.9)
r]y dx dy ‘

allowing (2.8) to be written as one equa-
tion in eight unknowns. Hence, only eight
normal velocities are required to recover
the velocity of a planar surface.

Murray and Buxton [ 1984] derive a
relation between normal velocity param-
eters of a planar surface, leading to a
linear equation of the form

Ilvlll; = c “ p, (2.10)

where vectors c and p contain expres-
sions for image coordinates of normal ve-
locity, the 3D motion parameters and the
planar surface normal. Given eight nor-
mal velocities, the components of p can
be determined and full velocity is ob-
tained as:

[

X2 Xy
v= Plx+P2Y –P3f+P7—+P8— ~

ff

2

1
P4x +Ps Y ‘P6f+p?z ‘p8~

ff

(2.11)

Further mathematical manipulation of p
yields equations for the recovery of 3D
motion parameters and surface orienta-
tion. If the aperture problem cannot be
overcome for some image locations in a
neighborhood, but surface parameters
can be estimated, then, because of the
use of a surface model, an image velocity
for each of these locations may be
inferred.

2.1.4 Contour Models

Many differential approaches to image
motion estimation rely on the presence of
contours or edges in image sequences.25
The computational stages of these meth-
ods consist of the extraction of relevant
image contours with prefiltering tech-

‘s See Buxton and Buxton [ 1984], Duncan and Chou
[ 1992], Hildreth [ 1984], Perrone [ 1990], and Wax-
man et al. [1988]
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Contour
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True Velocity

least two normal flow
contour are different, then the full velocity of the contour can
Figure 5. If at estimates along a

be uniquely determined

niques followed by a differential estima-
tion of image motion. Essentially,

contours or edges exhibit strong signal-
to-noise ratios which facilitate their ex-
traction. In addition, it is a common be-
lief that they correspond to significant
image structures, although this claim

cannot be supported in any rigorous sense
[Fleet 1992]. In addition, computing opti-
cal flow at edges often leads to sparse
flow fields (usually, 10% of the field or
less, depending on the density of edges).

Hildreth [1984] proposes a smoothness
constraint to be applied to normal veloc-
ity estimates along contours extracted
from time-varying images. For a contour
S, the normal velocity estimates should
minimize

(2.12)

If at least two normal velocity estimates
along S are different, then the minimiza-
tion of the preceding integral yields a

unique velocity field at contour S (see
Figure 5). In practice, the functional

C7v 2f(–)+B(V - ii – IIV111Z)2 dS,
(3s

(2.13)

where n is a unit vector in the direction
Ofvl , is minimized along contours. /3 is

a weighting factor and (v “ ii – Ilv ~ II2)2
expresses the squared difference between
estimated normal velocity and that pre-
dicted by the solution. Gong and Brady
formulate a similar constraint to be mini-
mized which includes a least squares dif-
ference term for tangential velocity
[1990]:

dv 2J(–)+P(V o n – IIVLIIZ)2 dS
ds (2.14)

where t is a unit vector perpendicular to
n and a is a scalar expressing the confi-
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dence associated with the tangential
component of v, proportional to the de-
terminant of the Hessian matrix of the
underlying intensity structure. They
demonstrate that the tangential compo-
nent of v can be reliably estimated wher-
ever the determinant of the Hessian is
nonzero.

Buxton and Buxton’s method [ 1984] for
estimating optical flow is based on a
model of the motion of edges in image
sequences. They note that the signal-to-
noise ratio is enhanced at locations of
significant image features such as edges.
Their approach, guided by psychophysi-
cal evidence of spatiotemporal f~ltering in
human early visual processes, is a direct
extension of the Marr and Hildreth
center-surround edge detection operator
[ 1980]. They compute spatiotemporal
zero-crossings by convolving

[( 1 (?2
S(x, t)=– -r2+7— 11G(x> t)

u- dt2

(2.15)

with an image sequence, where the fh-st
term is the d’Alembert operator and the
second term is a Gaussian function, given
by

where the parameters a and u control
the spread of the envelope. Normal veloc-
ities can then be estimated at zero-cross-
ings by computing the partial first-order
derivatives of S’(X, t)as

St VS
vL=—

11’rs1122
(2.17)

with a least sauares calculation. The
choice for the values of the parameters a
and u is made a priori as the distribution
of edges in the image is unknown.

Duncan and Chou define a temporal
edge detector that minimizes the effects
of temporal variations in illumination
[ 1992]. The edge detector is the second-
order temporal derivative of a Gaussian

function:

~2G(t)
St(x, t) = ~t2

(2.18)
–2s3

—– ~(1 – 252t2)e.. <2t’

which is convolved in time with the im-
age sequence to produce a set of zero-
crossings induced by moving edges. The
authors theoretically and experimentally
show that variance in illumination does
not create zero-crossings in S~(x, t).Cen-
tral differences are used to estimate the
first-order derivatives of St in local
neighborhoods. Normal velocities are
computed as

(?St
-vS+. v, –— = o, (2.19)

C7t

which is equivalent to the usual optical
flow constraint equation. Lines defined
by v, are then intersected in local image
regions to obtain full velocity estimates.
Successful experiments are presented
with synthetic images containing signifi-
cant illumination variations.

Waxman et al. [1988] apply spatiotem-
poral filters to edge maps in order to
measure velocity at edges extracted with
DOG zero-crossings [Marr and Hildreth
1980]. Given a binary edge map E(x, t),
an activation profile A(x. t) is created by
smoothing the edge map with a spa-
tiotemporal Gaussian filter:

A(x, t)= G(x. t,o-., aY, a,)* E(x, t)

(2.20)

to which a differential method is applied.
At edge locations, where the Gaussian
profiles are centered, the spatial gradient
of A should be zero, and therefore a
second-order approach is adopted. The
velocity estimates are given by

(A2tA,, –A,, ALV
v=

AXXA,, V –A:,( ‘
(2.21)

AY, AXX – AX, AX,

.)
AXXAJj –A~v “ ‘
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where derivatives of A are computed by
convolving the appropriate Gaussian
derivative kernels with the edge maps.

A different method for tracking edges
via zero-crossings is to use a radial con-
figuration of IDOG operators. Perrone
[1990] presents such a model to measure
normal velocities of moving edges. In the
radial configuration, temporal differ-
ences in the responses of the operators
provide sufficient information towards
determining normal velocity. A constant
model can then be applied to the normal
velocity distributions to obtain full
velocity.

2.1.5 Multiconstraint Methods

Multiconstraint methods use multiple in-
stances of Equation (1.3) or (2.6) to pro-
vide unambiguous expressions for image
motion at single image points.2G Liu et al.
[1993] use Equations (1.3) and (2.6): they
expand the spatiotemporal image with
Hermite polynomials and solve for v us-
ing standard least squares. Residual of
fit, condition number, and determinant
of the least squares matrix act as con!ii-
dence measures on the final optical flow
field, Overconstrained systems of equa-
tions can also be obtained with multiple
light sources [Woodham 1990] or by us-
ing images acquired with visual sensors
tuned to different regions of the light
spectrum. Spectral images include those
in the visible (three color planes) and
infrared spectrum. Markandey and
Flinchbaugh [1990] show that their mul-
tispectral approach produced similar ac-
curacy to Horn and Schunck’s algorithm
[1981] for synthetic image data and an
outdoor scene.

Functions other than (or coupled with)
intensity may be substituted in the opti-
cal flow constraint equation to obtain
overconstrained systems. These functions
can be thought of as the output of opera-

‘G See Woodham [1990], Liu et al. [1993], Srini-

vasan [1990], Sobey and Srinivasan [1991], Weber

and Malik [1993], Mitiche et al. [1987], and
Tistarelli and Sandini [1990].

tions applied to the image intensities.
For example, responses of pairs of lin-
early independent filters can be used
jointly with the optical flow constraint
equation for this purpose [ Srinivasan
1990; Sobey and Srinivasan 1991; Weber
and Malik 1993]. Mitiche et al. [1987] use
an overconstrained system of equations
constructed from the optical flow con-
straint equation for the same point in a
number of different images, derived from
the original one, generated by applying
functions to compute local values for con-
trast, average, variance, entropy, me-
dian, and power content. Srinivasan
[1990] proposes a similar approach,
using an overconstrained system of equa-
tions derived from images that are gener-
ated by applying six specialized spa-
tiotemporal filters on the original im-
ages. However, the aperture problem still
cannot be resolved when facing singulari-
ties in overconstrained systems of equa-
tions: these occur for particular intensity
structures, including uniform intensity
regions, highly structured or periodic

textures, etc.

2.1.6 Hierarchical Approaches

Differential optical flow methods also ex-
hibit problems with large 2D motions,
due to low sampling rates, thus violating
the Shannon sampling theorem. Apply-
ing differential methods in a coarse-to-
fine manner alleviates such problems.
Image warping may be used to keep the
images sufficiently well registered at the
scale of interest so that numerical differ-
entiation can be performed. Bergen et
al.’s hierarchical framework [1992] uni-
fies several different model-based optical
flow methods. Using a parametric model
based on affine transformations, scene
rigidity, surface planarity, or general mo-
tion in an image region allows one to
both judge the quality of the fit to the
data (perhaps splitting the retion if nec-
essary), and to fill in sparse optical flow
fields with the computed parameters.

Differential-based hierarchical frame-
works are proposed by Glazer [1987a,
1987 b], Enkelmann [1986], and Battiti et
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al. [1991]. In addition, Bergen et al. [1992]
show that many models of motion can be
expressed within a hierarchical frame-
work. Adaptive hierarchical methods
with respect to scale have also appeared
in Battiti et al. [ 1991], Koch et al. [1991],
Whitten [1990]. and Luettgen et al.
[1994].

2.2 Frequency-Based Methods

A second class of optical flow techniques
is based on the use of velocity-tuned fil-
ters. These techniques use orientation
sensitive filters in the Fourier domain of
time-varying images.J7 Among advan-
tages brought by these methods, it is
found that motion-sensitive mechanisms
operating on spatiotemporally oriented
energy in Fourier space can estimate mo-
tion in image signals for which matching
approaches would fail. For example, the
motion of random dot patterns may be
difficult to capture with feature-based or
correlation-based methods, whereas, in
Fourier space, the resulting oriented en-
ergy may be more readily extracted to
compute motion [Adelson and Bergen
1985].

The Fourier transform of a translating
2D intensity signal specified in (1.1) is

f(k, co) = fo(k)NvTk + CO), (2.22)

where ~o(k) is the Fourier transform of
1(x, O) and x denotes spatial position. 8 is
a Dirac delta function and k, O.Jdenote
spatiotemporal frequency. This yields the
optical flow constraint equation in

frequency space:

d’k+co=o, (2.23)

which shows that the velocity of a trans-
lating 2D pattern is a function of its
spatiotemporal frequency and forms a

27See Adelson and Bergen [ 1985], Fleet and Jepson

[1990], Grzywacz and Yullle [1990], Heeger [1988],
and Watson and Ahumada [ 1985]

plane through the origin of the Fourier
space.

2.2.1 Orientation Selectwe Filtering

Adelson and Bergen [ 1985] propose a
class of computational schemes that ex-
ploits the fact that detecting image
motion is equivalent to extracting spa-
tiotemporal orientation. Gabor filtering
is presented as a technique for extracting
spatiotemporal energy. A Gabor filter is a
Gaussian function multiplied by a sine or
cosine wave. For example, the function

is a 3D sine (odd) Gabor filter, where
(k, a) is the central frequency at which
response amplitude peaks. Adelson and
Bergen note that the response pattern of
such filters is affected by the contrast of
the signal: stimuli with low contrast gen-
erate low response amplitudes and vice
versa. Because the measurement of ve-
locity is independent of contrast ampli-
tudes, it is suggested that one use ratios
of responses from different filters for the
extraction of velocity estimates.

Jahne [ 1990] demonstrates that detec-
tion of spatiotemporal orientation is
analogous to eigenvalue analysis of the
inertia tensor. For instance, a point at
the origin of Fourier space corresponds to
a region of constant intensity and corre-
sponds to zero eigenvalues in tensor
space. Also, a line in frequency space is a
spatially oriented pattern moving with
constant velocity, and its normal velocity
can be obtained with the eigenvector cor-
responding to the zero eigenvalue.
Finally, a plane through the origin ex-
presses a spatially distributed pattern
moving with constant velocity and the
eigenvector associated with the maxi-
mum eigenvalue of the inertia tensor
gives the full velocity of the pattern.
Hence, Jahne [1990] suggests the use of
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inertia tensor analysis for detecting spa-
tiotemporal orientation and to avoid the
computational expense arising from the
large number of filters involved in both
Heeger’s [1988] and Fleet and Jepson’s
methods [1990]. However, this algorithm
was only tested on simulated image data.
Barman et al.’s work [1991] is similar to
Jahne’s, as they use spatiotemporal fil-
tering to recover both velocity (and
depth-scaled disparity in the case of mo-
tion stereo) and acceleration. A tensor is
computed from the response of six or
more quadrature filters, evenly spread in
one half of the Fourier space. Eigenval-
ues and eigenvectors of the tensor allow
one to determine which of several formu-
lae can be used to compute full or normal
velocity, if possible. Acceleration may also
be recovered as curvature of the spa-
tiotemporal surface in frequency space
[Barman 1991].

Often, these frequency-based velocity
techniques are presented as biological
models of human motion sensing:
Watson and Ahumada [1985] define an
orientation-selective mechanism that
agrees with psychophysical measure-
ments of human motion sensing. Their
mechanism uses a combination of 2D
spatial Gabor functions and lD temporal
filters tuned to several orientations for
the estimation of local image velocity.
The integration of the responses of these
sensors discriminates local measure-
ments as each sensor within a directional
group provides a linearly independent
component of the velocity vector.
Grzywacz and Yuille [1990] also propose
a frequency-based model of visual motion
sensing. Their model uses 3D orienta-
tion-selective Gabor filters to measure
motion energy in frequency space. Esti-
mates of velocity are also obtained by
integrating the responses of populations
of filters on a local basis.

2.2.2 Phase-Based Filtering

The method developed by Fleet and
Jepson [1990] defines component velocity
in terms of the instantaneous motion of
level phase contours in the output of

band-pass velocity-tuned Gabor filters.zs
These filters are used to decompose the
input signal according to scale, speed,
and orientation. Each filter output is
complex-valued and can be expressed as

A?(x, t) = p(x, t)e’d(x’~), (2.25)

where P(X, t) and 4(x, t) are the ampli-
tude and phase part of the output signal.
The component 2D velocity in the direc-
tion normal to level phase contours is
given by

–+,(X, t)vfw, t) (2 26)
VL =

Ilv@(x, t)ll; “ “

4,(x, t) is the temporal derivative of the
phase and V@(x, t) is its spatial gradient.

Phase derivatives are computed using the
identity

Im[R*(x, t) VR(x, t)]
v~(x, t) =

lR(x, t)12 ‘
(2.27)

where R* is the complex conjugate of
R(x, t), VR(X, t)is the gradient of R(x, t),
and Im denotes the imaginary part of a
complex number. Fleet and Jepson relate
velocity to local phase information be-
cause of the relative insensitivity of the

phase signal to amplitude variations due
to changes in scene illumination. These
distortions are often a consequence of the
geometry of perspective projection. Com-

ponent velocity can be obtained from the
output of each velocity-tuned channel on
the condition that the phase signal is
stable, Usually, instabilities are associ-
ated with neighborhoods about phase
singularities that may be detected with a
constraint stating that the distance be-
tween the instantaneous frequency and
the peak tuning frequency of the filter
should be minimal. Such a constraint,
when met, is sufficient to avoid velocity
estimation at phase singularities.

‘E The term component velocity is used to denote

the velocity normal to local phase structure whereas
normal velocity denotes velocity normal to local
intensity structure.
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Because each channel is considered inde-
pendently, there may be multiple mea-
surements at a single image location.
Then, if there is a sufficient number of
estimates, full velocity is recovered at a
single point or in a small neighborhood
by solving a linear system of equations
relating the measurements to an affine
model of optical flow. As currently formu-
lated, Fleet and Jepson’s method does
not provide confidence measures. There
is also a requirement for a large number
of filters to cover frequency space. In ad-
dition, it is interesting to note that local
phase information is also used in stere-
opsis for the measurement of image dis-
parities by Jenkin et al. [ 1991] and Lang-
ley et al. [ 1991]. Weng [ 1990] demon-
strates that the phase part of a signal in
a particular frequency channel provides
sufficient information to reconstruct the
signal within a multiplicative constant.
Windowed Fourier phase is used as the
correlation primitive in Weng’s matching
algorithm.

Phase is more robust than either in-
tensity derivatives or energ-ybased filter
responses for varying scene illumination.
This can be seen intuitively by consider-
ing a signal of the form A COS(tit + @).
Changing the amplitude, A, of the signal
will change its derivative values or the
response of an energy based (amplitude-
squared) filter, but will have little effect
on the phase of the signal or its deriva-
tives. Phase-based methods will also re-
spond to the component velocities of
multiple motions due to occlusion or
transparency, although a suitable mea-
surement integration method, such as a
mixed velocity model, is required to clus-
ter them into the correct full velocities.
Typically, frequency-based methods do
not provide a means of assigning confi-
dence to the computed velocities. Thresh-
olds may be provided [Fleet and Jepson
1990; Heeger 1988] but their use is bi-
nary: either a velocity is found at an
image location or one is not.

2.2.3 Hierarchical Approaches

Heeger [1980] presents a computational
model for the estimation of image veloc-

ity which uses quadrature pairs of spa-
tiotemporal Gabor filters. A family of
Gabor-energy filters, tuned to the same
spatial frequency band but to different
spatial orientations, is defined. The mag-
nitude of the spatial frequency tuning is,
therefore, invariant and other sets of fil-
ters can be designed for different fre-
quency channels. However, a single set of
such filters can be cascaded through a
Gaussian pyramid in order to cover dif-
ferent channels. For a translating 2D
pattern, the responses of these filters are
concentrated about a plane in frequency
space. Parseval’s theorem is used to de-
rive the expected responses R,(v) of the
Gabor-energy filters for a translating
stimulus:

R,(v) = e- 4~2uz2<r; m: H,(v, kL, m,) (2.28)

where

Hz(v, k,, cot)

v.k, +u,
.—

(Uaxcrf)z + (oc@2 + (aJ#”

The variables q, cry, and af are the
standard deviations of the Gabor filters.
If m, is the measured energy for filter i,
and i7i1 and ~, are the sums of m, and
R, which belong to the set of filters M,
having the same spatial orientation as
the ith filter:

i7i G= ~ ml
JEM,

E, = ~ RJ(v),
J E fif,

then a nonlinear least squares solution
for v which minimizes the difference be-
tween the predicted and measured ener-
gies,

should yield the correct estimate for v.
Certainty measures for velocity esti-
mates are expressed as conditional prob-
ability densities. A computationally
efficient method of convolving Gabor fil-
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ters, exploiting their separability proper-
ties, is also presented by Heeger.

2.3 Correlation-Based Methods

Numerical differentiation is sometimes
impractical because of small temporal
support (only a few frames) or poor sig-
nal-to-noise ratio [Barren 1994]. In these
cases, differential or frequency ap-
proaches may not be appropriate and it
is natural to consider matching methods.

2.3.1 Correlation-Based Matching

Typically, good, matchable features, such
as corner points, are sparse whereas poor,
easily mismatched features, such as
edges, are denser. Even when reasonably
unique features are available, establish-
ing the correct correspondences can be
problematic. Also further complicating
matters is occlusion of features that may
lead to matching errors.

Correlation-based matching ap-
proaches are less sensitive to these prob-
lems: they do not rely on the presence of
significant image features and variable
correlation window sizes can be used near
occlusion boundaries to handle multiple
motions [Little 1992]. These approaches
define displacement (which is an approx-
imation to velocity) as a shift that yields
the best fit between contiguous time-
varying image regions. Most of these ap-
proaches originate from computational
stereopsis, where the task is to correlate
image regions of a pair of images taken
from different viewing positions, under
perspective projection. It is assumed that,
at least locally, distortions caused by the
shift in the viewing angle are negligible
[Jenkin et al. 1991]. Matching image re-
gions often amounts to maximizing a
similarity measure. In particular, a cor-
relation coefficient between two func-
tions f and g is defined as the integral
of their product:

jf(x + ax)g(x)dx.
D

Finding 8x which maximizes this inte-
gral amounts to finding the shift between
f and g, if flx + 8x) = g(x).

Kories and Zimmerman use a mono-
tonicity operator for matching image
regions in adjacent images [1986]. The
operator is a 3 x 3 window in which the
central grayvalue is compared with its
neighbors and classified according to the
number of grayvalues that have a lower
value than the central one, The matching
process proceeds by first merging adja-
cent grayvalues sharing the same class.
The centroids of grayvalue regions shar-
ing the same classification are then
tracked with a simple correlation algo-
rithm to establish disparity estimates.

Sutton et al. [1983] propose a correla-
tion method that allows linear deforma-
tions of small image regions. A bilinear
reconstruction of the intensity surface is
computed for local image regions !2,. The
shift of such an intensity surface under
linear deformation is expressed as

where Xjl is the position of the deformed
neighborfiood Q ~, Vd ~ are the deforma-
tion parameters and d is the shift of 0,
in time. A correlation coefficient

which describes the squared differences
of neighborhoods Q, and Q:, is mini-
mized by a search in the motion domain
for values of d (I and Vd(ll. The esti-
mates for these six parameters must be
obtained iteratively, as no closed-form so-
lution for C is presented.

A region matching method that allows
affine deformations of intensity is pre-
sented by Kalivas and Sawchuk [1991].
An objective function that is defined in
terms of a displacement field undergoing
an affine transformation is minimized
over the entire image.

In order to avoid the computational
expense of iterative minimizations of
functional, Little et al. [19881 suggest
that the use of partially overlapping re-
gions for matching is sufficient to ap-
proximate an isotropic smoothness term
imposed on disparity estimates. Their ap-
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proximation of’ the functional

where ~ is a correlation operator, is
shown to be correct as the extent of the
matching region becomes larger.

2.3.2 Hierarchical Approaches

In the presence of large disparities, non-
hierarchical correlation algorithms be-
come sensitive to false matches, due to
the increase in search spaces required to
handle the faster motion. In addition, the
correlation of image areas is, in general,
computationally intensive. In order to re-
duce the amount of computations and the
potential for mismatches, one may use
coarse estimates of motion to direct the
matching process. Ogata and Sate’s algo-
rithm [1992] provides the correlation
computation with coarse estimates of mo-
tion obtained from velocity-tuned Gabor
filters. These estimates can then be used
to restrict the sizes of search areas and
thereby reduce the number of computa-
tions usually necessary to obtain
disparities.

The size of correlation windows is an
important parameter for region match-
ing. For instance, within a correlation
window, there must be enough variation
in the signal to reliably determine dis-
parity. However, the variation of dispar-
ity within the same window must remain
negligible as local matches operate under
the hypothesis of a constant velocity
model. The optimal window size then de-
pends on the structure of the underlying
signal. Okutomi and Kanade [ 1990] pro-
pose a statistical model of disparity
within correlation windows that assumes
that disparity values are constant but
exhibit increasing uncertainty as they are
farther from the central point of the win-
dow. This model establishes a relation
between the window size and the uncer-
tainty of disparity. This relation allows
one to minimize the uncertainty of the

measurements by adjusting the size of
the correlation window.

Hierarchical matching techniques can
improve the accuracy of the disparities
by operating on several frequency chan-
nels extracted from the images to be pro-
cessed. Low-frequency channels are used
to estimate large disparities that can be
refined by adding higher-frequency chan-
nels into the matching process.
Anandan’s method [1989] is based on a
Laplacian pyramid and a coarse-to-fine
SSD-based matching strategy. The
Laplacian pyramid allows for the estima-
tion of large inter frame disparities and
helps to enhance image structure, such
as edges, that is thought to be important
for matching (see Figures 4 and 6). The
SSD (sum of squared difference) measure
is defined as

n H

S(x, d) = ~ ~ W(i, j)
~=–n ~=–,~

(2.33)
X( I(x+(i, j), t)

–l(x+ (i, j), t + 1))2

where W(i, j) denotes a weighting func-
tion and d is restricted to the square
neighborhood of size (2 n + 1)2 centered
at x. At the coarsest level, the correct
displacements are assumed to be one
spatial unit per frame or less. SSD min-
ima are first located to integer accuracy
within small image regions. Subpixel dis-
placements are then computed by finding
the minimum of a quadratic approxima-
tion to the SSD surface about the integer
location that best minimizes S(x, d).
Confidence measures are derived from
the principal curvatures of the SSD sur-
face and used as weights in the func-
tional

[
tr((Vd)~(Vd))

D

+ Cma.(d ~~rna,– do “ &a.J2‘2”34)
+ em,.(d . ;m,. – do ~&,J’ dx

which is to be minimized over the entire
image velocity domain D. d~,, and ;~,~
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Figure 6. Hierarchical image decomposition: the original images are decomposed in a

hierarchical set of frequency channels prior to optic flow estimation.

are the normalized principal directions of
maximum and minimum curvature. do
denotes the displacements obtained by
the minimization of S(x, d) in the Lapla-
cian pyramid (usually, three levels are
used). At the coarsest level, where the
largest motion is assumed to be less than
one spatial unit per frame, SSD minima
are located to subpixel accuracy by find-
ing the minimum of the SSD correlation
surface and smoothed using iterative
equations based on (2.34). Then, using an
overlapped projection scheme, these dis-
placements are projected to the next level
in the pyramid. Matching and smoothing
are performed in this manner at each
level in the pyramid from the coarsest
level down to the finest level, the original

image, yielding the final optical flow field.

Singh’s approach [1992] is similar to
Anandan’s method [1989] as it also uses
SSD minimizations and a two-stage com-
putation. The first stage consists of the
computation of SSD values with three
adjacent high-pass filtered images 1– 1,
10 and Il. The three-frame SSD surface is
computed as

S(x, d) = So,l(x, d) + So -l(X, –d).

(2.35)

The surface S is then converted into a
probability distribution, defined as

RC(d) = e-~s(x> d), (2.36)
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where

ln(O.95)
k=

mm(S(x, d)) “

Subpixel velocity estimates dC are ob-
tained by computing the weighted aver-
age using the RC(d) values for a given
image area. Covariance matrices S, asso-
ciated with disparities d, are also com-
puted.

The second step of Singh’s algorithm
propagates velocity using a neighborhood
smoothness constraint. Again, a weighted
average approach is used in computing
d., an average of d, over small image
regions. dC and d. are then used to cre-
ate a covariance matrix S,. The correct
disparity field minimizes the functional

J(d – da) S;l(d – da)T
D (2.37)

+(d – dc)S,-l(d – dc)T dX,

which expresses the requirement of a
smoothly varying disparity field across
D. The eigenvalues Al and Az of matrix

[S,, + S, 1-1 act as confidence measures
for the estimates, Singh recommends the
use of a Laplacian pyramid with a
coarse-to-fine strategy as in Anandan
[ 1989] to estimate larger velocities. In
addition, Singh’s framework was ex-
tended with a Kalman filter approach in
order to record motion estimates along
with their confidence measures and to
integrate new measurements with exist-
ing estimates [Singh 1991].

2.4 Multiple Motion Methods

Many phenomena can cause multiple im-
age motions. Among them, occlusion and
transparency are important in terms of
their occurrence and significance in real-
istic imagery. In addition, their informa-
tion content is useful in later stages of
processing, such as motion segmentation
and 3D surface reconstruction. Occlusion
boundaries are described by the partial
occlusion of a surface by another, whereas
transparency is defined as occlusion of a
surface by translucent material. In real-
istic imagery, one finds occlusion to be

the most frequent cause of discontinuous
motion.zg

Among the limitations inherent to gra-
dient-based methods, the requirement
of differentiable intensity structures
throughout the image domain is perhaps
the most restrictive. At motion disconti-
nuities where most of the information
resides, the use of Equation (1.3) be-
comes problematic, because the intensity
derivatives theoretically do not exist. In
addition, typical correlation-based tech-
niques are sensitive to occlusion as im-
age structures near occlusion boundaries
may appear or disappear in time, possi-
bly leading to mismatches. Furthermore,
local optical flow constraints such as (1.3)
and local correlation methods are often
coupled with global requirements that
impose a spatial continuity on optical
flow. It is obvious that such isotropic re-
quirements cannot be satisfied in gen-
eral, as imagery often contains motion
discontinuities.

2.4.1 L\ne Processes

Other functional that attempt to esti-
mate discontinuous motion have been de-
veloped. One stratea~ to handle occlusion
involves using binary line processes that
explicitly model intensity discontinuities
[Geman and Geman 1984]. Koch et al.
[ 1989] relax the imposition of a smooth-
ness constraint at those pixels having a
large spatial gradient. This prevents
smoothing over discontinuities and as-
sumes that motion discontinuities occur
in the same location as intensity discon-
tinuities [Poggio et al. 1988]. Black [1992]
also shows how line processes could be
used in a robust (Kalman filter-like)
framework.

The nonbinary inhibition of smooth-
ness across intensity contours, was pro-
posed by Nagel [ 1983a, 1983b, 1987,

‘g Prazdny [ 1985] was one of the first to exphcitly

allow for dmparlty dlscontmultles locally in two
stereo Images.
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1986]. This approach is based on the
minimization of the functional

j (Vi. V +1,)’+ A’tr((Vv)’
D

where

in which the auantity (u. l.,
(u. 1., – v,, 1.)2,’ repre;enti~~

~(vv)) dx

(2.38)

– IX Iy

)
1; +8’

– Z.LYIX)2 +
the spatial

va~iation’o! v in the direction perpendic-
ular to the image gradient, is minimized
across intensity contours. This functional
is known as the oriented smoothness con-
straint. The minimization procedure can
be implemented using finite differences

[Barren et al. 19941 or finite elements
[Kirchner and Niemann 1992; Schnorr
1992]. This oriented smoothness ap-
proach has been recently extended into
the temporal domain [Nagel 1990]. A
similar method using an intensity-
weighted smoothing procedure is pre-
sented by Aisbett [1989]. This approach
is characterized by the inhibition of an
isotropic smoothness constraint for im-
age regions containing significant inten-
sity variations. Contrary to Nagel’s
method [1987], the inhibition of the
smoothness constraint is not directional.
In addition, the image intensities are as-
sumed differentiable and the domain of
application of the algorithm is explicitly
restricted to images that satisfy this re-
quirement.

Closed curves may also be used to sep-
arate image regions exhibiting different
velocities. Schnorr [1992] proposes a
method that consists of defining such a
curve, delimiting an arbitrary area
around the region where the existence of
an independent y moving object is as-
sumed, thus creating two domains Q,
and Q ~. Given two velocity fields v, and
VO, the closed curve defining the two do-
mains is iteratively refined by minimiz-

ing the functional

Jq Jflo

where f = ($, – V,)2, g = (*0 – Vo)z and
9, and $0 are measured velocities within
[1, and flO, respectively. However, as-
suming a priori knowledge about the po-
sition of the independently moving object
limits the generality of this method.

2.4.2 Mixed Velocity Distributions

Another strategy for estimating discon-
tinuous optical flow is to make explicit a
model for mixed velocity distributions

(usually two) at each image point. A
method of estimating discontinuous mo-
tion on a local basis, presented by

Schunck [1989], uses the optical flow
constraint equation (1.3) to compute sev-
eral constraint lines in velocity space for
small spatial neighborhoods. Clusters of
intersections of these lines with the con-
straint line of the central point of the
neighborhood are analyzed to determine
the smallest cluster containing at least
half the intersection points. The middle
point of this cluster thus defines the mo-
tion estimate v. If two motion patterns
are present within the neighborhood,
then v is considered as the dominant one.
Hence, velocity can be correctly esti-
mated across motion boundaries (see Fig-
ure 7). However, neighborhood sizes must
include significant constraint line varia-
tions, as finding intersections of con-
straint lines may become ill-conditioned
otherwise (this is simply another mani-
festation of the aperture problem).
Jepson and Black’s mixture models [ 1993]
also follow this approach, but use a ro-
bust estimation framework.

When multiple motions arise within a
single image region, a least squares solu-
tion to the optical flow constraint line
clustering problem leads to an average
estimate of these multiple motions. Not-
ing that difficulty, Black [1991, 1992,
1990] reformulates the problem of esti-
mating optical flow by using robust esti-
mators. This framework consists of the
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Figure 7. The constraint hne from the central point of
the Image re~on being considered intersects with the
constraint hnes of neighboring Image points

minimization of a functional that ex-
presses the various assumptions made
about image motion:

E(v> V) = /i~E~(v) + &E~(v)
(2.40)

+ AT ET(v, V),

where ED(v) is the optical flow con-
straint equation, Es(v) is a spatial coher-
ence constraint (a spatial smoothness
term) and ET(v, V) is a temporal coher-
ence constraint:

ET(v, V) = /2T(V – ~, at) (2.41)

E~(v)=p~(Wv+It,a~) (2.42)

Es(v) = ~ PCY(V– VI , a,). (2.43)
ilEfi

V is a prediction about v at time t + 1.

pD, PS, and PT are robust, Lorentzbn

M-estimators. Their use is motivated by
the fact that the distribution of multiple”
motions within a single image region is
not Gaussian and to account for events
unmodeled by the brightness constancy
assumption. The robustness of these sta-
tistical estimators is characterized by
their relative insensitivity to deviations
from the assumed statistical model in the
set of measurements, allowing the esti-
mation of discontinuous optical flows. In
Figure 8 the influence function of the
Lorentzian probability distribution tends
to zero rapidly for deviations from the

mean. These are considered outliers

[Black 19921.
Multiple patterns of motion within a

single image region also arise from par-
tial transparency of occluding surfaces.
Bergen et al. [1992] present an algorithm
for estimating up to two different mo-
tions within a single intensity neighbor-
hood. The algorithm uses the following
steps: let VI and Vz be two distinct veloci-
ties within an arbitrary image region. An
iterative process is applied for estimating

VI and warping the corresponding image
region in the next two frames to compute
two difference images, D ~ and Dz, used
in turn to estimate Vz. If VI is a reason-
able estimate of one velocity pattern then
the residual intensity structure in DI
and Dz reflects the velocity Vz. The algo-
rithm is iterated until the estimates VI
and Vz stabilize. It is generally sufficient
to assume VI = Vz = O initially, if no a
priori knowledge is available. A least
squares method is employed for solving
VI and Vz, using (1.3).

Other approaches for the measurement
of multiple motions exist: the distribu-
tion of motion patterns may be regarded
as a superposition of data distributions.
Shizawa and Mase [ 1991] apply a super-

position principle to multiple motions and
show that existing algorithms for optical
flow, 3D motion and structure, etc., can
be generalized to handle many motion
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Figure 8. (a) A least squares fit through a cloud of points. (b) A robust fit through the same
cloud of points.

distributions. Similarly, multiple motions
can be thought of as a set of layers, each
describing a particular motion, over a
particular domain. Techniques to sepa-
rate these layers have been proposed by
many authors: Darrell and Pentland
[1991] explicitly take the support of ho-
mogeneous regions into account by using
a multi-layer, cooperative, robust estima-
tion framework. Jepson and Black [19931
use an expectation-maximization (EM)
algorithm to group a wide variety of com-
ponent velocities into a fixed number of
layers. Irani et al. [ 1994] determine a
dominant motion in an image using a
least squares approach and then group
and segment the outlying motions. Their
approach assumes that there is only one
dominant motion and many outlying mo-
tions, each of which is assumed to corre-
spond to independently moving objects.
Adiv [1985] uses a Hough transform on a
precomputed optical flow field to group
regions having velocities consistent with
roughly planar surfaces. This grouping is
based on finding neighboring velocities
sharing the same affine transformations.
Negahdaripour and Lee [1992] present a
segmentation process based on a hierar-
chical clustering method that does not
assume a precomputed optical flow field.
They fit an affine model to small regions
of the image and then repeatedly merge
neighboring regions based on similarity
of their affine parameters. Then, given

two sufficiently large planar regions, a
motion and structure calculation can be
performed. Wang and Adelson [ 1994] use
a clustering algorithm to group velocities
into layers, each consistent with an affine
motion. Bober and Kittler [1994] use a
block-based Hough transform in a robust
estimation framework (redescending ker-
nels) to obtain robust velocity estimates,
including multiple motions, by clustering
coherent motions at the same time the
motion estimation is performed. Two
confidence measures based on support
functions are also proposed. In addition,
hierarchical frameworks are known to
separate motion components with respect
to spatiotemporal frequencies. Burt et al.
[1991] suggest that multiple motions
could be handled separately using differ-
ent spatiotemporal frequency channels.

2.4.3 Parametric Models

Parametric models generally describe
image motion with bivariate polynomials
of varying order in the image coordinates
and provide strong constraints on mo-
tion, which usually results in the accu-
rate inference of optical flow [Black and
Jepson 1994]. These models possess de-
sirable qualities: the motion of large
image regions may be described with a
single set of parameters, due to the in-
creased flexibility of representation. In
addition, parametric models are ade-
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quate for the description of discontinuous
optical flow as each segmented region
may be described with a particular set of
motion parameters.

Bergen et al. [1992] consider the
computation of optical flow from the
viewpoint of image registration: given an
image sequence, the parameters that best
align an image with the next in the se-
quence are to be computed. This frame-
work unifies many of the approaches al-
ready surveyed. In all cases, a function is
to be minimized with respect to different
parameters modeling velocity. Their al-
gorithm has four basic components: pyra-
mid construction, motion estimation, im-
age warping, and coarse-to-fine refine-
ment. A Laplacian pyramid is used to
hierarchically represent the image data
[Burt and Adelson 1983], and motion es-
timation is performed by SSD minimiza-
tion with respect to a particular model of
motion. Image warping uses the current
parameter values to compute an optical
flow field at time t and then reconstructs
another image at time t from the image
at time t – 1. Image reconstruction is
performed using bilinear interpolation.
The warped image is then compared with
the original image and an error measure,
based on image difference, is minimized
with the Gauss-Newton method. The last
component is a propagation of motion
estimates from one level in the pyramid
to the next lower level where they are
used as initial guesses for the iterative
refinement.

Using Bergen et al.’s [1992] classifica-
tion, the optical flow methods previously
presented can be thought of as paramet-
ric, quasiparametric, or nonparametric.
Parametric models fully describe the
individual motion with a bivariate equa-
tion. For example, affine models approxi-
mate image velocity as:

u(x, y) =al(.x, .v) +azx+a~y

cl(x, y) =al(x, y) +a~x +aGy, (2.44)

which is reasonably valid when surfaces
are far from the observer or the image
region under analysis is small. This mod-
els optical flow as a superposition of uni-

form motion and rotation, dilation, and
shear. This is the model used by Fleet
and Jepson [ 1990, 1992] to integrate
component velocities in local neighbor-
hoods. Adiv [1985] also uses this model to
segment and flt velocity measurements
to local planar patches in the first stage
of his algorithm. Spetsakis [1994] uses
an affine flow model and a hierarchy of
Gabor filters. A second model assumes
planarity of local surfaces:

ZL(X, .V) =al(x, y) +azx +aJy

+ a7x2 + a8xy
(2.45)

t)(~,.~) ‘a~(~,y) +a~~+a6.V

+ a7xy + a8y2,

which is the velocity functional method
of Waxman and Wohn [ 1985] which they
extended to include second-order curved
surfaces. In both (2.44) and (2.45) the al’s
are neighborhood center velocities or
first- and second-order velocity deriva-
tives. These parameters completely de-
scribe a planar surface velocity field. Any
constant velocity model, such as Lucas
and Kanade’s [ 1981], is also an example
of a parametric model for general motion
[Bergen et al. 1992]. Usually, the order of
a parametric model describes its applica-
bility for large image regions.

Nonparametric models are those typi-
cally used in global optical flow recovery.
Horn and Schunck’s global smoothness
[ 1981] or Nagel’s oriented smoothness
constraint [ 1987] are examples of non-
parametric models. Quasiparametric
models use a combination of parametric
and nonparametric models. Bergen et al.
place rigid motion models in this class.
Rigid motion arises from rigidly moving
scene objects under perspective projec-
tion. Direct motion and structure meth-
ods are examples of this model: Hanna

[1991, 1993] shows that the rigidity as-
sumption can be used to overcome the
aperture problem in most cases. These
parametric models are presented in a
unified hierarchical framework [Bergen
et al. 1992]. The hierarchy yields in-
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creased computational efficiency and also
allows for increased accuracy and robust-
ness via coarse-to-fine refinements and
image warping.

Black and Jepson [1994] determine
coarse optical flow via a correlation
method [Black and Anandan 1993] and
fit parametric models to segmented re-
gions of the image by hypothesizing local
planarity and using coarse velocities to
perform segmentation. Standard area-
based regression techniques further re-
fine these motion estimates. Deviations
from planarity are modeled by allowing
local deformations in the motion esti-
mates. Hence, their approach does not
try to fit a single parametric model to the
whole image, but many parametric mod-
els to individual segmented regions. Also,
Haddadi and Kuo [1992] propose a para-
metric smoothness model that decom-
poses optical flow into irrotational and
solenoidal fields and imposes a smooth-
ness constraint on each field separately.
Parameters are iteratively improved and
smoothing across motion boundaries is
avoided.

2.5 Temporal Refinement Methods

Most of the preceding methods for com-
puting optical flow do not incorporate
motion estimates from previous calcula-
tions within an image sequence being
acquired: given two or more images, opti-
cal flow is computed only for one of the
images. Recently, there has been some
interest in incremental computation of
optical flow. 30 The advantages include
instantaneous access to optimal velocity
estimates, accuracy improvement as the
integration of optical flow over time is
performed, computational efficiency
gained by updating the estimates with
the current frame, and the ability to
adapt to discontinuous optical flow as the
observer or scene objects abruptly vary
their motions.

—
‘0 See Black [1992], Black and Anandan [1993],
Singh [ 1991], Fleet and Langley [ 1995b], Chin et al.
[1994].

Black’s [1992] algorithm may also be

viewed as an incremental model because
it minimizes an objective function that
incorporates conversion of image inten-
sity and spatiotemporal coherence in a
robust estimation framework. Temporal
continuity allows prediction of the next
image velocity, assuming uniform accel-
eration. Warping with bilinear interpola-
tion is used to estimate the acceleration.
Black and Anandan [1991] use a Markov
random field (MRF) method in a refor-
mulation of Black’s approach. The MRF
algorithm is parallel, local, and detects
occlusion boundaries in an incremental
fashion but, as formulated, can only han-
dle integer motions. Singh [1991] uses a
Kalman filter to integrate velocity esti-
mates computed by a hierarchical corre-
lation method [Singh 1990]. The Kalman
filter reduces the uncertainty of the esti-
mates over time. This framework also
detects occlusion boundaries. Fleet and
Langley [1995a] use low-pass recursive
filters to produce and update gradient-
based velocity estimates from a sequence
of images. Chin et al. [1994] present an
extension of Horn and Schunck’s [ 1981]
dense optical flow algorithm that uses a
temporal coherence constraint to produce
near optimal, recursive flow estimates
from multiple frames.

3. DISCUSSION

Although many methods and strategies
have appeared, the estimation of image
motion remains a challenging task: to
date, except in limited circumstances, no
technique is able to generate sufficiently
accurate and dense optical flow fields to
allow the general recovery of motion and
scene parameters in a realistic environ-
ment. In fact, motion and structure algo-
rithms need very accurate optical flow to
carry useful 3D motion and structure
computations [Barren et al. 19901. Also
needed are accurate means of determin-
ing the reliability of computed image ve-
locities. Such reliability measures have
been proposed: covariance matrix eigen-
values [ Simoncelli et al. 1991; Singh
1992], Gaussian curvature [Uras et al.

ACM Computing Surveys, Vol 27, No 3, September 1995



460 0 S. S. Beauchemin a?zd J. L. Barron

1988], principal curvature [Anandan
1989; Heeger 1988], spatial gradient
[Barren et al. 1994], eigenvalues of a least
squares matrix [Simoncelli et al. 1991],
and support function values [Bober and
Kittler 1994]. These confidence measures
allow for thresholding, yielding more ac-
curate but sparser optical flow fields.
They may also be integrated in subse-
quent processing, such as weights in a
least squares motion and structure
calculation.

Of importance in an accurate estima-
tion of image motion in the surveyed
methods is the requirement for appropri-
ate spatiotemporal sampling rates, in or-
der to compute accurate spatiotemporal
derivatives for differential-based meth-
ods, to reduce the search areas for
matching-based methods, or to limit the
amount of aliasing when estimating opti-
cal flow with frequency-based filtering
methods. Too often, the assumption that
imagery is free of aliasing effects is made.
Conventional cameras usually produce
imagery with severe temporal aliasing,
especially for significant image motions.
Reducing aliasing effects may be accom-
plished by increasing temporal sampling
rates, image prefiltering, or by using hi-
erarchical processing. Of course, in-
creased temporal sampling rates lead to
more accurate optical flow computations.
However, for a number of reasons, in-
cluding small temporal support (only a
few images) or fast image motion, such
appropriately sampled imagery is not al-
ways available. In such cases, accurate
temporal derivatives may be difficult to
obtain and hierarchical matching-based
methods seem to be a natural choice. It
has also been observed that some pre-
filtering of the image sequence prior to
the extraction of basic image motion
measurements, such as intensity deriva-
tives or correlation surfaces, significantly
increases the accuracy of results [Barren
et al. 1994]. For instance, a spatiotempo-
ral Gaussian smoothing of the image
sequence results in more accurate
derivatives for the methods of Lucas and
Kanade [1984, 1981] and Horn and
Schunck [ 1981]. Anandan’s [1989] and

Singh’s [1992] computational schemes
also use prefiltering of the images by
computing hierarchical Laplacian im-
ages. It is believed that this high-pass
filtering emphasizes image structures
that are desirable for correlation.

Often, very restrictive assumptions
about image motion are posed. For exam-
ple, one of these assumptions requires
neighboring velocities arising from the
relative motion of a single surface to be
similar [Horn and Schunck 1981]. This
requirement is usually imposed by apply-
ing isotropic smoothness constraints onto
velocity estimates. However, only a few
simple cases of realistic imagery exhibit
continuous motion fields: realistic im-
ages, such as outdoor scenes, possess
complex structures for which global sin-
gle surface assumptions are inadequate.
Attempts at estimating discontinuous
image motion are proposed by Cornelius
and Kanade [ 1983] and Nagel [ 1983a,
1987, 1990] in the form of an inhibition
of the smoothness requirement across in-
tensity discontinuities. However, it is ob-
vious that intensity discontinuities may
not necessarily represent motion discon-
tinuities [Thompson et al. 1985]. The
prob (em posed by occluding surfaces
needs further investigation. Occlusion is
an important source of visual informa-
tion: optical flow at occlusion boundaries
can be used to determine the direction of
translation (the focus of expansion)
[Longuet-Higgins and Prazdny 1980] and
segment the scene into independently
moving objects [Thompson and Pong
1990], yet optical flow estimation at oc-
clusions is problematic. Adequate ap-
proaches to handling occlusion include
line approaches that explicitly model in-
tensity discontinuities and prevent
smoothing over them, layered or super-
posed parametric models, and mixed ve-
locity distribution models that assume
the presence of usually two velocities and
discriminate them according to some cri-
teria. In addition, occlusion has been re-
cently analytically described in Fourier
space [Beauchemin and Barron 1995;
Fleet and Langley 1995a].

Alternatively, optical flow may be esti-
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mated with local constraints only.31 In
these schemes, no smoothness require-
ments are imposed and motion disconti-
nuities may be preserved. Of course, the
accuracy at motion boundaries or at re-
gions of transparency highly depends on
the model of motion being used. For
instance, single motion models are inade-
quate for handling occlusion and trans-

parency properly. Nonetheless, the use of
local constraints or parametric models
may be more appropriate in general
[Barren et al. 1994], as no arbitrary
smoothness requirement is imposed on
the structure of optical flow.

Lighting effects also constitute a prob-
lem in many image sequences. Constant
scene illumination and Lambertian sur-
face reflectance are either implicitly or

explicitly assumed for most current opti-
cal flow methods that use the brightness
constancy assumption. Although the ef-
fects of highlights, shadows, and illumi-
nation conditions on the estimation of
optical flow have only been studied to a
limited degree, it is possible to partially
compensate for these effects and esti-
mate image motion as a geometric quan-
tity if the characteristics of the light
sources are known. Towards this, the use
of multiple light sources [Woodham 1990]
and sets of multispectral constraints on
im age motion [Markandey and
Flinchbaugh 1990] have been used.

Shading effects have also been modeled
[Mukawa 1993].

Aside from lighting conditions, some
surface reflectance phenomena also pose
difficulties. For example, transparent
surfaces usually lead to multiple motions
whereas highlights may create false mo-
tions. Perhaps due to their difficulty and
infrequency of occurrence, transparent
motions have been mainly ignored and

attempts at estimating multiple motions
have just begun to appear [Bergen et al.

31See Bergen et al. [1992], Campani and Verri
[ 1990], Fleet and Jepson [ 1990], Lucas and Kanade
[ 1981], and Uras et al. [ 1988].

1992; Jepson and Black 1993]. Methods
using orientation- and velocity-sensitive
filters may contribute to the solving of

this particular problem, as they provide
multiple measurements for each location
[Fleet and Jepson 1990]. Alternatively,
superposition principles and layered mo-
tions [Darrell and Pentland 1991;

Shizawa and Mase 1991; Wang and

Adelson 1994] are promising frame-
works. However, segmenting multiple
motion distributions remains difficult if

no a priori assumption is made on the

number of distributions present within a

support region.
Lastly, we would like to emphasize that

much of the image motion literature pre-
sents flow field examples for a few image
sequences, which can only be judged
qualitatively. Although the theory of op-

tical flow computation is being ad-
dressed, the practice of optical flow is

often neglected: far too little of the pub-
lished work provides quantitative error

analysis. Usually, only a qualitative com-

parison is possible. Even then, it is often
difficult to assess which techniques are
quantitatively better as authors typically
use their favorite image sequences, which
are not usually available to the commu-
nity and for which the correct image mo-

tion is unknown. A widely available set

of images for comparative testing is
needed. These images should have known

optical flow fields and allow a quantita-
tive error analysis. This is especially the
case for the newer work, as with the
layered approaches to optical flow, where
little or no quantitative analysis exists.

There are various means of performing

quantitative error analysis when correct
optical flow information is available: er-
ror can be expressed as absolute error,
relative error, angle error [Fleet and

Jepson 1990], RMS, or SNR ratios, allow-

ing one to compare optical flows for the
same image sequence. Furthermore,
quantitative analysis is possible without
motion information: RMS image recon-
struction error has been used to measure
error for real image sequences when the
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correct motion information is unavail-
able.3z
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