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Paper Goal

• Combine Harris detector with Laplacian
– Generate multi-scale Harris interest points
– Maximize Laplacian measure over scale
– Yields scale invariant detector

• Extend to affine invariant
– Estimate affine shape of a point neighborhood via iterative 

algorithm



Visual Goal



Background/Introduction

• Basic idea #1:
– scale invariance is equivalent to selecting points at characteristic 

scales
• Laplacian measure is maximized over scale parameter

• Basic idea #2:
– Affine shape comes from second moment matrix (Hessian)

• Describes the curvature in the principle components



Background/Introduction

• Laplacian of Gaussian
– Smoothing before differentiating
– Both linear filters, order of application doesn’t matter
– Kernel looks like a 3D mexican hat filter
– Detects blob like structures
– Why LoG:  A second derivative is zero when the first derivative is 

maximized

• Difference of Gaussian
– Subtract two successive smoothed images
– Approximates the LoG



Background/Introduction

• But drawbacks because of detections along edges
– unstable

• More sophisticated approach using penalized LoG and 
Hessian
– Det, Tr are similarity invariant
– Reduces to a consideration of the eigenvalues



Background/Introduction

• Affine Invariance
– We allow a linear transform that scales along each principle 

direction
– Earlier approaches (Alvarez & Morales) weren’t so general

• Connect the edge points, construct the perpendicular 
bisector

– Assumes qualities about the corners
– Claim is that previous affine invariant detectors are 

fundamentally flawed or generate spurious detected points



Scale Invariant Interest Points

• Scale Adapted Harris Detector

• Harris Measure



Characteristic Scale

• Sigma parameters
– Associated with width of smoothing windows
– At each spatial location, maximize LoG measure over scale

• Characteristic scale
– Ratio of scales corresponds to a scale factor between two images



Harris-Laplace Detector

• Algorithm
– Pre-select scales, sigma_n
– Calculate (Harris) maxima about the point

• threshold for small cornerness
– Compute the matrix mu, for sigma_I = sigma_n
– Iterate



Harris-Laplace Detector

The authors claim that both scale 
and location converge.  An 
example is shown below.



Harris Laplace

• A faster, but less accurate algorithm is also available.

• Questions about Harris Laplace
– What about textured/fractal areas?  

• Kadir’s entropy based method
– Local structures over a wide range of scales?

• In contrast to Kadir?



Affine Invariance

• Need to generalize uniform 
scale changes

• Fig 3 exhibits this problem



Affine Invariance

The authors develop an affine 
invariant version of mu:

Here Sigma represents covariance 
matrix for integration/differentiation 
Gaussian kernels

The matrix is a Hermitian operator.

To restrict search space, let 
Sigma_I, Sigma_D be 
proportional.



Affine Transformation

• Mu is transformed by an affine 
transformation of x:



Affine Invariance

• Lots of math, simple idea

• We just estimate the Sigma 
covariance matrices, and the 
problem reduces to a rotation 
only
– Recovered by gradient 

orientation



Isotropy

• If we consider mu as a 
Hessian, its eigenvalues are 
related to the curvature

• We choose sigma_D to 
maximize this isotropy 
measure. 

• Iteratively approach a situation 
where Harris-Laplace (not 
affine) will work



Harris Affine Detector

• Spatial Localization
– Local maximum of the Harris function

• Integration scale
– Selected at extremum over scale of Laplacian

• Differentiation scale
– Selected at maximum of isotropy measure

• Shape Adaptation Matrix
– Estimated by the second moment matrix



Shape Adaptation Matrix

• Iteratively update the mu matrix by successive square 
roots
– Keep max eigenvalue = 1
– Square root operation forces min eigenvalue to converge to 1
– Image is enlarged in direction corresponding to minimum 

eigenvalue at each iteration



Integration/Differentiation Scale

• Shape Adaptation means
– only need sigmas corresponding to the Harris-Laplace (non 

affine) case.
• Use LoG and Isotropy measure

• Well defined convergence criterion in terms of 
eigenvalues



Detection Algorithm



Detection of Affine Invariant Points



Results/Repeatability



Results/Point Localization Error



Results/Surface Intersection Error



Results/Repeatability



Point Localization Error



Surface Intersection Error



Applications



Applications



Applications



Conclusions

• Results – impressive
• Methodology – reasonably well-justified
• Possible drawbacks?
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