Scale & Affine Invariant Interest Point
Detectors

Mikolajczyk & Schmid

presented by Dustin Lennon



Paper Goal

« Combine Harris detector with Laplacian
— Generate multi-scale Harris interest points
— Maximize Laplacian measure over scale
— Yields scale invariant detector

 Extend to affine invariant

— Estimate affine shape of a point neighborhood via iterative
algorithm



Visual Goal
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Background/Introduction

 Basic idea #1:

— scale invariance is equivalent to selecting points at characteristic
scales

« Laplacian measure is maximized over scale parameter
e Basic idea #2:

— Affine shape comes from second moment matrix (Hessian)
» Describes the curvature in the principle components



Background/Introduction

« Laplacian of Gaussian
— Smoothing before differentiating
— Both linear filters, order of application doesn’t matter
— Kernel looks like a 3D mexican hat filter
— Detects blob like structures

— Why LoG: A second derivative is zero when the first derivative is
maximized

« Difference of Gaussian
— Subtract two successive smoothed images
— Approximates the LoG



Background/Introduction

« But drawbacks because of detections along edges
— unstable

 More sophisticated approach using penalized LoG and
Hessian
— Det, Tr are similarity invariant
— Reduces to a consideration of the eigenvalues



Background/Introduction

o Affine Invariance

— We allow a linear transform that scales along each principle
direction

— Earlier approaches (Alvarez & Morales) weren’t so general

« Connect the edge points, construct the perpendicular
bisector
— Assumes qualities about the corners

— Claim is that previous affine invariant detectors are
fundamentally flawed or generate spurious detected points



Scale Invariant Interest Points

» Scale Adapted Harris Detector
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e Harris Measure

cornerness = det{ (X, ap, ap))

— atrace( (X, op, op)) (2)



Characteristic Scale

e Sigma parameters
— Associated with width of smoothing windows
— At each spatial location, maximize LoG measure over scale
» Characteristic scale
— Ratio of scales corresponds to a scale factor between two images
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Harris-Laplace Detector

e Algorithm
— Pre-select scales, sigma_n
— Calculate (Harris) maxima about the point
 threshold for small cornerness
— Compute the matrix mu, for sigma_| = sigma_n

— lterate

1. Find the local extremum over scale of the LoG for

the point x'*', otherwise reject the point. The inves-
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Harris-Laplace Detector

1. Find the local extremum over scale of the LoG for

The authors claim that both scale the point x'*', otherwise reject the point. The inves-
and location converge. An tigated range of scales is limited to o} *" = 1o}

with 7 € [0.7, ... 1.4].
2. Detect the spatial location x**+! of a maximum of
the Harris measure nearest to x* for the selected
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example is shown below.




Harris Laplace

« A faster, but less accurate algorithm is also available.

* Questions about Harris Laplace
— What about textured/fractal areas?
« Kadir's entropy based method
— Local structures over a wide range of scales?
* In contrast to Kadir?



Affine Invariance

 Need to generalize uniform
scale changes

e Fig 3 exhibits this problem




Affine Invariance

The authors develop an affine
invariant version of mu:

Here Sigma represents covariance
matrix for integration/differentiation
Gaussian kernels

The matrix is a Hermitian operator.

To restrict search space, let
Sigma_|, Sigma_D be
proportional.
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Affine Transformation

Muis transformed by an affine Sip = AT AT = o (AMAT)
transformation of x: xz = Axe. — o (ATTM AT = oy M
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In this case the differentiation and integration kernels

are transformed by: —1/2 172
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Let us suppose that the matrix M is computed in such
a way that:
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Affine Invariance

Lots of math, simple idea

We just estimate the Sigma
covariance matrices, and the
problem reduces to a rotation
only

— Recovered by gradient
orientation
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|Isotropy

 If we consider mu as a e (1)
Hessian, its eigenvalues are = (10)
related to the curvature

« We choose sigma_D to
maximize this isotropy
measure.

» Iteratively approach a situation
where Harris-Laplace (not
affine) will work



Harris Affine Detector

Spatial Localization
— Local maximum of the Harris function

Integration scale
— Selected at extremum over scale of Laplacian

Differentiation scale
— Selected at maximum of isotropy measure

Shape Adaptation Matrix
— Estimated by the second moment matrix



Shape Adaptation Matrix

 lteratively update the mu matrix by successive square

roots
— Keep max eigenvalue = 1
— Square root operation forces min eigenvalue to converge to 1

— Image is enlarged in direction corresponding to minimum
eigenvalue at each iteration



Integration/Differentiation Scale

e Shape Adaptation means

— only need sigmas corresponding to the Harris-Laplace (non
affine) case.

» Use LoG and Isotropy measure

« Well defined convergence criterion in terms of
eigenvalues



Detection Algorithm

. initialize ' to the identity matrix
. normalize window Wix,)=/7(x) centered on

Lr{k—]“.lxg—l} — '.E{k_”

. . . Ak—=1)
. select integration scale oy at point X

select differentiation  scale op = soy, which

maximizes "’"’I[:“;, with s € [0.5,..., 0.75] and
po= paix," Wﬂr ap)

. detect spatial localization x'*' of 2 maximum of the

Harris measure (Eq. (2)) nearest to x*~1" and com-
pute the location of the interest point )

compute o' = =1 (x*®, oy, op)

concatenate transformation U® = /. %=1 apg

normalize U to A .. U“ﬂ} =1
"

. goto Step 24 1 — lmm{,u J; Aomax 14 * ) = €



Detection of Affine Invariant Points
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Results/Repeatability

&

g 3

Fepeatabilicy of detectors

== Harrs-Laplsce
—+— Lapilacian
= DOG

—w— Ciradient

e HE B3R

T} —— Harma-afine
— - - Farma-standard

scale change

45



Results/Point Localization Error

Paoint localization error
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Results/Surface Intersection Error

Surface intersection error
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Results/Repeatability

Fepeatability of detectors
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Point Localization Error

Point localization error
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Surface Intersection Error

Surface intersection error
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Applications




Applications




Applications

) Seule change of 1.7 sl viewpint chage of [°



Conclusions

* Results — impressive
 Methodology — reasonably well-justified
 Possible drawbacks?
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