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Recognition by Appearance

• Appearance-based recognition is a competing paradigm to
features and alignment.

• No features are extracted!

• Images are represented by basis functions (eigenvectors)
and their coefficients.

• Matching is performed on this compressed image
representation.
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Eigenvectors and Eigenvalues
Consider the sum squared distance of a 
point x to all of the orange points:

What unit vector v minimizes SSD?

What unit vector v maximizes SSD?

Solution: v1 is eigenvector of A with largest eigenvalue
v2 is eigenvector of A with smallest eigenvalue



3

Principle component analysis

• Suppose each data point is N-dimensional
– Same procedure applies:

– The eigenvectors of A define a new coordinate system
• eigenvector with largest eigenvalue captures the most variation 

among training vectors x
• eigenvector with smallest eigenvalue has least variation

– We can compress the data by only using the top few eigenvectors
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The space of faces

• An image is a point in a high-dimensional space
– An N x M image is a point in RNM

– We can define vectors in this space
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Dimensionality reduction

–We can find the best subspace using PCA
–Suppose it is K dimensional
–This is like fitting a “hyper-plane” to the set 

of faces
•spanned by vectors v1, v2, ..., vK

•any face x ≈ a1v1 + a2v2 + , ..., + aKvK

The set of faces is a “subspace” of the set of images.
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Turk and Pentland’s Eigenfaces:
Training

• Let F1, F2,…, FM be a set of training face images.
Let F be their mean and Φi = Fi – F

• Use principal components to compute the eigenvectors
and eigenvalues of the covariance matrix of the Φi s

• Choose the vector u of most significant M eigenvectors
to use as the basis.

• Each face is represented as a linear combination of eigenfaces

u = (u1, u2, u3, u4, u5);  F27 = a1*u1 + a2*u2 + … + a5*u5
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Matching

unknown
face image

I

convert to its
eigenface
representation

Ω = (Ω1, Ω2, …, Ωm)

Find the face class k that minimizes

εk = || Ω - Ωk ||
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training
images

3 eigen-
images

mean
image

linear
approxi-
mations
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Extension to 3D Objects

• Murase and Nayar (1994, 1995) extended this idea to 3D
objects.

• The training set had multiple views of each object, on a
dark background.

• The views included multiple (discrete) rotations of the object on
a turntable and also multiple (discrete) illuminations.

• The system could be used first to identify the object and then to
determine its (approximate) pose and illumination.
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Sample Objects
Columbia Object Recognition Database
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Significance of this work

• The extension to 3D objects was an important contribution.

• Instead of using brute force search, the authors observed that

All the views of a single object, when transformed into the
eigenvector space became points on a manifold in that space.

• Using this, they developed fast algorithms to find the closest
object manifold to an unknown input image.

• Recognition with pose finding took less than a second.
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Appearance-Based Recognition
• Training images must be representative of the instances
of objects to be recognized.

• The object must be well-framed.

• Positions and sizes must be controlled.

• Dimensionality reduction is needed.

• It is not powerful enough to handle general scenes
without prior segmentation into relevant objects.

• Newer systems are using interest operators to identify “parts” 
and learning objects with these parts.

*
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