Robust Visual Motion Analysis: Piecewise-Smooth Optical Flow

Ming Ye

Electrical Engineering, University of Washington mingye@u.washington.edu

What Is Visual Motion

	-	_	-	-	-	-	-		-	-	-	-	-	-			-	-	-	-	-	-		-	-	-	-	-	-	-	_		
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	. •	-	+	-	-	-	
1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	•	-	-	•	
-	-	•	+		•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-					-	-	-		•	-		1
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-		-	•	-		-	•	•		-	
-	-	-	+	-	-	-	-	-	-	-	-	•	-	•		•	•	•	•	-	-			-		-	-	-		•	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	•	-	•	-	•	-	-	•	•	-	-		-	-	-	-	-	-	-	-	-	-
-	-	-	•	-	•	•	•	-	-	-	-	•	•		-	•	•	•	•	-	-	-		-	-	-	-	-		•	-	-	
		•	•	•	•	•	•	•	•	-	-	•	•	-	-	-	-	•	•	-	-	-		-	-	-	-	-	-	•	-	-	
		•					•		•	-	•		•		-	•	•	•	•	-	-	-		-	-	-	-	-			-	-	
•		•	•		. •	•		•	•	•	•	•	•	•		•	•	•	•	2	-	-	-	• •	. *	-	•	•	•	•	•	-	•
-		-	-	-	-	-	•	-		-	•	•	-	•	-	•				-	-					-	-	-	+	-	-	-	
•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	-	-	-				-	-	-	•	•	-	-	
	•	*	•	-	•	-	•	•	•	•	-	•	•	-	-	-	-	-	•	-	-	-		• •	-	-	-	-	-	-	-	-	
•	•	-	•	•	•	-	•	•	•	•	•	•	•	-	-	•	-		•	-	-	-		• •	-	-	-	-	-	-	-	-	
-	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	-	•	•	-	-	-		+	-	-	•	+	•	-	-	-	•
-	•	-	-	-	-	-	-	-	-	•	•	•	•	-	-	-	-	-	-	-	-	-		• •	-	-	-	-	-	-	-	-	•
•	•	-	-	-	-	-		-	*	-	-	-	-	-	-	-	-	•	-	-	-	-	-		-	-	-	-	-	-	-	-	-
-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-
	•	-	-	-	•	-	-	-	-	•	-	-	•	-	-	-	-	-	-			-	-	• •	-	-	-	-	-	-	-	-	-
•	-	-	-	*	-	-	-	-	-	-	-	-	-	-	~	-	*	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-
- 1	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	•	-	-	-	-	-	-		-	-	-	-	+	-	-	-	-

2D image velocity

- 3D motion projection
- Temporal correspondence
- Image deformation

Optical flow

- An image of 2D velocity
- Each pixel $V_{s=(x,y)} = (u_s, v_s)$

where Us and Vs are the

displacements in x and y.

• $(x,y,t) \Leftrightarrow (x+u,y+v,t+1)$

Structure From Motion

Rigid scene + camera translation

Estimated horizontal motion

Scene Dynamics Understanding

Brighter pixels => larger speeds.

- Surveillance
- Event analysis
- Video compression

Estimated horizontal motion

Motion boundaries are smooth.

Motion smoothness

Target Detection and Tracking

A tiny airplane --- only observable by its distinct motion

Tracking results

Optical Flow Estimation:Basics

- Template matching
- Assumptions:
 - Brightness conservation
 - Flow smoothness

- Difficulties:
 - Aperture problem (local information insufficient)
 - Outliers (motion boundaries, abrupt image noise)

red square: homogenous area (extreme case, motion completely ambiguous) green square: directionally homogenous (motion parallel to the edge ambiguous) yellow square: good template (little ambiguity) In Slide Show, you'll see the content in the 2 yellow squares matching blue square: motion discontinuity

Results from Prior Methods:

LS = Least Squares, LS-R = Robust Least Squares, R = new robust method

Sampled by2: True LS-LS LS-R R-R Confidence

LS = Least Squares, LS-R = Robust Least Squares, R = new robust method

Horizontal flow: M-OFC LS-LMedS LS-R R-R

M-OFC = solving the optical flow constraint using the M-Estimator LMedS = Least Median of Squares Estimating Piecewise-Smooth Optical Flow with Global Matching and Graduated Optimization

A Bayesian Approach

Problem Statement

Assuming only brightness conservation and piecewise-smooth motion, find the optical flow to best describe the intensity change in three frames. **Approach: Matching-Based Global Optimization**

- Step 1. Robust local gradient-based method for high-quality initial flow estimate.
- Step 2. Global gradient-based method to improve the flow-field coherence.
- Step 3. Global matching that minimizes energy by a greedy approach.

Global Energy Design

V is the optical flow field.

Global energy

$$E = \sum_{\text{all sites s}} E_B(V_s) + E_S(V_s)$$

 V_s is the optical flow at pixel s.

 E_B is the brightness conservation.

- Matching error $E_B(V_s) = \rho(e_W(V_s), \sigma_{B_s})$
 - Warping error

$$e_W(V_s) = \min(|I^-(V_s) - I_s|, |I^+(V_s) - I_s|)$$

 I^{-} and I^{+} are prev & next frame; I^{-} (V_s) is the warped intensity in prev frame.

Smoothness error

$$E_{S}(V_{i}) = \frac{1}{8} \sum_{n \in N_{s}^{8}} \rho(|V_{s} - V_{n}|, \sigma_{S_{s}})$$

Es is the flow smoothness error in a neighborhood about pixel s.

$$\rho(x,\sigma) = \frac{x^2}{\sigma^2 + x^2}$$

2

Step 1: Gradient-Based Local Regression

- A crude flow estimate is assumed available (and has been compensated for)
- A robust gradient-based local regression is used to compute the incremental flow ΔV .
- The dominant translational motion in the neighborhood of each pixel is computed by solving a set of flow equations using a least-median-of-squares criterion.

Step 2: Gradient-Based Global Optimization

- The coherence of ∆V using a gradient-based global optimization method.
- The energy to minimize is given by

$$E(\Delta V) = \sum_{\text{all sites } s} \left\{ \rho(e_B(\Delta V_s), \sigma_{B_s}) + \frac{1}{8} \sum_{n \in N_s^8} \rho(|V_s + \Delta V_s - V_n - \Delta V_n|, \sigma_{S_s}) \right\}$$

where e_{B} is the residual of the OFC, V_{s} is the ith vector of the initial flow, and the sigmas are parameters.

Step 3: Global Matching

- The new flow estimate still exhibits gross errors at motion boundaries and other places with poor gradient estimates.
- This error is reduced by solving the matching-based formulation equation through greedy propagation.
- The energy is calculated for all pixels.
- Then each pixel is visited, examining whether a trial estimate from the candidates in its neighborhood is better (lower energy). If so, this becomes the new estimate for that pixel. This is repeated iteratively.

Overall Algorithm

Advantages

Best of Everything

- Local OFC
 - High-quality initial flow estimates
 - Robust local scale estimates
- Global OFC
 - Improve flow smoothness
- Global Matching
 - The optimal formulation
 - Correct errors caused by poor gradient quality and hierarchical process
- Results: fast convergence, high accuracy, simultaneous motion boundary detection

- Experiments were run on several standard test videos.
- Estimates of optical flow were made for the middle frame of every three.
- The results were compared with the Black and Anandan algorithm.

TS: Translating Squares

Homebrew, ideal setting, test performance upper bound

64x64, 1pixel/frame

Groundtruth (cropped), Our estimate looks the same

TS: Flow Estimate Plots

S3 looks the same as the groundtruth.

S1, S2, S3: results from our Step I, II, III (final)

TT: Translating Tree

e: error in pixels, cdf: culmulative distribution function for all pixels

DT: Diverging Tree

YOS: Yosemite Fly-Through

TAXI: Hamburg Taxi

256x190, (Barron 94) max speed 3.0 pix/frame LMS

BA

Ours

Error map

Smoothness error

Traffic

512x512 (Nagel) max speed: 6.0 pix/frame

BA

Smoothness error

Ours

Error map

Pepsi Can

201x201 (Black) Max speed: 2pix/frame

Ours

BA

Smoothness error

FG: Flower Garden

360x240 (Black) Max speed: 7pix/frame

BA

LMS

Ours

Error map

Smoothness error

Contributions (1/2)

Formulation

- More complete design, minimal parameter tuning
 - Adaptive local scales
 - Strength of two error terms automatically balanced
- 3-frame matching to avoid visibility problems
- Solution: 3-step optimization
 - Robust initial estimates and scales
 - Model parameter self-learning
 - Inherit merits of 3 methods and overcome shortcomings

Contributions (2/2)

Results

- High accuracy
- Fast convergence
- By product: motion boundaries

Significance

- Foundation for higher-level (model-based) visual motion analysis
- Methodology applicable to other low-level vision problems