Scale Saliency

Timor Kadir, Michael Brady

Pat Tressel 13-Apr-2005

The issues...

- Typical features...
 - Geometry: gradients, filters, basis projection
 - Morphology: corners, blobs
- ...are not good for everything
 - Each specific to limited classes of objects
 - Poor recognition, poor scale detection
 - Could throw in many features, but slow

Instead, want features that are...

- Independent of specific object types
- Not fooled by (planar) warping
 - affine transformations
 - scaling
- Insensitive to intensity fluctuation
- Helps detect appropriate scale
- Usable with many underlying features
 - color, texture, gradient
 - optical flow

What to do?

- For general-purpose features...
 - Join the stampede appeal to info theory
 - Define:salience = surprise = unpredictability = entropy
 - Doesn't depend on a metric
 - Histogram low-level features around each point
 - Any low-level features will do:
 - intensity, color, texture, gradient
 - optical flow

What to do?

- To handle scale...
 - Histogram over simple region around point
 - Region size controlled by scale parameter
 - New cross-scale salience factor: how much histograms differ across scales
 - Search over scale for highest salience
- To handle planar transformations...
 - Use elliptical regions
 - Also search over orientation & eccentricity

Inference with the new input

- Goal is system identification predict firing rate given a new input
 - Input is stimulus and last AP interval
- Given an input:
 - Compute the probability of membership in both classes
 - Use Bayes rule to get probability of spike:

$$p(spike \mid x) = \frac{p(x \mid spike)p(spike)}{\sum_{class} p(x \mid class)p(class)}$$

Finding salient points

• Define (raw, discrete) "scale saliency":

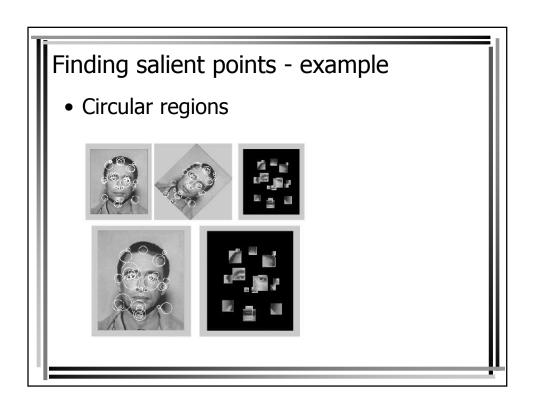
$$Y_D(\mathbf{s}, \mathbf{x}) = H_D(\mathbf{s}, \mathbf{x}) W_D(\mathbf{s}, \mathbf{x})$$

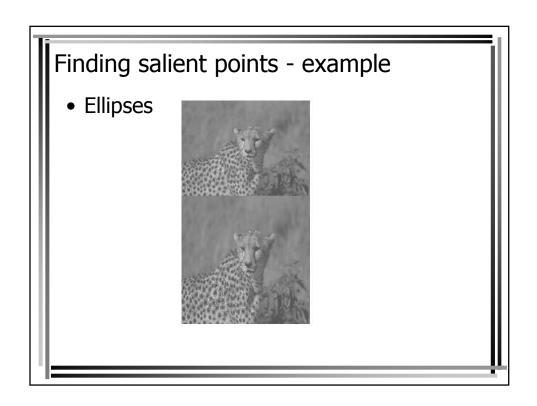
$$H_D(\mathbf{s}, \mathbf{x}) = -\sum_{d \in D} p_{\mathbf{s}, \mathbf{x}}(d) \log_2 p_{\mathbf{s}, \mathbf{x}}(d)$$

$$W_D(\mathbf{s}, \mathbf{x}) = \frac{s^2}{2s - 1} \sum_{d \in D} |p_{\mathbf{s}, \mathbf{x}}(d) - p_{\mathbf{s} - 1, \mathbf{x}}(d)|$$

 $\mathbf{x} = point$

 $\mathbf{s} = (s, r, \theta) = (scale, eccentricity, orientation)$


D = low - level feature domain


 $p_{s,x}(d)$ = histogram of values of D in region s,x

Finding salient points

- For each point & region shape, find maxima over scale
 - If monotonic, then none
- Over all points, keep most salient regions
 - E.g. top 10%, threshold

$$\mathbf{S} = \begin{cases} \mathbf{s}, \mathbf{x} : H_D((s-1, r, \theta), \mathbf{x}) < H_D((s, r, \theta), \mathbf{x}), \\ H_D((s+1, r, \theta), \mathbf{x}) < H_D((s, r, \theta), \mathbf{x}), \\ Y_D(\mathbf{s}, \mathbf{x}) \text{ meets some cutoff criterion} \end{cases}$$

Finding the salient points

- What underlying feature to use?
 - Feature is as random as possible at s.p.
 - So, no use for "describing" the points there
 - Elsewhere, single feature value is acceptable local match
- Want few salient points
 - Choose generally non-salient features
 - Use composite of these as underlying feature

Finding the salient points

- These only provide locations
 - Feature D is as random as possible there
 - No use for further "describing" the points
- They propose:
 - Repeat process with different feature
 - "At each level", use "more powerful" features
 - Yields "hierarchy of salient points"
- Combine nearby s.p.
- Annotate s.p. with other features

Using the salient points

- Tracking
 - Hand-select & crop each object in one frame
 - Find set of s.p. for each
 - Annotate with small image patches
- Segmentation
 - S.p. *opposite* of good region representatives
 - Fixup:
 - Pick points far from any s.p.
 - Grow regions starting there
 - Clusters of s.p. wall off regions

Benefits

- Not tied to specific object features
- S.p. sable across resizing
- Selects relevant scale

Issues

- "Salient" != object interest point
 - Noise is "salient"
 - Jumble of tiny objects is "salient"
 - Occluded object is "salient" at boundary
 - So not necessarily even object point
- "Salient" != salient
 - Periodic tiling (cougar spots) gets dense s.p.
 - But, it's wallpaper, camouflage
 - Should be considered uniform

Issues

- Image resizing vs. zoom
 - Don't want new s.p. during zoom
 - "Top n %" over smaller region adds points
 - Fixup:
 - Apply % at outset & get equivalent threshold
 - Stick with that threshold (at least through zoom)
 - Stable over resize with fixed % implies stable over zoom with threshold
- Not insensitive to variable illumination
 - Changes local statistics
 - Brighter yields higher salience

Issues

- Invariant under local pixel scrambling
 - Any arrangement within **s**,**x** region is same
- Two problems when using ellipses
 - Sensitive to noise
 - Slow they're doing exhaustive search
 - Fixup: Try standard optimization

Meta-issues

- Much effort spent tying salience and...
 - Attentive / pre-attentive dichotomy
 - Operation of human visual system
 - Dropped *entirely* for summary paper
- Attentive / pre-attentive paradigm claims
 - Salience is main goal of low-level h.v.s.
 - Low-level h.v.s. features can't be orientation or scale sensitive
 - Can't depend on context

Meta-issues

- Couldn't be more wrong if they tried
- From neurobiology...
 - Main function of low-level h.v.s.:
 - Dimension reduction
 - "Fast", "cheap"
 - Appropriate for human tasks
 - Low-level h.v.s. features are all orientation, scale sensitive
 - Center / surround
 - Bar detectors
 - At various angles
 - · Various speeds of bar movement

Meta-issues

- From neurobiology...
 - Yes, it's "context" dependent it adapts
 - Values of features depend on local conditions
 - Aperture changes
 - Subconscious head motion to target important locations

Meta-meta-issues

- Why the disconnect?
 - Examine the "evidence"
 - Who cites whom?
- Postulate
 - There are distinct populations of researchers
 - Computer vision
 - Psychology
 - Machine learning
 - Neurobiology
 - Neurocomputation

Meta-meta-issues

- Postulate
 - Graph of relationships is sparse
 - Computer vision folks pay attention to psychology
 - Neurocomputation folks pay attention to neurobiology and machine learning
 - Psych folks aware of computer vision folks
 - Is change coming?
 - Neurobio folks have discovered what psych and comp vision folks are up to

References

Kadir, Brady; Saliency, scale and image description; *IJCV* 45(2), 83-105, 2001

Kadir, Brady; Scale saliency: a novel approach to salient feature and scale selection

Treisman; Visual coding of features and objects: Some evidence from behavioral studies; Advances in the Modularity of Vision Selections, NAS Press, 1990

Wolfe, Treisman, Horowitz; What shall we do with the preattentive processing stage: Use it or lose it? (poster); 3rd Annual Mtg Vis Sci Soc

References

Dayan, Abbott; Theoretical Neuroscience; MIT Press, 2001

Lamme; Separate neural definitions of visual consciousness and visual attention; Neural Networks 17, 861-872, 2004

Di Lollo, Kawahara, Zuvic, Visser; The preattentive emperor has no clothes: A dynamic redressing; *J Experimental Psych*, General 130(3), 479-492

Hochstein, Ahissar; View from the top: Hierarchies and reverse hierarchies in the visual system; Neuron 36, 791-804, 2002