Video Google: Text Retrieval Approach to Object Matching in Videos

Authors: Josef Sivic and Andrew Zisserman ICCV 2003

Presented by: Indrivati Atmosukarto

Motivation

- Retrieve key frames and shots of video containing particular object with ease, speed and accuracy with which Google retrieves web pages containing particular words
- Investigate whether text retrieval approach is applicable to object recognition
- Visual analogy of word: vector quantizing descriptor vectors

Benefits

- Matches are pre-computed so at run time frames and shots containing particular object can be retrieved with no delay
- Any object (or conjunction of objects) occurring in video can be retrieved even though there was no explicit interest in object when descriptors were built

Text Retrieval Approach

- Documents are parsed into words
- Words represented by stems
- Stop list to reject common words
- Remaining words assigned unique identifier
- Document represented by vector of weighted frequency of words
- Vectors organized in inverted files
- Retrieval returns documents with closest (angle) vector to query

Viewpoint invariant description

- Two types of viewpoint covariant regions computed for each frame
 - Shape Adapted (SA)
 - Maximally Stable (MS)
- Detect different image areas
- Provide complimentary representations of frame
- Computed at twice originally detected region size to be more discriminating

Shape Adapted region

- Elliptical shape adaptation about interest point
- Iteratively determine ellipse center, scale and shape
- Scale determined by local extremum (across scale) of Laplacian
- Shape determined by maximizing intensity gradient isotropy over elliptical region
- Centered on corner like features

Maximally Stable region

- Use intensity watershed image segmentation
- Select areas that are approximately stationary as intensity threshold is varied
- Correspond to blobs of high contrast with respect to surroundings

Feature Descriptor

Each elliptical affine invariant region represented by 128 dimensional vector using SIFT descriptor

Noise Removal

- Information aggregated over sequence of frames
- Regions detected in each frame tracked using simple constant velocity dynamical model and correlation
- Region not surviving more than 3 frames are rejected
- Estimate descriptor for region computed by averaging descriptors throughout track

Noise Removal

Tracking region over 70 frames

First (left) and last (right) frame of the track.

Close-up of the 1st, 20th, 40th, 55th, 70th frame.

Visual Vocabulary

Goal: vector quantize descriptors into clusters (visual words)

When new frame observed, descriptor of new frame assigned nearest cluster, generating matches for all frames

Visual Vocabulary

- Implementation: K-Means clustering
- Regions tracked through contiguous frames
- Mean vector descriptor x_i computed for each i regions
- Subset of 48 shots selected
- Distance function: Mahalanobis
- 6000 SA clusters and 10000 MS clusters

Visual Vocabulary

Figure 2: Samples from the clusters corresponding to a single visual word. (a) Two examples of clusters of Shape Adapted regions. (b) Two examples of clusters of Maximally Stable regions.

Visual Indexing

- Apply weighting to vector components
- Weighting: term frequency-inverse document frequency (tf-idf)
- Vocabulary k words, each doc represented by kvector V_d = (t₁,...,t_i,...,t_k)^T where

$$t_i = \frac{n_{id}}{n_d} \log \frac{N}{n_i}$$

 $n_{id} = #$ of occurrences of word i in doc d $n_d = total #$ of words in doc d $n_i = #$ of occurrences of word I in db N = # of doc in db

Experiments - Setup

- Goal: match scene locations within closed world of shots
- Data: 164 frames from 48 shots taken at 19 different 3D locations; 4-9 frames from each location

Experiments - Retrieval

- Entire frame is query
- Each of 164 frames as query region in turn
- Correct retrieval: other frames which show same location
- Retrieval performance: average normalized rank of relevant images

$$\widetilde{Rank} = \frac{1}{NN_{rel}} \left(\sum_{i=1}^{N_{rel}} R_i - \frac{N_{rel}(N_{rel}+1)}{2} \right)$$

 $N_{rel} = \#$ of relevant images for query image

N = size of image set

$$R_i = rank$$
 of ith relevant image

Experiment - Results

Experiments - Results

	binary	tf	tf-idf
SA	0.0265	0.0275	0.0209
MS	0.0237	0.0208	0.0196
SA+MS	0.0165	0.0153	0.0132

Table 1: The mean of the \widetilde{Rank} measure computed from all 164 images of the ground truth set for different term weighting methods.

Experiments - Results

Precision = # relevant images/total # of frames retrieved Recall = # correctly retrieved frames/ # relevant frames

Stop List

Top 5% and bottom 10% of frequent words are stopped

Figure 5: Frequency of MS visual words among all 3768 keyframes of Run Lola Run (a) before, and (b) after, application of a stoplist.

Figure 6: Matching stages. Top row: (left) Query region and (right) its close-up. Second row: Original word matches. Third row: matches after using stop-list, Last row: Final set of matches after filtering on spatial consistency.

Spatial Consistency

- Matched region in retrieved frames have similar spatial arrangement to outlined region in query
- Retrieve frames using weighted frequency vector and re-rank based on spatial consistency

Spatial Consistency

- Search area of 15 nearest neighbors of each match cast a vote for the frame
- Matches with no support are rejected
- Total number of votes determine rank

circular areas are defined by the fifth nearest neighbour and the number of votes cast by the match is three.

Inverted File

Entry for each visual word

Store all matches : occurences of same word in all frames

More Results

Future Works

- Lack of visual descriptors for some scene types
- Define object of interest over more than single frame
- Learning visual vocabularies for different scene types
- Latent semantic indexing for content
- Automatic clustering to find principal objects throughout movie

Demo

- http://www.robots.ox.ac.uk/~vgg/researc h/vgoogle/how/method/method_a.html
- http://www.robots.ox.ac.uk/~vgg/researc h/vgoogle/index.html