Scale & Affine Invariant Interest Point Detectors

Mikolajczyk & Schmid

presented by Dustin Lennon

Paper Goal

- Combine Harris detector with Laplacian
 - Generate multi-scale Harris interest points
 - Maximize Laplacian measure over scale
 - Yields scale invariant detector
- Extend to affine invariant
 - Estimate affine shape of a point neighborhood via iterative algorithm

Visual Goal

- Basic idea #1:
 - scale invariance is equivalent to selecting points at characteristic scales
 - Laplacian measure is maximized over scale parameter
- Basic idea #2:
 - Affine shape comes from second moment matrix (Hessian)
 - Describes the curvature in the principle components

- Laplacian of Gaussian
 - Smoothing before differentiating
 - Both linear filters, order of application doesn't matter
 - Kernel looks like a 3D mexican hat filter
 - Detects blob like structures
 - Why LoG: A second derivative is zero when the first derivative is maximized
- Difference of Gaussian
 - Subtract two successive smoothed images
 - Approximates the LoG

- But drawbacks because of detections along edges

 unstable
- More sophisticated approach using penalized LoG and Hessian
 - Det, Tr are similarity invariant
 - Reduces to a consideration of the eigenvalues

- Affine Invariance
 - We allow a linear transform that scales along each principle direction
 - Earlier approaches (Alvarez & Morales) weren't so general
 - Connect the edge points, construct the perpendicular bisector
 - Assumes qualities about the corners
 - Claim is that previous affine invariant detectors are fundamentally flawed or generate spurious detected points

Scale Invariant Interest Points

• Scale Adapted Harris Detector

$$\mu(\mathbf{x}, \sigma_I, \sigma_D) = \begin{bmatrix} \mu_{11} & \mu_{12} \\ \mu_{21} & \mu_{22} \end{bmatrix}$$
$$= \sigma_D^2 g(\sigma_I) * \begin{bmatrix} L_x^2(\mathbf{x}, \sigma_D) & L_x L_y(\mathbf{x}, \sigma_D) \\ L_x L_y(\mathbf{x}, \sigma_D) & L_y^2(\mathbf{x}, \sigma_D) \end{bmatrix}$$
(1)

• Harris Measure

$$cornerness = \det(\mu(\mathbf{x}, \sigma_{\mathbf{I}}, \sigma_{\mathbf{D}})) - \alpha \operatorname{trace}^{2}(\mu(\mathbf{x}, \sigma_{\mathbf{I}}, \sigma_{\mathbf{D}}))$$
(2)

Characteristic Scale

- Sigma parameters
 - Associated with width of smoothing windows
 - At each spatial location, maximize LoG measure over scale
 - Characteristic scale
 - Ratio of scales corresponds to a scale factor between two images

Harris-Laplace Detector

- Algorithm
 - Pre-select scales, sigma_n
 - Calculate (Harris) maxima about the point
 - threshold for small cornerness
 - Compute the matrix mu, for sigma_I = sigma_n
 - Iterate
 - 1. Find the local extremum over scale of the LoG for the point $\mathbf{x}^{(k)}$, otherwise reject the point. The investigated range of scales is limited to $\sigma_I^{(k+1)} = t\sigma_I^{(k)}$ with $t \in [0.7, ..., 1.4]$.
 - 2. Detect the spatial location $\mathbf{x}^{(k+1)}$ of a maximum of the Harris measure nearest to $\mathbf{x}^{(k)}$ for the selected σ_I^{k+1} .
 - 3. Go to Step 1 if $\sigma_I^{(k+1)} \neq \sigma_I^{(k)}$ or $\mathbf{x}^{(k+1)} \neq \mathbf{x}^{(k)}$.

Harris-Laplace Detector

The authors claim that both scale and location converge. An example is shown below.

- Find the local extremum over scale of the LoG for the point x^(k), otherwise reject the point. The investigated range of scales is limited to σ_I^(k+1) = tσ_I^(k) with t ∈ [0.7,...,1.4].
- 2. Detect the spatial location $\mathbf{x}^{(k+1)}$ of a maximum of the Harris measure nearest to $\mathbf{x}^{(k)}$ for the selected σ_I^{k+1} .
- 3. Go to Step 1 if $\sigma_I^{(k+1)} \neq \sigma_I^{(k)}$ or $\mathbf{x}^{(k+1)} \neq \mathbf{x}^{(k)}$.

Harris Laplace

- A faster, but less accurate algorithm is also available.
- Questions about Harris Laplace
 - What about textured/fractal areas?
 - Kadir's entropy based method
 - Local structures over a wide range of scales?
 - In contrast to Kadir?

Affine Invariance

- Need to generalize uniform scale changes
- Fig 3 exhibits this problem

Affine Invariance

The authors develop an affine invariant version of mu:

Here Sigma represents covariance matrix for integration/differentiation Gaussian kernels

The matrix is a Hermitian operator.

To restrict search space, let Sigma_I, Sigma_D be proportional. $\mu(\mathbf{x}, \Sigma_I, \Sigma_D) = \det(\Sigma_D) g(\Sigma_I) \\ * ((\nabla L)(\mathbf{x}, \Sigma_D) (\nabla L)(\mathbf{x}, \Sigma_D)^T) \quad (4)$

Affine Transformation

• Mu is transformed by an affine transformation of x: $x_R = Ax_L$.

$$\mu(\mathbf{x}_L, \Sigma_{I,L}, \Sigma_{D,L}) = A^T \mu(\mathbf{x}_R, \Sigma_{I,R}, \Sigma_{D,R})A$$
$$= A^T \mu(A\mathbf{x}_L, A\Sigma_{I,L}A^T, A\Sigma_{D,L}A^T)A$$
(5)

If we denote the corresponding matrices by:

$$\mu(\mathbf{x}_L, \Sigma_{I,L}, \Sigma_{D,L}) = M_L \quad \mu(\mathbf{x}_R, \Sigma_{I,R}, \Sigma_{D,R}) = M_R$$

these matrices are then related by:

$$M_L = A^T M_R A \quad M_R = A^{-T} M_L A^{-1} \tag{6}$$

In this case the differentiation and integration kernels are transformed by:

$$\Sigma_R = A \Sigma_L A^T$$

Let us suppose that the matrix M_L is computed in such a way that:

$$\Sigma_{I,L} = \sigma_I M_L^{-1} \quad \Sigma_{D,L} = \sigma_D M_L^{-1} \tag{7}$$

$$\Sigma_{I,R} = A \Sigma_{I,L} A^{T} = \sigma_{I} \left(A M_{L}^{-1} A^{T} \right)$$

$$= \sigma_{I} (A^{-T} M_{L} A^{-1})^{-1} = \sigma_{I} M_{R}^{-1}$$

$$\Sigma_{D,R} = A \Sigma_{D,L} A^{T} = \sigma_{D} \left(A M_{L}^{-1} A^{T} \right)$$

$$= \sigma_{D} (A^{-T} M_{L} A^{-1})^{-1} = \sigma_{D} M_{R}^{-1}$$
(8)

$$A = M_R^{-1/2} R M_L^{1/2}$$

$$\mathbf{x}_R = A\mathbf{x}_L = M_R^{-1/2} R M_L^{1/2} \mathbf{x}_L,$$
$$M_R^{1/2} \mathbf{x}_R = R M_L^{1/2} \mathbf{x}_L$$

Affine Invariance

- Lots of math, simple idea •
- We just estimate the Sigma • covariance matrices, and the problem reduces to a rotation only
 - Recovered by gradient orientation

$$\mathbf{x}_L \longrightarrow M_L^{-1/2} \mathbf{x}'_L$$

 $\mathbf{x}_R \longrightarrow M_R^{-1/2} \mathbf{x}'_R$

Isotropy

 If we consider mu as a Hessian, its eigenvalues are related to the curvature

$$Q = \frac{\lambda_{\min}(\mu)}{\lambda_{\max}(\mu)} \tag{10}$$

- We choose sigma_D to maximize this isotropy measure.
- Iteratively approach a situation where Harris-Laplace (not affine) will work

Harris Affine Detector

- Spatial Localization
 - Local maximum of the Harris function
- Integration scale
 - Selected at extremum over scale of Laplacian
- Differentiation scale
 - Selected at maximum of isotropy measure
- Shape Adaptation Matrix
 - Estimated by the second moment matrix

Shape Adaptation Matrix

- Iteratively update the mu matrix by successive square roots
 - Keep max eigenvalue = 1
 - Square root operation forces min eigenvalue to converge to 1
 - Image is enlarged in direction corresponding to minimum eigenvalue at each iteration

Integration/Differentiation Scale

- Shape Adaptation means
 - only need sigmas corresponding to the Harris-Laplace (non affine) case.
 - Use LoG and Isotropy measure
- Well defined convergence criterion in terms of eigenvalues

Detection Algorithm

- 1. initialize $U^{(0)}$ to the identity matrix
- 2. normalize window $W(\mathbf{x}_w) = I(\mathbf{x})$ centered on $U^{(k-1)}\mathbf{x}_w^{(k-1)} = \mathbf{x}^{(k-1)}$
- 3. select integration scale σ_I at point $\mathbf{x}_w^{(k-1)}$
- 4. select differentiation scale $\sigma_D = s\sigma_I$, which maximizes $\frac{\lambda_{\min}(\mu)}{\lambda_{\max}(\mu)}$, with $s \in [0.5, \dots, 0.75]$ and $\mu = \mu(\mathbf{x}_w^{(k-1)}, \sigma_I, \sigma_D)$
- 5. detect *spatial localization* $\mathbf{x}_w^{(k)}$ of a maximum of the Harris measure (Eq. (2)) nearest to $\mathbf{x}_w^{(k-1)}$ and compute the location of the interest point $\mathbf{x}^{(k)}$
- 6. compute $\mu_i^{(k)} = \mu^{-\frac{1}{2}}(\mathbf{x}_w^{(k)}, \sigma_I, \sigma_D)$
- 7. concatenate transformation $U^{(k)} = \mu_i^{(k)} \cdot U^{(k-1)}$ and normalize $U^{(k)}$ to $\lambda_{\max}(U^{(k)}) = 1$
- 8. go to Step 2 if $1 \lambda_{\min}(\mu_i^{(k)}) / \lambda_{\max}(\mu_i^{(k)}) \ge \epsilon_C$

Detection of Affine Invariant Points

Results/Repeatability

Results/Point Localization Error

Results/Surface Intersection Error

Results/Repeatability

Point Localization Error

Surface Intersection Error

Applications

Applications

Applications

(a) Scale change of 3.9 and rotation of 17°.

(b) Scale change of 1.8 and viewpoint change of 30°

(c) Scale change of 1.7 and viewpoint change of 50°

Conclusions

- Results impressive
- Methodology reasonably well-justified
- Possible drawbacks?