EFFICIENT GRAPH-BASED ENERGY MINIMIZATION
METHODS IN COMPUTER VISION

A Dissertation
Presented to the Faculty of the Graduate School
of Cornell University
in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy

by
Olga Veksler
August 1999

© Olga Veksler 1999
ALL RIGHTS RESERVED

EFFICIENT GRAPH-BASED ENERGY MINIMIZATION METHODS IN
COMPUTER VISION

Olga Veksler, Ph.D.
Cornell University 1999

Energy minimization is an elegant approach to computer vision. Vision prob-
lems usually have many solutions due to uncertainties in the imaging process and
ambiguities in visual interpretation. The energy function encodes the problem
constraints, and its minimum gives the optimal solution. Despite numerous ad-
vantages, this approach is severely limited by the high computational cost.

The main contribution of my thesis lies in developing efficient combinatorial
optimization algorithms for several important classes of energy functions which
incorporate everywhere smooth, piecewise constant, and piecewise smooth pri-
ors. These priors assume, respectively, that the quantity to be estimated varies
smoothly over its domain, consist of several pieces with constant values, or consist
of several pieces with smoothly varying values. The algorithms rely on graph cuts
as a powerful optimization technique.

For a certain everywhere smooth prior we develop an algorithm which finds the
exact minimum by computing a single graph cut. This method is most suitable to
estimate quantities without discontinuities. But even when discontinuities exist,
the method produces good results in certain cases. The running time is low order
polynomial.

For several wide classes of piecewise smooth priors we develop two approxi-
mation algorithms (we show that exact minimization in NP-hard in these cases).
These algorithms produce a local minimum in interesting large move spaces. Fur-
thermore, one of them finds a solution within a known factor from the optimum.
The algorithms are iterative and compute several graph cuts at each iteration.
The running time at each iteration is effectively linear due to the special graph
structure. In practice it takes just a few iterations to converge. Moreover most of
the progress happens during the first iteration.

For a certain piecewise constant prior we adapt the algorithms developed for
the piecewise smooth prior. One of them finds a solution within a factor of two
from the optimum. In addition we develop a third algorithm which finds a local
minimum in yet another move space.

We demonstrate the effectiveness of our approach on image restoration, stereo,
and motion. For the data with ground truth, our methods significantly outperform
standard methods.

Biographical Sketch

Olga Veksler was born on May 15, 1973 in Sergiev Posad, Russia. In May 1995 she
received the B.A. degree from New York University with Honors in mathematics
and computer science. In the fall of 1995 she entered the Ph.D. program in the
Field of Computer Science at Cornell University. In January 1999 she received the
M.A. degree in computer science from Cornell University.

iii

Acknowledgements

I would like to express my graditude to my advisor Professor Ramin Zabih for
his advice and guidance. During my first year at Cornell University I took a
computer vision course to satisfy one of the requirements for the Ph.D. Ramin has
stimulated a lot of interest in the subject, and I ended up doing research in vision.
He took interest in my final project for this course, and this was the beginning of
several years of fruitfull collaboration. His advise during the preparation of this
dissertation was very valuable.

I am especially thankful to Yuri Boykov whom I dragged into computer vision
and with whom I worked in this field ever since. During our constant discussions
and arguments a lot of interesting ideas were born. His scrupulous attention to
details saved us from many pitfalls.

I would like to thank Professors Eva Tardos and Jon Kleinberg for sharing
their expertise in the field of combinatorial optimization and graph methods. I
am especially grateful to Eva Tardos for always being available to discuss our
results and providing interesting suggestions. I am very grateful to Jon Kleinberg
for helping to prove some NP hardness results and for designing an algorithm for
speeding up computation of max flow on similar graphs.

I would like to express my gratitude to Professor Daniel Huttenlocher for help-
ing to create a stimulating vision environment at our department.

I would like to thank to my commitee member Professor Elizabeth Slate for
insightful questions and patience while reading my thesis.

I am grateful to Y. Ohta and Y. Nakamura for supplying the ground truth
imagery from the University of Tsukuba Multiview Image Database. This research
has been supported by DARPA under contract DAAL01-97-K-0104, by a grant
from Microsoft, and by NSF Research Infrastructure award CDA-9703470.

v

Table of Contents

1 Introduction
1.1 The optimization approach to computer vision
1.2 Labeling problems
1.3 Common constraints in vision
1.4 General form of energy functions
1.5 Relatedwork o

1.5.1 Global energy minimization
1.5.2 Local energy minimization
1.6 Contributions and prior publications
1.7 Outline. e
2 Preliminaries
2.1 Baysian justification o o oL
2.1.1 Markov Random Fields
2.1.2 Maximum a Posteriori Estimation
2.2 Graphcuts
2.3 Movespaces
2.4 Example vision problems o Lo L
2.4.1 Imagerestoration
2.4.2 Visual correspondence L.
3 Everywhere smooth prior

3.1 Preliminaries
3.2 Minimizing Er(f)« .
3.3 Experimental results 0L

3.3.1
3.3.2
3.3.3
3.3.4
3.3.9

Choosing uyp g to express contextual information
Image Restoration examples
Stereo examples oo
Real imagery with ground truth
Other real imagery

23
23
23
25
26
28
33
34
34

4 Piecewise smooth prior

4.1 Semi-metric neighbor interactions
4.2 Metric neighbor interactions L.
4.3 Local energy minimization
4.3.1 SwWap MOVE SPACE . . « =« « v v e e e e e e e e e
4.3.2 Expansion move Spaceot i e u e e
4.3.3 Runningtime,
4.3.4 Optimality properties
4.4 Experimental results L.
4.4.1 Imagerestoration

4.4.2 Stereo
4.4.3 Motion

5 DPiecewise constant prior

5.1 Preliminaries
5.2 Multiway cut

5.3 Local energy minimization
5.3.1 Swap and expansion move space
5.3.2 Jumpmovespaceo

5.4 Experimental results oL L
5.4.1 Imagerestoration

5.4.2 Stereo

Bibliography

vi

57
a7
99
61
62
68
76
7
80
83
84
84

87
88
88
93
93
9
102
106
109

119

List of Figures

1.1
1.2

1.3
1.4

1.5
1.6

1.7
1.8

1.9

2.1

2.2
2.3
2.4
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5

3.6
3.7

Example of the motion problem.
Four most likely solutions, sums of squared differences, and number
of pixel pairs which move together.
N, ={t,b,l,r}; Ny={z,2}.
Examples of low cost and high cost labeling for everywhere smooth
PriOT. . . . o e e e e
Graph of Vi, 1 (fp, fg) for everywhere smooth prior.
Examples of low cost and high cost labeling for piecewise constant
PriOT. . . . o e e e e
Graph of Vi, 1 (fp, fg) for piecewise constant prior.
Examples of low cost and high cost labeling for piecewise smooth
PriOT. . . . o e e e e
Graph of Vi, 1 (fp, fg) for piecewise smooth prior.

Circles show terminal vertices. Squares show the rest of vertices.

Dashed lines show edges in thecut.
(f,fYisal2relabelmove
(f,f)isal2swapmove
(f,f)isaljumpmove
(f,f') is an l-expansion move
Example of an image restoration problem.
Example of a stereo problem. 000,
The difference in intensities of corresponding pixels p and ¢ is 25

even if there is no camera noise.

A subgraph of G corresponding to the pixels pandq.
All n-links between cut ¢-links have tobecut.
Diamond images.
Results for image restoration example in figure 3.3
Histogram corrected results for image restoration example in fig-

ure 3.3 . . . e e e e
Shaded diamond images.
Restoration results for image in figure 3.6. Average absolute error

is 0.74 . . e

vil

3.8
3.9
3.10
3.11
3.12
3.13

4.1
4.2
4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13
4.14

Real imagery with ground truth 53
Comparison of errors made by our method and normalized correlation 53

Details of disparity map in figure 3.8(a) 54
Error statistics for our method for different valuesof A 54
SRI tree sequence 55
CMU meter SeqUENCe v v v v v v i e e e e e 56
Graphs of truncated quadratic and truncated linear Vi, g3’s. 58
Algorithm to find a local minimum in move space M. 60

An example of the graph G for a 1D image. Set of the pixels
P = {p,q,v,w,r,s}. The neighborhood system consists of two pixel
pairs N = {{p, ¢}, {r, s}}, and so there are n-links between pixels
Dygand T, 8. . . o .o e e e 63
Properties of a cut C on G for two pixels p, g € N connected by an
n-link e(, 1. Dotted lines show the edges cut by C and solid lines
show the edges remaining in the induced graph G(C) = (V,£ —=C). 66
An example of the graph G for a 1D image. The set of pixels in
the image is P = {p,q,7,s}. The neighborhood system is N =
{p, ¢} {a;7}, {r,s}}. fo # fy and f, # f, therefore there are
auxiliary nodes a and b between neighbor pairs {p, ¢} and {r, s}.
fq = fr and so there is no auxiliary node between g and 69
Properties of a minimum cut C on G for two pixel p,q € N such
that f, # f;. Dotted lines show the edges cut by C and solid lines
show the edges in the induced graph G(C) = (V,E-C). 73
The cut is shown in dashed lines. It satisfies properties 2 and 3
but is not the minimum cut on this graph. The minimum cut is

C={t3,t3, 6} 74
An instance of image restoration problem. 81
Performance comparison of swap method and simulated annealing

for the problem of stereo. 82
Summary of total energy and smoothness energy produced by our

algorithm and simulated annealing. 82
An instance of image restoration problem. 83
Tree image 85
Comparison of swap and expansion algorithms. 86
Moving cat 86

viii

5.1

5.2
9.3
5.4

9.5

9.6
5.7
2.8
9.9

5.10
5.11

5.12
5.13
5.14
5.15

An example of the graph G = (V, £) with terminals £ = {1,..., k}.
The pixels p € P are shown as white squares. Each pixel has
an n-link to its four neighbors. Each pixel is also connected to
all terminals by ¢-links (some of the ¢-links are omitted from the
drawing for legibility). The set of vertices ¥ = P U L includes all
pixels and terminals. The set of edges £ = €y U E7 consists of all

n-links and ¢-links. L. L L. 90
Graph induced by a multiway cut 91
Table of connections foredge t, 97

An example of the graph G for a 1D image. The set of pixels
in the image is P = {p,q,7,s,v}. The neighborhood system is
N = {{p7 Q}7 {Q7T}7 {T7 3}7 {37U}}' Also assume that |f;0 - fQ| = |Z|
and |fs — fu| = |i|, therefore we create two auxiliary nodes a¢ and
b between neighbor pairs {p, ¢} and {s,v}. f, = f so there is an
n-link between ¢ and r. Since f, # f; and |f, — fs| # |i| there is
neither an n-link nor auxiliary pixel construction between pixels r
and s. ... 98
Performance comparison on the image restoration task. The data
points for our method correspond to the 4 cycles the algorithm

takes until convergence.o oL L 104
Restored images for various valuesof A\. 104
Mean absolute error. oL oo 105
Percentage of pixels with nonzero error. 105
Images restored with piecewise constant and piecewise smooth pri-

OTS. + v v v e e e e e e e e e e e e e e e 107
Real imagery with ground truth 108
Performance comparison of expansion, swap, and jump algorithms

with simulated annealing for the problem in figure 3.8(a). 109
Table of errors for the expansion algorithm for different values of A. 111
The CMU meter image 113
The shrub image 114
Results with piecewise constant and piecewise smooth priors. . . . 115

X

Chapter 1

Introduction

1.1 The optimization approach to computer
vision

The goal of computer vision is to infer information about the real world from
its representation through images. This is quite a challenging task. A problem
in computer vision usually has many possible solutions, due to uncertainties in
the imaging process and ambiguities in visual interpretation. Some mechanism is
required to evaluate the options and select a solution.

The optimization approach provides an elegant and expressive framework for
discriminating among solutions. The approach consists of two major steps. First
an objective function is formulated. This is a function from the set of all possible
solutions to real numbers, and it measures the goodness of a solution. To design
the objective function for a problem, it is first necessary to come up with a set of
constraints that an acceptable solution should satisfy. These constraints are then
formalized in the objective function so that it assigns high goodness to the solutions
that satisfy the constraints well. For example the two constraints commonly used
in vision are provided by the data and prior knowledge. The data constraint
restricts a desired solution to be close to the observed data, and the prior constraint
confines the desired solution to have the form agreeable with the prior knowledge.
We are going to assume that smaller values of the objective function mean higher
goodness. Thus the smaller is the value of the objective function, the better the
solution, and a global minimum! of an objective function gives an optimal solution
to the problem. All objective functions in this work are called energy functions.

The second step of the approach is to minimize the energy function. Although
the design of a good energy function is not trivial, its optimization is even harder.
Most of the interesting energy functions are not convex, i.e. they have multiple

Untuitively it is desirable to design an objective function with only one global minimum.
However it is not always easy to guarantee this property.

local minima. The computational demands are quite formidable, and most meth-
ods seek an approximate answer. Often one makes a compromise in the design
of the energy function to make the optimization task easier. But even with the
compromise the majority of the optimization schemes do not produce the exact
answer.

It is equally important to design an energy function which properly encodes
the constraints of a problem and to find a good minimization technique. Failure
in either step will almost surely result in the failure of the algorithm. However
when the optimization technique gives only an approximate solution, it is hard to
determine whether the algorithm fails due to a bad choice of the energy function
or because the minimization algorithm produced an answer far from the optimum.

In this work we will assume that the set of all possible solutions is finite.
Usually this is not a major limitation, since the quantities to be estimated can
only be computed with limited precision. When the set of all possible solutions is
countable, the optimization problem is said to be combinatorial. Thus the methods
we develop are combinatorial optimization methods.

There are many advantages to the optimization based approach to vision. First
of all it gives a common framework for many vision problems. This allows ab-
stracting from the details of each particular problem after an energy function is
formulated. That is, once a suitable energy function for a problem is found, the
standard optimization machinery can be applied to solve it.

Secondly the approach provides a clean way to formalize the constraints of the
problem to be solved, and allows to encode the desired global properties in the
energy function. Thirdly the energy function gives a way to measure a goodness of
a solution and could be used as a guide in the minimization algorithm. Lastly the
optimization approach is appealing because minimization of many energy functions
can be justified using Bayesian statistics [20] or mechanics [8].

The main disadvantage of the approach is its high computational cost. For
many interesting problems finding the exact minimum is NP-hard, and so there is
almost no hope for a tractable method to find an exact minimum.

The main contribution of this thesis lies in providing efficient minimization
methods for several interesting classes of energy functions which encode everywhere
smooth, piecewise constant, and piecewise smooth priors. Although the class of
energy functions we minimize is restricted, it is useful enough to be applied to
a wide range of important vision problems. By restricting the class of functions
we are able to come up with significantly better optimization techniques than the
general-purpose minimization schemes like simulated annealing, as will be shown
by the experimental data.

For an everywhere smooth prior we develop a method that finds the exact
minimum of a certain energy function. For a wide class of piecewise smooth priors
we develop two methods that find a local minimum in interesting move spaces (we
show in the appendix that finding the exact minimum is NP-hard in these cases).

One of these algorithms produces a solution within some known factor from the
optimal. This factor depends on the prior. For a piecewise constant prior we
adapt the algorithms developed for the piecewise smooth prior, and one of these
methods is guaranteed to be within a factor of two from the optimal solution. In
addition for the piecewise constant prior we develop an algorithm that finds a local
minimum in yet another interesting move space. All the methods we develop use
graph cuts as a powerful optimization technique.

The energy minimization approach is very popular in the vision field, and was
widely applied to many vision problems. The amount of literature on the subject
is immense, see for example Horn and Schunck [23] for optical flow; Geman and
Geman [20] for image restoration; Blake and Zisserman [8] for surface reconstruc-
tion, Barnard [3] for stereo matching; Derin and Elliott [15] and Hofmann et al.
[22] for texture segmentation; Torre and Poggio [41] for edge detection. For a
brief overview of energy minimization formulation for many vision problems see
Poggio et al. [35]. We will review of several minimization methods will be given in
section 1.5.

1.2 Labeling problems

Many vision problems can be formulated as labeling problems. This formulation is
convenient because it gives a common notation for diverse problems. Throughout
this work we will assume that a problem is posed as a labeling problem. All the
examples of vision problems that we use in this work can be posed as labeling
problems, as shown in Chapter 3.

To specify a labeling problem we need a set of sites and a set of labels. Sites
represent image features on which we want to estimate some quantity, and labels
represent the quantity to be estimated.

Let

P={12,...,n}

be a set of n sites. P can represent pixels, edges, image segments, or other image
features. P frequently has some natural structure, for example when it represents
the set of image pixels. Pixels in an image are arranged in a two dimensional
array, and each pixel which is not at the border has top, bottom, left, and right
neighboring pixels. P can also have no natural ordering, for example when P
represents edges. A natural ordering on the set of sites is helpful because one
frequently wants to define some relationships between sites.

For all the tests performed in this work P represents image pixels. For this
reason we are going to call P the set of pixels and each member of this set we are
going to call a pixel.

Let

L=A{l,....lk}

100|105 10 | 12 111 9 [103]101
(a) First image (b) Second image

Figure 1.1: Example of the motion problem.

be a set of k£ labels. Labels represent intensities, disparities, or any other quantity
to be estimated. When solving a labeling problem, one needs to measure similarity
between labels. Usually a set of labels has some natural ordering which helps to
design the similarity measure.

The labeling problem is to assign a label from the label set £ to each site in
the set of sites P. Thus a labeling is a mapping from P to £. We will denote a
labeling by

f= {f17---7fn}

The set of all labelings £ is denoted by F.

1.3 Common constraints in vision

This section describes two types of constraints commonly used in vision problems.

The most common constraint is provided by the data. Let us consider the
following simple example of the motion problem. Suppose we have observed a
scene with moving objects, and two observed images are shown in figure 1.1. Each
pixel in the first image moves to some new pixel on the second image. These two
pixels are said to correspond. The problem is to find where each pixel moves.
There is some noise in the imaging system, so that the corresponding pixels do
not necessarily have the same intensity. However they are expected to have similar
intensities. Thus the pixel with intensity 100 in the first image could correspond to
the pixel with intensity 103 or to the pixel with intensity 101 in the second image.
It is very unlikely to correspond to the pixels with intensities 11 and 9. The four
most plausible solutions are shown in figure 1.2. We need to choose one of them
as the solution.

If we were to design an energy function based purely on the data constraints,
then we might choose it to be the sum of squared differences of the corresponding
pixels. The minimum of this function is achieved at the solution in figure 1.2(d).

This may be a good decision if one has no preconceived idea of what a solution
should look like. However the visual world is not random; the patterns we see are
structured and correlated. Therefore there exists prior knowledge which makes
some labelings very likely and others highly unlikely even before the data are
revealed. If prior knowledge is present, the answer given by the global minimum
of the energy function which encodes only the data constraints may seem almost

100| 105] 10 | 12 100[1051 10 | 12
111 9 [103]101 111 9 [103]101
(a) SSD=35, 2 pairs move together (b) SSD=15, 1 pair moves together
100|105 10 | 12 100]1105] 10 | 12
111 9 [103]101 111 9 [103]101

(c) SSD=27, 1 pair moves together (d) SSD=7, 0 pairs move together

Figure 1.2: Four most likely solutions, sums of squared differences, and number of
pixel pairs which move together.

arbitrary. To get a more desirable answer, one should also encode the constraints
provided by prior knowledge. This is the second type of constraint called the prior
constraint.

For example in the motion problem one expects that a scene consists of objects
most of which are larger than one pixel and that all pixels in the object move
together. Thus we expect labelings where a lot of adjacent pixels move together.
We can encode this knowledge into the energy function as negative number of pairs
of pixels next to each other which move together. From the point of view of the
prior knowledge, out of four labelings in figure 1.2 the one in (a) is the best.

Energy functions of the following form are very popular in vision because they
express both the constraints of data and prior knowledge on the problem:

E(f) = Edata(f) + A Eprior(f)-

The first term Egq, (f) is called the data energy, and encodes the constraints of the
data. Eppior(f) is called the prior energy, and encodes the constraints provided by
prior knowledge. The constant A controls the relative importance of data and prior
energy. The larger is A\, the more we believe in the prior information compared
to the information provided by the data. For the motion example if A is larger
than 14, then solution in figure 1.2(a) has the lowest value of the energy out of
all solutions in figure 1.2, and this is clearly the best solution as far as the prior
knowledge is concerned. If) is less than 8 then solution in figure 1.2(d) is optimal,
and this is clearly the best solution from the point of view of the observed data.

1.4 General form of energy functions

This section describes the common form of energy functions for which the algo-
rithms in this work are designed.

As explained in the previous section, the energy functions used in many vision
applications in their most general form can be written as

E(f) :Edata(f)+)"Eprior(f)' (1.1)

The data energy FEgu:, assigns heavy cost to the labelings f which do not agree
with the data and small cost to the labelings close to the data. The data term is
typically straight forward to design and its particular form usually depends on the
noise of the imaging system. In all the methods developed in this work, the data

has the form
Eaaa(f) = Y Dp(fp).

peEP

Here D,(f,) measures how much assigning label f, to pixel p disagrees with the
data. If observations at each pixel are independent, then this type of data energy is
reasonable. Independence of observations at each pixel is a common approximation
for the imaging process. The only restriction on D,(f,) is that it is not negative.

The prior energy assigns heavy cost to the labelings f which are not likely from
the point of view of the prior knowledge. The design of this term is more tricky and
its particular form depends on the problem at hand. For example if the quantity
to be estimated is a certain texture, then the prior term should assign the labeling
with this texture a small penalty. If the quantity to be estimated lies on a plane,
then labelings which lie close to a plane should carry small cost.

Even when one has a good idea which labelings should have high cost and which
labelings should have low cost, it is frequently hard to formalize these ideas con-
cisely. A popular choice of prior which can be easily formalized expresses smooth-
ness constraints on the labelings. The smoothness assumption is one of the oldest
in vision (see Marr and Poggio [31] or Horn and Schunck [23]). It is suitable for
problems where the quantity to be estimated varies smoothly everywhere or almost
everywhere. In many vision problems the quantity varies smoothly everywhere ex-
cept at object boundaries where it may change abruptly. Such an abrupt change
is called a discontinuity. In this work we deal with several kinds of smoothness
priors (although some of the methods developed could be applied to other kinds of
priors). For this reason we are going to rename the prior energy as the smoothness
energy and denote it by Fgnooth-

To formalize the smoothness energy we need to model how pixels interact with
each other. To express a wide variety of smoothness energies it is enough to model
how each pixel p interacts with a small set of pixels nearby. This set of pixels
is called the neighborhood of p, and is denoted by N,; each pixel in IV, is called

t

p r

b X
z q

Figure 1.3: N, = {¢,b,l,7}; N, = {z, z}.

a neighbor of p. For technical reasons we require N, to satisfy the following two
properties:

(a) p & Ny

(b) if p € N, then ¢ € N,

When P is rectangular image, a common structure for NV, is the so-called 4-
neighbor system, shown in figure 1.3. Each pixel has the top, bottom, left, and
right pixel as its neighbors. We use the 4-neighbor system for all the experiments,
although our framework allows for arbitrary V.

Let A be the set of all neighboring pairs {p,q}. N is called the neighbor-
hood system. Given the neighborhood system N, the smoothness energy has the
following form

Elsmootn (f) = Z Vipat (fp, fo)- (1.2)

{p.gteN

We call Vi, g3 (fp, fq) @ neighbor interaction function. This function gives penalties
to neighboring pixels p and ¢ if they have different labels. Note that this penalty
may depend on the particular pair of neighbors p and ¢ and on the particular labels
Jp and f, assigned to them. The form of V};, 5 determines the type of smoothness
prior, as discussed below. Thus the smoothness energy 00t 15 just the sum of
neighbor interaction functions for all neighbor pairs. It assigns the labelings which
are not smooth a high cost by counting all penalties between neighbor pairs having
different labels.

Notice that we consider only pairwise interactions between pixels. This allows
us to model properties which depend on the first derivative of the labeling, but
will not allow us to model properties depending on the higher order derivatives.

Adding 1.1 and 1.2 we get the general form of the energy functions we are going

to minimize
E(f) = Z Dy(fp) + Z V{p,q}(fp’fq)'

peEP {p.g}eN

The first term in the sum expresses the data constraints and the second term
expresses the smoothness constraints on the problem.

There are several major types of smoothness priors. We are going to describe
the three types for which we have developed algorithms.

Everywhere smooth prior

The everywhere smooth prior assigns low cost to labelings which are smooth every-
where. For example consider figure 1.4. The labeling in (a) has low cost because
labels of neighboring pixels differ by a small amount. The labeling in (b) has high
cost because there is a vertical discontinuity in the middle of the image which car-
ries a heavy penalty under the everywhere smooth prior. To formalize this prior,
one chooses the neighbor interaction function Vi, o1 (f) to assign higher penalties
for larger differences between labels f, and f;. An example of such a function is
shown in figure 1.5. For small values of | f, — f,| the penalty is not large, so small
variations in labels do not carry heavy penalties. However starting at some larger
value of |f, — f,| the penalty becomes too large to tolerate. As the result the
optimal labeling most likely will not be allowed to have such a large drop in labels
between neighboring pixels. The problem with this prior is that in most vision
problems the quantity to be estimated has discontinuities, and large differences in
labels should be allowed in the optimal solution. The labelings one gets using an
everywhere smooth prior tend to be over-smoothed around discontinuities. How-
ever in many applications it is particularly important to recover the data around
discontinuities correctly.

Piecewise constant prior

The piecewise constant prior assigns low cost to labelings which consist of one or
several pieces with constant labels. For example consider figure 1.6. The labeling
in (a) has low cost because it consists of only two pieces with labels 50 and 200,
but the labeling in (b) has high cost because it consists of sixteen pieces with
different labels. This prior can be formalized by making Vi, o1(f) zero if f, = f,
and some constant otherwise. See figure 1.7 for an example. This type of prior is
more suitable than the everywhere smooth prior for problems where the quantity
to be estimated has discontinuities. However it is not expressive enough for some
applications.

50 | 52 | 51 | 49 50 | 52 | 201 | 203
53 | 49| 52 | 50 53 | 49 | 202 | 205
54 | 50 | 53 | 52 54 | 50 | 204|200
52 | 49| 51| 53 52 | 49 | 202|201

(a) Low cost labeling

(b) High cost labeling

Figure 1.4: Examples of low cost and high cost labeling for everywhere smooth

prior.

A V{p,q}(fp ’ fq)

0

fp

>
_fq

Figure 1.5: Graph of Vi, o1(fp, f4) for everywhere smooth prior.

10

50 | 50 | 200|200 50 | 52 | 51 | 49
50 | 50 | 200 | 200 53 | 49 | 52 | 50
50 | 50 | 200|200 54 | 50 | 53 | 52
50 | 50 | 200|200 52 | 49| 51 | 53

(a) Low cost labeling

(b) High cost labeling

Figure 1.6: Examples of low cost and high cost labeling for piecewise constant

prior.

0 V{p.q}(

foofo)

|
-1

0

|
1

>
fp_fq

Figure 1.7: Graph of Vi, o (fy, fy) for piecewise constant prior.

11

50 | 52 | 201 | 203 150 82 | 150 | 49

53 | 49 | 202 | 205 63 | 249| 30 | 250

54 | 50 | 204|200 2541 98 | 53 | 95

52 | 49 | 202|201 72 |149(151| 53

(a) Low cost labeling (b) High cost labeling

Figure 1.8: Examples of low cost and high cost labeling for piecewise smooth prior.

0 V{p,q}(fp’ fq)

>

0 fp_fq

Figure 1.9: Graph of Vi, o (f, fy) for piecewise smooth prior.

12

Piecewise smooth prior

The piecewise smooth prior assigns low cost to labelings that consist of one or
several pieces with labels varying smoothly within each piece. For example consider
figure 1.8. The labeling in (a) has low cost because it consists of two pieces with
labels smoothly varying around 50 in one piece and 200 in another. The labeling
in (b) has high cost because it does not consist of large regions of smoothly varying
labels. This prior can be formalized by choosing Vi, 41 (f) which assigns a larger
penalty for the larger difference between labels f, and f,, but sets a limit on how
large this penalty can be. Consider figure 1.9 for an example. As with the graph
for everywhere smooth prior there is a small penalty for small values of |f, — f,],
with larger penalties assigned to larger values of | f,— f,|. This allows labels to vary
smoothly. However notice that the penalty stops growing at a certain point. This
allows discontinuities to form because even if |f, — f,| is very large, the penalty for
assigning labels f, and f, to neighboring pixels is never too large. The piecewise
smooth prior is applicable to a wider range of problems than the previous two
priors.

1.5 Related work

This section describes the energy minimization methods that are most prevalent
in vision. The methods can be divided into two categories: methods which search
for the global minimum and methods which search for a local minimum.

1.5.1 Global energy minimization

The problem of finding the global minimum of an arbitrary energy function is
intractable. Suppose there are n sites and k labels. Thus there are £™ distinct
labelings. Let E(f) be an energy function which is one everywhere except at

the labeling f where it is zero. There are k™ such distinct energy functions. An
algorithm which can minimize all of these functions will obviously have to look at
each of k" labelings. As a consequence, any general-purpose energy minimization
algorithm will require exponential time to find the global minimum.

Simulated annealing

The only general-purpose global energy minimization method in widespread use
is simulated annealing. It was introduced independently by Cerny in [12] and
Kirkpatrick et. al. in [28] and popularized for vision by Geman and Geman
in [20]. There are several variants of this method, we will describe the version in
[20]. For a comprehensive review, see [32].

13

The algorithm simulates the physical annealing of a material. Physical anneal-
ing is a process which determines the low energy states of a material by gradually
lowering the energy. Simulated annealing is controlled by a parameter called tem-
perature. In the beginning the temperature is set to a high value, and then lowered
according to a cooling schedule. The algorithm is initialized with some labeling.
Then pixels are visited in some order and at each pixel, a local random change
to a labeling is made. The change is accepted if it lowers the energy function.
Otherwise the change is accepted with a certain probability controlled in part by
the temperature parameter. The lower the temperature, the less likely this change
will be accepted. Thus at high temperature the algorithm essentially performs a
random walk, and at low temperature the algorithm essentially searches for a local
minimum.

With certain cooling schedules, annealing can be guaranteed to find the global
minimum in the limit [20]. Not surprisingly, however, the schedules that lead
to this guarantee are prohibitively slow in practice, and so sub-optimal schedules
are used in practice. When annealing algorithms are used in practice, they are
generally not expected to find a global minimum. They are used because they do
not get stuck in one particular local minimum.

Graduated nonconvexity

An alternative to simulated annealing is to use methods that have optimality guar-
antees in certain cases. Continuation methods, such as GNC [8], is an example.
These methods involve approximating an intractable (non-convex) energy function
by a sequence of energy functions, beginning with a tractable (convex) approxi-
mation. At every step in the approximation, a local minimum is found using the
solution from the previous step as the starting point. There are circumstances
where these methods are known to compute the optimal solution (see [8] for de-
tails). Continuation methods can be applied to a large number of energy functions,
but except for these special cases nothing is known about the quality of their out-
put.

Mean field approach

For a given energy function E(f) one can define a statistical model by
P(f) =z 'e TP,

Here Z is the normalizing constant commonly called the partition function, and 7' is
an external parameter called temperature. When temperature approaches zero, the
mean quantities of the field, f, minimize the energy function. Similar to simulated
annealing, f is first estimated at high temperature and then tracked down using a
continuation method (see Wasserstrom [42]) as the temperature gradually lowered

14

to zero. When the partition function Z is known, f can be deduced from it.
Thus mean field theory methods concentrate on analyzing the partition function.
Saddle point approximations (Parisi [33]) are used for computing the partition
function. Geiger and Yuille [19] provide an interesting connection between mean
field approximation and other minimization methods like graduated nonconvexity.

Dynamic programming

There are a few interesting energy functions where the global minimum can be
rapidly computed, via dynamic programming or graph cuts. Dynamic program-
ming [2] is restricted to energy functions which are essentially one-dimensional.
This includes some important cases, such as snakes [27]. In general, the two-
dimensional energy functions that arise in early vision cannot be solved efficiently
via dynamic programming. However dynamic programming can reduce the com-
plexity of certain two dimensional energy functions (although the resulting com-
plexity is still exponential), see Derin and Elliot [15].

Graph cuts

Graph cuts can be used to find the global minimum for some two-dimensional
energy functions. When the label set has size two, Greig et al. [21] show how to
find the global minimum of a certain energy function. When the number of labels
is larger, Ferrari et al. [16] develop a method optimal within a factor of two for
this energy function, however the data energy they use is very restrictive. Finally
Ferrari et al. [17] develop an exact method for this type of energy function using
even more restrictive data energy. The algorithms developed in this work continue
the idea of using graph cuts for energy minimization.

1.5.2 Local energy minimization

Due to the inefficiency of computing the global minimum, many authors have opted
for a local minimum. One problem with this is that it is difficult to determine the
cause of an algorithm’s failures. When an algorithm gives unsatisfactory results,
it may be due either to a poor choice of energy function, or to the fact that the
answer is far from the global minimum. There is no obvious way to tell which
of these is the problem.? Another issue is that local minimization techniques are
naturally sensitive to the initial estimate.

2In the special cases where the global minimum can be rapidly computed, it is possible to
separate these issues. For example, [21] points out that the global minimum of an Ising en-
ergy function is not necessarily the desired solution for image restoration. [7,21] analyze the
performance of simulated annealing in cases with a known global minimum.

15

Continuous labels

If the energy minimization problem is phrased in smooth terms, variational meth-
ods can be applied. These methods were popularized by Horn [23]. Variational
techniques use the Euler equations, which are guaranteed to hold at a local mini-
mum (although they may also hold elsewhere). For example, in the case of optical
flow, the Euler equations result in a pair of elliptic second-order partial differential
equations. A number of methods have been proposed to speed up the convergence
of the resulting numerical problems, including (for example) multigrid techniques
[40]. To apply these algorithms to actual imagery, of course, requires discretization.

Discrete labels

Iterated conditional modes(ICM) is a greedy technique introduced by Besag in [5].
This is an iterative algorithm and it works as follows: the sites are processed
sequentially, and for each site the label which gives the largest increase of the
energy function is chosen. This algorithm is very sensitive to the initial labeling.
An alternative is to use discrete relaxation labeling methods; this has been
done by many authors, including [13,36,39]. In relaxation labeling, combinatorial
optimization is converted into real optimization with linear constraints. Then some
form of gradient descent which gives the solution satisfying the constraints is used.

1.6 Contributions and prior publications

The main contribution of this thesis lies in providing efficient minimization meth-
ods for several interesting classes of energy functions which encode everywhere
smooth, piecewise constant, and piecewise smooth priors.

For an everywhere smooth prior we develop a method which finds the exact
minimum of a certain energy function. For a wide class of piecewise smooth priors
we develop two methods which find a local minimum in interesting move spaces
(finding the exact minimum in NP-hard in these cases). One of these algorithms
produces a solution within a known factor from the global minimum. This factor
depends on the prior. For a piecewise constant prior we adapt the algorithms
developed for the piecewise smooth prior, and one of these methods is guaranteed
to be within a factor of two from the optimal solution. In addition for the piecewise
constant prior we develop an algorithm that finds a local minimum in yet another
interesting move space. All the methods we develop use graph cuts as a powerful
optimization technique.

Some of the work presented in this thesis was previously published in [9], [11],
and [10].

16

1.7 Outline

In chapter 2 we present some technical tools, justify minimization of the energy
functions in this thesis using MAP estimation of certain Markov random fields,
and give some examples of vision problems. Chapter 3 presents an algorithm for
an everywhere smooth prior. Chapter 4 describes several algorithms for piecewise
smooth priors. Chapter 5 adapts the algorithms of chapter 4 for a piecewise con-
stant prior, and develops an additional algorithm for a piecewise constant prior.
In the appendix we show that minimizing our energy function with the piecewise
constant prior is an NP-hard problem.

Chapter 2

Preliminaries

2.1 Baysian justification

This section uses Bayesian statistics to justify the energy minimization approach
for the energy functions that we use. We show that minimizing such an energy
function is equivalent to finding the maximum a posteriori estimate of a certain
Markov random field.

2.1.1 Markov Random Fields

Markov random fields provide a convenient prior for modeling spatial interactions
between pixels. Markov Random Fields were first introduced into vision by Ge-
man and Geman [20]. For a good introduction to MRFs in vision see Li [30] or
Winkler [43].

Let P be a set of sites, £ a set of labels, and A a neighborhood system on P
as defined in section 1.4. Let F' = Fy,..., F;, be a set of random variables defined
on P. Each F}, takes values in the label set £. A particular realization of the field
will be denoted by f = {f,|p € P}, which is also called a configuration of the field
F. As usual, P(F, = f,) will be abbreviated by P(f,). F' is said to be a Markov
random field if:

@) P(f)>0 VfeF
(ii) P(f;v|f7’—{;0}) = P(fp|pr)

where P — {p} denotes set difference, fy, denotes all labels of sites in N,, and F
denotes the set of all possible labelings.

The first property is needed for technical reasons to ensure that the joint prob-
ability can be uniquely determined by the local conditional probabilities (see [4]
for details). The second property states that a pixel is dependent directly only
on its neighbors. This is a step away from independence and allows us to model
spatial interactions between pixels.

17

18

MRFs are generalizations of Markov processes. While Markov processes can
model one dimensional interaction between sites, MRFs model two dimensional
interactions.

MRFs can be specified either by the joint distribution or by the local condi-
tional distributions. However local conditional distributions are subject to non-
trivial consistency constraints, so the first approach is most commonly used. The
Hammersley-Clifford theorem [4] gives a convenient way to specify an MRF. The
theorem proves the equivalence between MRFs and Gibbs random fields.

Before defining Gibbs random fields we need to define a clique. A set of sites

is called a clique if each member of the set is a neighbor of all the other members.
A Gibbs random field can be specified by the Gibbs distribution:

P(fy=2""exp (— > Vc(f)) :

ceC

where C is the set of all cliques, Z is the normalizing constant, and {V,(f)} are
functions from a labeling to real number, called the clique potential functions.

Thus to specify an MRF we need to specify the clique potential functions.
Let us specify an MRF as follows. For all cliques of size larger than two the
potential functions are zero, and for the cliques of size two the potential functions
are specified by

Vc(f) = V{p,q}(fpa fq)a

where Vi, 1 (fp, fg) were defined in section 1.4. This defines an MRF with the joint
distribution:

P(f) = z * €Xp (_ Z V{p,q}(fpafq)) .

{p.g}eN

2.1.2 Maximum a Posteriori Estimation

In general, the field F' is not directly observable in the experiment. We have to
estimate its realized configuration f based on an observation d, which is related to
f by means of the likelihood function P(d|f). The most popular way to estimate
an MRF is maximum a posteriori (MAP) estimation. The MAP-MRF framework
was popularized in vision by Geman and Geman [20], and has been studied by
many since (see for example Besag [5], Szeliski [38]).

MAP estimation consists of maximizing the posterior probability p(f|d). From
the point of view of Bayes estimation, the MAP estimate minimizes the risk under
the zero-one cost function.

Using Bayes rule, the posterior probability can be written as

_ p(d[f)p(f)
p(f|d) - p(d)

19

Thus the MAP estimate f* is equal to
arg max p(d| f)p(f)

We now need an appropriate model for p(d| f). Let d, be the observation at pixel
p and assume that p(d|f) = [I,cp p(dp|fp). This assumption holds, for example,
when the noise at each pixel is independent. Further assume that

p(dy|l) = Cp - exp(—D,(1)) for 1 € L,

where C), is the normalizing constant, and D, was defined in section 1.4. Then the
likelihood can be written as

p(d|f) o< exp (— > Dp(fp)) :

peEP

Writing out p(d) and p(d|f) with the above assumptions, we get

fr= argr}rle&g(exp (_ Z Vipay (fos fo) — Z Dp(fp))

{p.gteN pEP

which is equivalent to minimizing

E(f) = Z V{P,Q}(fpafq)'i'ZDp(fp)y

{p,qYeN pEP

the general form of the energy function we are minimizing.

2.2 Graph cuts

The algorithms presented in this thesis rely on graph cuts as a minimization tech-
nique. This section gives basic definitions and notation.

Let G = (V,€) be a weighted graph where V is the set of vertices and & is
the set of edges. V has two distinguished vertices called the terminals. Usually
one of the terminals is called a source and the other one is called a sink. A cut
C C € is a set of edges such that the terminals are separated in the induced graph
G(C) = (V,€ = C). In addition, no proper subset of C separates the terminals
in G(C). Consider for example the graph in figure 2.1(a). Circles denote terminal
vertices and squares denote the other vertices. Dashed edges in figure 2.1(b) form a
cut because there is no path between terminals if these edges are removed. Dashed
edges in figure 2.1(c) do not form a cut because if the dashed edge between vertices
p and ¢ is removed the remaining dashed edges still form a cut.

The cost of the cut C, denoted |C|, equals the sum of its edge weights. The
minimum cut problem is to find the cut with smallest cost. This problem can

20

NN

|1 P[] 4d |1 P[] 4d | P q
| | | | | | |
a) Original graph) Dashed edges form a cut) Dashed edges don’t
form a cut

Figure 2.1: Circles show terminal vertices. Squares show the rest of vertices.
Dashed lines show edges in the cut.

be solved very efficiently by computing the maximum flow between the terminals,
according to a theorem due to Ford and Fulkerson [18]. There are a large number of
fast algorithms for this problem (see [1], for example). The worst case complexity
is low-order polynomial; however, in practice the running time for the graphs we
construct is nearly linear.

2.3 Move spaces

Most of the minimization problems we consider in this work are NP-hard. We
approach these problems by finding a local minimum. However in discrete setting,
there are many ways to define a local minimum. A natural way to categorize these
local minima is through the concept of move spaces, see [32].

We define a local minimum is defined with respect to allowed moves. A move
is a pair of labelings (f, f') € F x F, where F is the set of all labelings. Let
M C F x F be a set of moves, which we also call a move space. If (f, f') € M,
then we will say that f is within one move from f’. A labeling f is a local minimum
with respect to move space M if E(f) < E(f') for any (f, f') € M. Obviously if
M = F x F then local minimum with respect to M is also a global minimum.

We construct algorithms which find a local minimum in several interesting move
spaces, which are discussed below. For any labeling f there are O(2") allowed
moves in each of these move spaces. Thus if a labeling is a local minimum with the

21

31111 31111
213|111 213|111
11213 |1 212311
11112 |3 212|213
(a) Labeling f (b) Labeling f’

Figure 2.2: (f, f') is a 1-2 relabel move
respect to these move spaces, it has to satisfy an exponential number of constraints.

Relabel move space

Moves in the relabel move space are conveniently indexed by a pair of labels. Let
{a, B} C L. A pair (f, f') is an o~ relabel move if there exists A C P such that

fp=a forpe A
fo=p8 forpeA
fo=1f, forpg A

An o-f relabel move just relabels some set of pixels from « to 5. An example of
a 1-2 relabel move is shown in figure 2.2. Here A consist of all pixels labeled 1 in
the bottom left corner. Finally, the relabel move space is

M= |J {(f.f)|(f.f)is an a-p relabel move} .
{a,8}CL

Swap move space

Moves in the swap space are called swap moves or simply swaps. Swaps are also
indexed by a pair of labels. Let {a, 8} C L. A pair (f, f') is a -0 swap if there
exists A C P and B C P such that

fp=cand f,=58 forpe A
fp=Band f,=a forpeB
fo=1 forp ¢ AUB.

This move is called o~ swap because f' is derived from f by switching labels in
A from « to 8 and labels in B from S to «.

22

311(1] 2 31111
213|111 213|111
212311 212311
11212 |3 212|213
(a) Labeling f (b) Labeling f’
Figure 2.3: (f, f) is a 1-2 swap move
311|112 3122] 2
213|111 313|122
212131 313|132
212|213 3333
(a) Labeling f (b) Labeling f’

Figure 2.4: (f, f') is a 1-jump move

An example of a 1-2 swap is shown in figure 2.3. This is a 1-2 swap where A
consist of one pixel in the bottom left corner and B consists of one pixel in the
upper right corner. Finally, the swap move space is

M= U {5 (1) is a a-f swap}
{a,8}CL

Notice that when B is empty then a-f3 swap is just -3 relabel. Thus relabel
move space is contained in swap move space, and it is properly contained in swap
move space because, for example, the swap move in figure 2.3 is not a relabel move.

Jump move space

Moves in the jump space are called jump moves or simply jumps. To define the
jump move space we need a one to one function i : £ — {0,1,...,k— 1}, where &
is the number of labels. We define this function because for the jump move space
we need the addition operator on labels, and in general labels do not have to be

23

3
2
2
2

Pl]|F

1
1
1
1

W|lrRr|Fr]|F
N A
e

1
1
3
2

Sl NI DN W]

=

(a) Labeling f (b) Labeling f

Figure 2.5: (f, f') is an l-expansion move

numeric quantities. Jumps are labeled by an integer ¢ € {0,1,...,k — 1}. A pair
(f, f') is an i-jump move if there exists A C P such that

h(f,) =h(fy) +i forpe A
h(fz’,) =h(f,) forpd¢ A

A jump moves increases h(f,) for some pixels p by some fixed amount 7. Notice
that ¢ can be negative. An example of a jump is shown in figure 2.4. This is a
1-jump move where A consists of all pixels labeled 2 in the lower left corner and
all pixels labeled 1. Since labels are natural numbers, A is the identity function in
this example. Finally, the jump move space is

M= U {(£.f) | (7.1") is an i-jump move}
i={-k+1,...,k—1}

(2.1)

where k is the number of labels.

Notice that the relabel move space is properly contained in the jump move
space, but the swap and jump move spaces are not contained in each other. For
example the swap move in figure 2.3 is not a jump move and the jump move in
figure 2.4 is not a swap move.

Expansion move space

Moves in the expansion move space are called expansion moves. Expansion moves
are labeled by a single label. Let o € £. A pair (f, f') is an a-expansion move if
there exists A C P and such that

fp=a forpe A
fo=1f, forpg A

This move is called a-expansion because f' is derived from f by switching all labels
in A to «, that is label « is “expanding”. An example of an expansion move is

(2.2)

(a) Original image (b) Image corrupted by noise
Figure 2.6: Example of an image restoration problem.

shown in figure 2.5. This is a 1-expansion move where A consist of all pixels in
the image. In this example we see that there are fewer moves required to assign a
large piece of the image the same label in the expansion move space compared to
the swap and jump move spaces. For a labeling in figure 2.3(a) we need to make 2
swaps or 2 jumps to get to the labeling in figure 2.5(b), whereas in the expansion
move space we need just one move.

Finally, the expansion move space is

M= {(f.f") | (f,f') is a-expansion move} .

acl

Notice that the expansion move space contains the relabel move space, but the
swap, jump, and expansion move spaces are not contained in each other, as shown
by the examples in figures 2.3, 2.4, and 2.5.

2.4 Example vision problems

In this section we give examples of two vision problems, image restoration and vi-
sual correspondence. We explain what these problems are, show how to state them
as labeling problems, and design energy functions to solve them. The performance
of the algorithms developed in this thesis will be tested on these problems.

2.4.1 Image restoration

Image restoration is a well studied problem in computer vision. It is simple to
formulate and it presents many of the same challenges as other vision problems,
such as presence of discontinuities. That is why many energy minimization algo-

25

(a) Left view of a scene (b) Right view of a scene (c) Disparity map

Figure 2.7: Example of a stereo problem.

rithms use it as a test. In addition, real images for this problem are abundant and
synthetic images with the desired properties are easy to generate.

In image restoration we are given an image corrupted by noise. The task is to
restore the original image. For example figure 2.6(a) shows an image consisting of
several regions of constant color. Figure 2.6(b) shows the same image corrupted by
white noise. The task is to restore image in figure 2.6(a) from image in figure 2.6(b).
This problem arises when the imaging camera is prone to significant noise.

In this case we take P to be the set of all pixels in the image, and L is the set
of all possible intensities. The energy function is

E(f) = Z Dy(fp) + Z Vivat (fps fo)-

{p.a}eN

We model Dy(f,) by
D;D(fp) = (Ip - fp)2
where I, is the observed intensity of pixel p. AV is the usual 4-neighbor system, and

we will try different types of Vi, 1(fp, fy) which allow smooth, piecewise constant,
and piecewise smooth restoration.

2.4.2 Visual correspondence

Visual correspondence is a fundamental problem in vision. Computation of stereo,
motion, optical flow, and other vision problems rely on computing visual corre-
spondence.

In visual correspondence we are given two images of the same real world scene.
A pixel in one image is said to correspond to a pixel in another image if the two
pixels are projections along lines of sight of the same physical scene element. The
problem of visual correspondence is to find pairs of such corresponding pixels.
If the images were taken simultaneously from different view points then visual
correspondence gives stereo depth of the scene. If images were taken from the
same point of view but at different times then visual correspondence gives motion
of the scene. The shift in coordinates between the corresponding pixels is called

26

disparity. In stereo the disparities are usually one dimensional quantities that
represent horizontal shifts due to the camera setup or image rectification. In
motion, disparities are usually two dimensional and represent shifts in vertical and
horizontal directions.

An example of visual correspondence for stereo is given in figure 2.7. Fig-
ure 2.7(c) shows the disparity map. The brighter the color, the closer the object
is to us. Notice that some pixels in the left image do not correspond to any pixel
in the right image. These pixels are shown in the brightest color in (c). Such
pixels are said to be occluded. In our experiments, we do not allow explicit com-
putation of the occluded pixels, so we assume that they do not exist and compute
correspondences for all pixels.

We need to convert visual correspondence into a labeling problem. We choose
one of the images to be primary and the other one secondary. We let P be the
set of pixels in the primary image. The task is to label each pixel in P with its
disparity. Thus the set of labels is the set of all possible disparities.

The energy function is

E(f) = Z Dy(fp) + Z Vivat (fps fo)-

{p.a}eN

N is again the 4-neighbor system, and we try different types of Vi, 43 (fp, fy) which
encode smooth, piecewise constant, and piecewise smooth priors. Our model for
D,(f,) is more complicated than for image restoration and is discussed in the
section below.

Choosing D, insensitive to image sampling

Let I, be the intensity of pixel p in the primary image and I, be the intensity of pixel
p in the secondary image. If pixels p and ¢ correspond, then I, and I, are assumed
to be similar. Thus (I, — I)? is frequently used as a penalty for deciding that p
and ¢ correspond. This penalty has a heavy weight unless I, ~ I;. However there
are special circumstances when corresponding pixels have very different intensities
due to the effects of image sampling. Suppose that the true disparity is not an
integer. If a pixel overlaps a scene patch with high intensity gradient, then the
corresponding pixels may have significantly different intensities.

When disparities are horizontal shifts, the effect of sampling is shown in fig-
ure 2.8. If disparities are integer quantities, pixel p in figure 2.8(a) corresponds
to pixel ¢ in figure 2.8(b). Pixel p overlaps the surface patch of intensity 100 and
the surface patch of intensity 200 in equal proportions, so its intensity averages
to 150. Pixel q overlaps the surface patch of intensity 100 by one quarter and the
surface patch of intensity 200 by about three quarters, so its intensity averages to
175. Thus the difference in intensities of p and ¢ is 25, and this is a very large
difference to be accounted for by just the camera noise.

27

pixel p pixel q
intensity intensity
150 175
intensity 100 intensity 200 intensity 100 intensity 200
(a) Discretization into pixels by (b) Discretization into pixels by
the left camera the right camera

Figure 2.8: The difference in intensities of corresponding pixels p and ¢ is 25 even
if there is no camera noise.

For stereo we use the technique in [6] to develop a D, that is insensitive to
image sampling. First we measure how well p fits into the real valued range of
disparities (d — §,d + }) by

— : 1
wad(p7 d) - d—%rgnavn;d—l—% |I;D Ip+w|

where p + x stands for a pixel which has coordinates of p shifted by disparity .
We get fractional values I,,, by linear interpolation between discrete pixel values.
For symmetry we also measure

Crev(p,d) = min |I, — I, 4]

p—5<e<pt;

Ctwa(p, d) can be computed with the following simple formulas which require a few
comparisons:

I —minlr prart T dpra Ipvai + 1ppa
pHd 2 ’ 2

II + II II + II
_ ! p+d+1 p+d “pt+d-1 p+d
U = max { ptd> 5 , 5

Ctuwi(p,d) = max {0, 1, —U,L — I}
Crev(p, d) can be computed similarly. The final measure is
C(p7 d) = min {wad(p7 d)7 CTev(p7 d)} y

which is squared to get

28

For motion we develop a technique similar to [6] except that disparities are now
two dimensional. First we measure how well p fits into the two dimensional range
of disparities (d — 3,d+3) x (d — 1, d+ 3) by

Cruwa(p,d) = min |\L, — I
d ’ d—1<z<d+i,d-1<y<d+i P Tpt(my)

Again we get fractional values I;, o) by linear interpolation between discrete pixel

values. For symmetry we also measure

Cren(p,d) = min L. — I, 4.

p—3<w<p+i,p—3<y<p+i

Crev(p, d) can be computed with a few comparisons:

I — min {Ip, Ip + I2p+(1,o) , I, + I2p+(o,1) , I+ L0+ Z,Jr(o,l) + Iy }

I = max {Ip, L+ Ivaoy Ip+ vy Ip+ v + Ipr) + Do, }

2 ’ 2 ’ 4

wad(p7 d) = maX{O, II)—I—d - U, L— I[I)—I—d}

Ctwa(p, d) can be computed similarly. The final measure is

C(p,d) = min {Crya(p, d), Cres(p, d) },

which is squared to get

Chapter 3

Everywhere smooth prior

In this chapter we design Eyp,00tn, Which encodes a smooth prior and find the exact
minimum of the resulting energy by computing a cut on a certain graph. Even
though discontinuities are not modeled in E,,,,0tn, good results on data with dis-
continuities are achieved.

3.1 Preliminaries

Eooth 18 going to express site interactions by a weighted linear function, i.e.

Vo) (fps fo) = wipay| fo — fol-

The graph of V{;, 4)(fp, f;) is shown in figure 1.5. As discussed previously, this func-
tion assigns larger penalty for larger differences in labels. The biggest disadvantage
of such a function is that the answers are over-smoothed around discontinuities,
as we will see on the image restoration example. Another disadvantage is that
labels have to be in a correspondence with a subset of integers in some meaningful
way. Thus this choice of V{p, o)(fp, fq) is inappropriate for motion, for example. In
motion labels are two dimensional quantities and cannot be put in correspondence
with integers so that linear penalties make sense.

An appropriate choice of coeflicients u, o1 which we discuss in section 3.3.1 can
help to reduce the problems around discontinuities. Results in section 3.3 show
significant improvement when uy, »’s are chosen carefully.

The choice of linear site interaction function yields the following energy to be
minimized

EL(f) = Z uipgtlfo — fol Z Dy(fp)- (3.1)
{p.ateN PEP
We will show that the global minimum, i.e. the configuration f that minimizes
EL(f), can be computed by solving a standard two terminal minimum cut problem
on a graph.

29

30

Figure 3.1: A subgraph of G corresponding to the pixels p and g.

3.2 Minimizing E(f)

In the proof we will assume without loss of generality that £ consists of consecutive
integers. Consider a graph G defined as follows. There are two terminals: the
source R and the sink S. For each pixel p we create a set of vertices pi,...,pr—1
(recall that k is the number of labels). We connect them by edges which we will
call ¢-links {#7,...,%7} where #{ = {R,p.}, t§ = {p;j—1,p;}, and t}, = {pr_1, S}.
These t-links are said to correspond to pixel p. For each pair of neighboring pixels
p,q and for each j € {1,...,k — 1} we create an edge called an n-link {p;,¢;}
with weight uy, gy Each ¢-link ¢ is assigned a weight K + Dy(l;) where K, is any
constant such that K, > (kK — 1) X4en;, U{p,q}- The structure of a subgraph of G
corresponding to a pair of neighboring pixels p and ¢ is shown in figure 3.1.

Definition A cut is called feasible if, for each pizel, it breaks exactly one corre-
sponding t-link.

Each feasible cut C corresponds to a configuration which is called f¢ in the
following way: for each pixel p we take f = I; if the t-link #} is cut by C.

Lemma 1 A minimum cut C on G must be feasible.

Proor: For each pixel p a cut on G will break at least one corresponding #-link
because the ¢-links corresponding to p form a path from source to sink. Suppose it
breaks more than one, that is suppose 2 and ¢} are cut. Then we can find a smaller
cut by restoring ¢ and breaking n-links {p;,q;} forallg e My, and 1 <j <k —1.

31

o

1
cut t-link :

Figure 3.2: All n-links between cut ¢-links have to be cut.

The cost of the cut will decrease at least by K, + Dp(ly) — (k — 1) Xgenr, Wip,g}
which is strictly positive due to our choice of K, [

Theorem 1 If C is a minimum cut on G, then f¢ minimizes Er(f) in (3.1).

ProoOF: It was already shown above that there is a one to one correspondence
between the set of feasible cuts and the set of all configurations f € F. It remains
to show that the cost of any feasible cut C satisfies |C| = A + EL(f¢), where A is
a constant independent of C. If C is feasible, the cost of cutting #-links is

> (K, + Do(£D)) - (3.2)

peEP

A cut does not sever n-links between vertices connected to the same terminal since
no proper subset of a cut separates terminals. Therefore for neighboring pixels p
and ¢ if C cuts #} and t] then all the n-links {py, g5} for min{i, j} < h < max{i, j}
are severed, as illustrated in figure 3.2. But there are exactly | f¢ — f¢| such n-links,
each weighing uy, 5. Thus the total cost of cutting n-links is

> upalfy = J4l (3.3)

{p.a}cén

32

Summing up 3.2 and 3.3, we get the cost of C

IC| = Z K, + Z Dp(f;?) + Z u{p,q}|f5 - qu|

peEP peEP {p.a}etn

where 3°,cp K is a constant independent of C. |

A graph with a similar structure was first suggested by Cox and Roy [37] for
a stereo correspondence problem. The difference between G and their graph lies
in the link weights. Our choice of edge weights guarantees the optimality prop-
erty of Theorem 1. In contrast, the weights use by Roy and Cox lack theoretical
justification. As a result, their algorithm does not appear to have any optimality
properties.

Ishikawa and Geiger in [24] describe a stereo algorithm and in [25] describe
an image segmentation technique that finds the global minimum of an energy
function closely related to Er(f). Their solution, developed independently before
ours, finds a minimum cut on a graph similar to G except for some details. For
example, their graph is directed and has some infinite capacity links, while we
employ an undirected graph.

Note that the graph with this structure can be used to encode other everywhere
smooth priors. For example if for each neighboring pair of pixels p and ¢ we create
n-links {p;, ¢;} for all 4,5 € {1,2,...,k—1}, then the neighbor interaction function
is quadratic:

V{p,q}(fpv fq) = (fp - fq)2-

However the quadratic neighbor interaction function will over-smooth the answer
around discontinuities even more than the linear neighbor interaction function.
Out of all neighbor interaction functions which we can encode using this graph
construction, the linear neighbor interaction function deals with discontinuities
most gracefully. Thus we have chosen not investigate the other possibilities.

3.3 Experimental results

3.3.1 Choosing uy,, to express contextual information

In this section we discuss how to choose coefficients ug, ,, to take advantage of
contextual information.

Visual correspondence

The intensities of pixels in the primary image contain information that can sig-
nificantly influence our assessment of disparities without even considering the sec-
ondary image. For example, two neighboring pixels p and ¢ are much more likely
to have the same disparity if we know that I(p) ~ I(q), where I(p) and I(q)

33

stand for the intensities of pixels p and ¢ in the primary image. Most methods for
computing correspondence do not make use of this kind of contextual information.
An exception is Poggio et al. [34], which describes a method based on MREF’s.
In their approach, intensity edges are used to bias the line process. They allow
discontinuities to form without penalty on intensity edges.

We can easily incorporate contextual information into our framework by allow-
ing u, g to vary depending on their intensities I, and I,. Let

Uip,q} = U(|1p — 1)) (3.4)

Each uy, 4 represents a penalty for assigning different disparities to neighboring
pixels p and ¢q. The value of the penalty u, 4 should be smaller for pairs {p,q}
with larger intensity differences |I, — I,|. In practice we use an empirically selected
decreasing function U(-). Note that instead of (3.4) we could also set the coefficients
Ufp,q according to an output of an edge detector on the primary image. For
example, u(,q can be made small for pairs {p,q} where an intensity edge was
detected and large otherwise. Segmentation of the primary image can also be
used.

The following example shows the importance of contextual information. Con-
sider the pair of synthetic images below, with a uniformly white rectangle in front
of a black background.

Primary image Secondary image

There is a one pixel horizontal shift in the location of the rectangle, and there is
no noise. Without noise, the problem of estimating f is reduced to minimizing
the smoothness term Ejg,o0tn(f) under the constraint that pixel p can be assigned
disparity d only if I, = I, ;.

If wp, g is the same for all pairs of neighbors {p, ¢} then E .04 (f) is minimized
at one of the labeling shown in the picture below. Exactly which labeling minimizes
Esmootn(f) depends on the relationship between the height of the square and the
height of the background.

34

Suppose now that the penalty uyy g3 is much smaller if I, # I, than it is if I, = I,
In this case the minimum of Fp,e0(f) is achieved at the disparity configuration
shown in the picture below. This result is much closer to human perception.

Image restoration

For image restoration one can choose coefficients uyp) similarly to visual corre-
spondence, although the motivation is somewhat less appealing. In image restora-
tion we observe only one image. Let I, denote the intensity of the observed image
at pixel p. We choose small values of u, gy for pairs {p, ¢} with very large intensity
differences |I, — I,|. If neighboring pixels have large intensity difference and the
noise is not too great, then these two pixels most likely have different intensities in
the true image. By choosing small value of u(y 41 we will greatly reduce the penalty
for assigning p and ¢ labels which are at large distance from each other. In all the
experiments we chose 1, 4} equal to some small constant if |1, — I,| < threshold
and ugp g1 equal to a larger constant otherwise.

3.3.2 Image Restoration examples

In this section we discuss image restoration results on artificially constructed im-
ages. We corrupt images with white Gaussian noise. Since we know the original
image, we can quantitively evaluate the results of our algorithm.

We experimented with constant u{p 4 ’s and with variable uy q’s. For variable
Ufp,q}'S We chose

A if |1, — I,| < 30
U =
{pa} 2 otherwise

35

(a) The original image. The (b) The noisy image. The dis-
intensities of rectangles are 65, tribution of noise at each pixel
105, 145, 185, and 225. is N(u=0,0% = 16).

Figure 3.3: Diamond images.

(a) Constant ug,q’s. Average (b) Variable ugyq’s. Average
absolute error 0.52. absolute error 0.06.

Figure 3.4: Results for image restoration example in figure 3.3

36

(a) Constant u, q’s (b) Variable ugp, q’s

Figure 3.5: Histogram corrected results for image restoration example in figure 3.3

Example 1

Figure 3.3(a) shows the original image consisting of several regions with constant
intensities. Figure 3.3(b) shows the same image corrupted by white Gaussian noise.
Figure 3.4(a) shows the results of our restoration algorithm when wu, ;3 = const for
the value of const which gives the best results (i.e. the chosen const minimizes the
mean absolute error). We have also experimented with variable u, q1; the results
for A\ which gives the best results (again the results which minimize the mean
absolute error) are shown in figure 3.4(b). Notice that results in figure 3.4(b)
are significantly better, as predicted. With variable weights, 96% of pixels were
restored correctly and 4% have errors +1. With constant weights, 70% of pixels
have no error, 20% have error +1, the rest have larger errors. To see that there is
over-smoothing with constant u, »’s and no smoothing with variable u, 4’s we
histogram corrected! both images with the results shown in figure 3.5.

Example 2

Figure 3.6 shows diamond images which consists of several pieces of smoothly
varying intensity in each piece. Figure 3.7 shows our results with variable ug, g’s.
We see that with variable weights we get pretty sharp intensity edges, and the
results within each shaded area vary pretty smoothly. 41% of pixels were found
exactly, 46% have +1 errors, and the rest of pixels have larger errors.

LThat is we chose a particular color scheme to make the smoothing effect visible.

37

(a) The original image (b) The noisy image. The dis-
tribution of noise at each pixel
is N(u=0,0% = 16).

Figure 3.6: Shaded diamond images.

Figure 3.7: Restoration results for image in figure 3.6. Average absolute error is
0.74

38

T a B O e——vy
po |-
I -

| I\

&
\
)

(a) Left image

(c) Our results (d) Normalized correlation

Figure 3.8: Real imagery with ground truth

3.3.3 Stereo examples

In this section we evaluate our method for several stereo pairs and compare them
with the result of normalized correlation.

We chose
A AL -1, <5
u =
{p.g} 2 otherwise

For normalized correlation we chose parameters which give best statistics when
the ground truth is available. If the ground truth is not available we choose pa-
rameters which appear to give the best results.

3.3.4 Real imagery with ground truth

Figure 3.8(a) shows the left image of a real stereo pair where the ground truth
is known at each pixel. We obtained this image pair from the University of
Tsukuba Multiview Image Database. Figure 3.8(b) shows the ground truth, and

39

| Method | % total errors | % errors > +1 | Running time
Our method 10.1 5.9 8 min
Normalized correlation 24.7 10.0 2 sec

Figure 3.9: Comparison of errors made by our method and normalized correlation

Figure 3.10: Details of disparity map in figure 3.8(a)

figures 3.8(c), (d) show the results of normalized correlation and our algorithm
with variable u, 1’s.

Comparison of the errors made by our algorithm and normalized correlation
are summarized in figure 3.3.4. Our algorithm does significantly better, we make
less than half of total errors and almost half of errors > +1 when compared to
normalized correlation. However discontinuities are still somewhat over-smoothed.
In figure 3.10 we show the enlarged results of our algorithm around the disparity
discontinuity between the lamp and the background. Instead of one large drop
in disparity between the lamp and background there are several smaller drops in
disparity.

The algorithm appears to be stable in the choice of parameters. Figure 3.3.4
summarizes the errors made for different values of parameter .

‘ A ‘ % of total errors ‘ % of errors > +1 ‘ Absolute average error

) 14.8 5.9 0.22
10 10.1 5.9 0.18
20 10.8 7.5 0.20
90 13.0 9.1 0.23

Figure 3.11: Error statistics for our method for different values of A

40

3.3.5 Other real imagery

Figures 3.12 and 3.13 show the results of our algorithm and normalized correlation
on standard benchmark image pairs. Our method correctly localized many details
in the images. Examples include the tree trunks and the stump in figure 3.12,
the front parking meter and the car in figure 3.13. Even fine details such as tree
branches in figure 3.12 and the thin pole in figure 3.13 can be discerned in the
output.

41

(a) Left image: size 255 by 233; 8 dis-
parities.

(b) Our answer. Running time 90 sec.

(c) Normalized correlation. Running
time 2 sec.

Figure 3.12: SRI tree sequence

42

(a) Left image: size 256 by 240; 15
disparities

(b) Our answer. Running time 3 min.

(c) Normalized correlation. Running
time 3 sec.

Figure 3.13: CMU meter sequence

Chapter 4

Piecewise smooth prior

In this chapter we develop minimization algorithms for energy functions which en-
code several types of quite general priors. When the neighbor interaction function
Vip.a (fps fg) is a semi-metric, we develop an algorithm which finds a local minimum
in the swap move space (section 4.3.1). If Vi, 0 (fp, fy) is a metric, we develop an
algorithm which find a local minimum in the expansion move space (section 4.3.2).
These types of Vipq1(fp, fg)’s allow us to encode a variety of piecewise smooth
priors into the smoothness term. We show in the appendix that minimizing these
energy functions is an NP-complete problem in general. We evaluate our meth-
ods on the problems of image restoration, stereo, and motion, and get promising
results.

4.1 Semi-metric neighbor interactions

Recall that the general form of the energy function we are minimizing is

E(f) = Z Dp(f;n) + Z V{;D,q}(fpafq)- (4-1)

peEP {p.g}eN

We call Vi, 1 (fp, fg) @ semi-metric neighbor interaction function if it satisfies the
following properties:

(i) V{p,q}(la l) 0
(ii) V{p,q}(llv l2) 0 (4-2)

(111) ‘/{p,q}(lh l2) ‘/{pyq}(lQ, ll)

We are going to denote the energy function in (4.1) with semi-metric Vj, 4’s by
Es(f). In the appendix we show that minimizing Fg(f) is an NP-complete prob-
lem by showing that minimizing even a special case of Eg(f) is an NP-complete
problem.

A wide variety of priors can be encoded with a semi-metric neighbor inter-
action function, but we have only used it for a piecewise smooth prior. Recall

v I

43

44

V{qu)(fp' fq)
V{p,q)(fp' fq)

0 fo- 1, 0 f,-f,

(a) Truncated quadratic (b) Truncated linear

Figure 4.1: Graphs of truncated quadratic and truncated linear Vi, ,\’s.

that to encode a piecewise smooth prior, Vi, o1 (fp, fy) should be nondecreasing in
| fo — f4l, and there should be a limit on how large Vi ;3 (fp, fg) can get. We can
encode virtually any piecewise smooth prior with semi-metric Vi, ,1’s, as long as
the assumptions in 4.2 are satisfied.

Figure 4.1 shows the graphs of two different Vy;, ;1’s we are going to use for the
experiments. We call V{, 5 in figure 4.1(a) a truncated quadratic:

Vi) U £) = { oy (Fo — 1?11, — il <C

Uip,1C? otherwise.

Here C' is some constant which sets the bound on the magnitude of Vi, ;1. We call
Vip,gy in figure 4.1(b) a truncated linear:

Vv{pyq}(fp,fq) — { u{p,q}|fp - fq| if |fp — fq| <C

Ufp,3C otherwise.

Again C is a constant limiting the value of Vi, ;3.

4.2 Metric neighbor interactions

In this section we are going to add two additional assumptions about Vi, o1 (fp, fo)
to the assumptions in 4.2:

Vipgp(li,le) > 0 ifly # D, (4.3)
V{p,q}(llal2)+V{p,q}(l2al3) > V{p,q}(l1,l3)-

Assumptions 4.2 and 4.3 imply that Vi, (-,) is a metric. For this reason we are
going to call such Vi, i1 (fp, fy) a metric neighbor interaction function, and denote
the energy function in 4.1 with metric Vi, »’s by Ex(f). In the appendix we show
that minimizing Fy,(f) is an NP-complete problem by showing that minimizing
even a special case of Ey(f) is an NP-complete problem.

45

1. Start with an arbitrary labeling f
2. Set success := 0
3. For each 7 in 7

3.1. Find f =argmin E(f') among f' within
one i-move of f

PN

3.2. If E(f)<E(f), set f := f
and success :=1
4. If success = 1 goto 2

Return f

(¢5]

Figure 4.2: Algorithm to find a local minimum in move space M.

The range of piecewise smooth priors we can encode with metric Vi, ’s is
more limited than with semi-metric Vj, ,1’s. For example the truncated quadratic
Vip.at (fps fg) in figure 4.1(a) is not a metric:

Let
Ulzy) = Ufyz} = Ufa,zp = 1
fa=1, fy=2, f,=3, and C=10.
Then

Vu{wyy}(fw’fy)+Vu{y,z}(fy7fz) =2<4 :Vu{w,z}(fwyfz)

However Vi, o1 in figure 4.1(b) is a metric:

Vu{w,y}(fwafy)"‘vu{y,z}(fyafz) = min {|f, — fy| + |fy — fal, C} > | fa—fi]

We are going to use the truncated linear Vi, ,’s for the expansion move space
algorithm.

4.3 Local energy minimization

In this section we are going to discuss the general structure of the algorithms to find
a local minimum of energy Fg(f) in the swap move space, and of energy Ey/(f) in
expansion move space. Finding a local minimum in the swap or expansion move
spaces is not an easy task, since there is an exponential number of moves possible
from each labeling f. Even to check that f is a local minimum is not trivial. Since
there is no difference in the general structure of the algorithms for Ey/(f) and
Es(f), we are going to refer to these energies by a common name E(f).

46

As shown in section 2.3, each of the above move spaces can be written as

M= UL | (F.F) s imove)},
(=
where 7 is some index set whose size depends on the number of labels.

The structure of the algorithm to find a local minimum in M is outlined in
figure 4.2. We start with some arbitrary labeling f. The idea is to keep searching
for a labeling f’ within one move from f which decreases the value of the energy
function, until no such f’ can be found. However instead of finding an arbitrary
such labeling f', we will find f which is within one i-move from f, and which gives
the lowest value of the energy function among all labelings f' within one i-move
from f. Such a move will be called an optimal ¢-move from f. When f is obvious,
we will just call it the optimal i-move. Finding an optimal ¢-move from f is the
crucial step of the algorithm and it is performed on line 3.1.

Thus the algorithm is greedy: for each fixed ¢ we make the best possible i-
move, if it decreases the value of the energy function. The greedy nature of the
algorithm will result in its fast convergence. Another advantage of being able to
find the optimal i-move efficiently is that it gives a fast check for a local minimum
in M: to check if f is a local minimum, it is enough to check that for all 7 the
optimal ¢+-move from f does not decrease the value of the energy function.

We will call a single execution of steps 3.1-3.2 an iteration, and an execution
of steps 24 a cycle. In each iteration we find an optimal i-move from the current
labeling f. Suppose this move has the form (f,f). If E(f) < E(f) we set f to
be the current labeling and say that a cycle is successful. Using the index set Z,
in each cycle we systematically walk over the move space in search for optimal
moves which give an improvement. That is in each cycle we perform an iteration
for every ¢ € 7 in a certain order that can be fixed or random. The algorithm
stops after the first unsuccessful cycle since no further improvement is possible.
The final labeling f is a local minimum in the move space M.

4.3.1 Swap move space

In this section we explain how to find an optimal swap move for the energy function
Es(f). Recall that the swap move space is indexed by a pair of labels {«, 8 }. Thus
given a labeling f and a pair of labels {«, 8}, the task is to find an optimal o-3
swap move from f. The technique is based on computing a cut on a certain graph
G = (V,E). Its structure will be dynamically determined by a labeling f and a
pair of labels {«, 8}.

This section is organized as follows. First we describe the construction of G.
We show that cuts C' on G correspond in a natural way to labelings f¢ which
are within one o~ swap move of f. Theorem 1 shows that the cost of a cut is
|C| = Es(f€) plus a constant. A corollary from this theorem states our main result
that the desired labeling f equals f¢ where C is a minimum cut on G.

47

Figure 4.3: An example of the graph G for a 1D image. Set of the pix-
els P = {p,q,v,w,r,s}. The neighborhood system consists of two pixel pairs
N ={{p,q},{r,s}}, and so there are n-links between pixels p, ¢ and 7, s.

The structure of the graph is illustrated in Figure 4.3. For legibility, this
figure shows the case of a 1D image. The structure of G will be as follows. Let
S={p| fp € {a, B8}}. The set of vertices includes the two terminals o and 3, as
well as S. Thus, the set of vertices is

V = {a,f}US.

Each pixel p € S is connected to the terminals @ and S by edges t; and tg,
respectively. For brevity, we will refer to these edges as ¢-links (terminal links).
Each pair of pixels {p,q} C S which are neighbors (i.e. {p,q} € N) is connected
by an edge ey, 43 which we will call an n-link (neighbor link). Thus the set of edges
consists of n-links and #-links

€= (U {tﬁytﬁ}) U U ewa
pES {p.a}eN
p,g€S

The weights assigned to the edges are as shown below:

| edge | weight | for |
t? Dp(a) + quégp V{p,q}(av fo) | pES
t;g Dp(ﬂ)"'zq;é\gp V{;D#I}(/Bafq) peS

AYEN
€{p.q} Vip.ar (e) {I;)z;fs

48

Lemma 2 Any cut C on G must sever (include) exactly one t-link for every pizel
peS.

PROOF: Suppose both ¢ ¢ C and tg ¢ C. Then there is a path between the
terminals through ¢-links & and ¢5. Now suppose ¢& € C and 5 € C. If there is a
path from p to terminal o in G(C) = (V,€ — C), then C — &7 is still a cut. If there
is a path from p to terminal 8 in G(C) = (V,€ — C), then C — 5 is still a cut. If
there is no path from p to either terminals, then both € — ¢ and C — tg are still
cuts. [|

Lemma 2 gives an obvious way to define a labeling f¢ corresponding to a cut C on
g,
a ityel for pesS
=8B iftheC for pes (4.4)
fp for peP,pégS.
In other words, if pixel p is in S then p is assigned label o when the cut C separates

p from the terminal «; similarly, p is assigned label 8 when C separates p from the
terminal 8. If pixel p is not in S then we keep its initial label f,.

Lemma 3 A labeling f€ corresponding to a cut C on G is one -3 swap away from
the wnitial labeling f.

PROOF: (f,f€) is a a-f swap since we get f€ from f by switching some pixels in
f which are labeled « to S and by switching some pixels in f which are labeled 3
to . [|

It is easy to show that a cut C severs an n-link e, ,» between neighboring pixels
on G if and only if C leaves the pixels p and ¢ connected to different terminals.
Formally

Property 1 For any cut C and for any n-link eg gy

s

If t3,t9€C then epq €C.

) prlq
b) If tg,tg €C then epq €C.
c) If tg,tg‘ €C then egq €C.
)

S

If tg‘,tg €C then epq €C.

Properties (a) and (b) follow from the requirement that no proper subset of C
should separate the terminals. Properties (c) and (d) also use the fact that a cut
has to separate the terminals.

These properties are illustrated in figure 4.4. The following lemma is a conse-
quence of property 1 and equation 4.4.

49

a T ta a a a L ta
& tq & g & \\tq
loeut o |
L Qpa Q.

P af | P q

Loeut

'.—‘V """"""""""" /.4"

B R

tf (i . 1
Property 1(a) Property 1(b) Property 1(c,d)

Figure 4.4: Properties of a cut C on G for two pixels p,q € N connected by an
n-link eg, 1. Dotted lines show the edges cut by C and solid lines show the edges
remaining in the induced graph G(C) = (V,€ —C).

Lemma 4 For any cut C and for any n-link egp

|C N e{p,q}| = V{p,q}(fzfach)-

PROOF:
Ccase 1: tg,tg € C. Then e,y € C, alcld tcherefore, ICNegpq| =10 =0. By 44
fy =aand f; =, and by 4.2 Vi, 1 (f5, f7) = 0=|CNeyql-

Case 2: 2,15 € C. In this case, e, g € C and, therefore, [C Neg g | = |epq| =

V{p,q}(aw@)- By 4.4, f,? =« and ch = f.
The proofs of the other two cases are similar to the first two cases. n

Note that this proof assumes that V satisfies all three properties in 4.2, i.e.

Vipay(a, @) = Vip,gp (8, 8) = 0 and Vg1 (a, B) = Vip,p (B, @) 2 0.
Lemmas 3 and 4 plus property 1 yield

Theorem 1 There is a one to one correspondence between cuts C on G and la-
belings that are one «-f swap from f. Moreover, the cost of a cut C on G s
IC| = Es(f€) plus a constant.

PROOF: We have already shown that a cut C corresponds to a labeling f¢ which
is one a-f swap from f in lemma 3. The severed ¢-links uniquely determine the
n-links that must be cut. Therefore for any two distinct cuts C; and C, there is a

a0

t-link ¢’ such that ¢’ € C; but ¢’ ¢ Co. Therefore & # f¢ which establishes the
desired one to one correspondence.
The cost of a cut C is

|C| = Z |Cﬂ{t§‘,t£}| + Z |Cme{p,q}|- (4-5)
pes b

Note that for p € S we have

3 te] ifteeC
cn{ty, o {

5] iftf ecC
= Dp(fz?)"' Z V{p,q}(fgafq)-

geEND
q€S

Lemma 4 gives the second term in 4.5. Thus, the total cost of a cut C is

Cl = 2 D)+ X Vealhy: fo)

peES peES 9N
q¢S

+ Z V{;v,q}(fych)

{p.q}eN
{p.q}CS

= ZDP(fzf) + Z V{p,q}(57ch)'

pES {p,a}eN
porgq €S

This can be rewritten as |C| = E(f¢) — K where

K = Y Dyfy) + > Valfef)

S {p.g}eN
pe {p,q}NS=0

is the same constant for all cuts C. [
Our main result is the corollary from the above theorem:

Corollary 1 The optimal «-8 swap from f is f = fC where C is the minimum
cut on G.

4.3.2 Expansion move space

In this section we explain how to find an optimal expansion move for energy E(f).
Recall that the expansion move space is indexed by a single label. Thus given a
labeling f and a label « the task is to find an optimal c-expansion move from f.
The technique is based on computing a cut on a certain graph G = (V,€). Its
structure will be dynamically determined by a labeling f and a label «.

o1

Figure 4.5: An example of the graph G for a 1D image. The set of pixels in the
image is P = {p, ¢, 7, s}. The neighborhood system is N' = {{p, ¢}, {q, 7}, {r, s}}.
fp # fq and f, # fs therefore there are auxiliary nodes @ and b between neighbor
pairs {p, ¢} and {r, s}. f; = fr and so there is no auxiliary node between ¢ and r.

This section is organized as follows. First we describe the construction of G for
a given f and a. We show that cuts C on G correspond in a natural way to labelings
f€ that are within one a-expansion move of f. Then, based on a number of simple
properties, we define a class of elementary cuts. Theorem 2 shows that elementary
cuts are in one to one correspondence with the set of labelings that are within one
a-expansion of f, and also that the cost of an elementary cut is |C| = Ep(f€).
A corollary from this theorem states our main result that the desired labeling f
equals f¢ where C is a minimum cut on G.

The structure of the graph is illustrated in Figure 4.5. For legibility, this figure
shows the case of a 1D image. The set of vertices includes the two terminals «
and &, as well as all pixels p € P. In addition, for each pair of neighboring pixels
{p,q} € N such that f, # f, we create an auziliary vertex ag, 4. We call these
vertices auxiliary because they do not correspond to pixels in P but provide an
auxiliary structure to achieve the desired goal. Thus, the set of vertices is

V={cju{atuPu| U apg
{p,a}eN
Fo#fa
Each pixel p € P is connected to the terminals o and & by edges 5 and 13,
correspondingly. We will refer to these edges as t-links (terminal links). Each pair
of neighboring pixels {p, ¢} € N such that f, = f, is connected by an edge e g
which we will call an n-link (neighborhood link). For each pair of neighboring

52

pixels {p,q} € N such that f, # f, we create a triplet of edges

Epgy = {e{p,ah €{a,a}s tf} ’

where a = ayp,q) is the corresponding auxiliary node. The n-links ey 43 and efq,q}
connect pixels p and g to ay, g and the ¢-link t connects the auxiliary node agy g
to the terminal &@. Finally, we can write the set of all edges as

pEP {p.a}eN {p,a}eN
fo#fq fp=fq

& = (U{tﬁ,tﬁ}) U U Epar | U U €{p,q}

The weights assigned to the edges are shown in the table below.

| edge | weight | for |
to 00 p st fr=ca
to Dy(fp) p st f#a
te Dy () peP

epa} | Vipay(fpr @)
elagt | Vimay (o fo) | {p,a} €N, f # 1y
tg V{p,q}(fpv fq)

ewar | Voot (@) | {0, g} €N, =1,

Lemma 2 which states that a cut must sever exactly one ¢-link for every pixel
obviously also holds for this graph construction. This lemma gives a natural la-
beling f¢ corresponding to a cut C on G. Formally,

a if t9 el
Vp € P. (4.6)

fo if 5 eC

In other words, a pixel p is assigned label « if the cut C disconnects p from the
terminal « and, p is assigned its old label f, if C disconnects p from the terminal
@. The terminal « stands for the new label and the terminal & stands for the old
labels assigned to pixels in the initial labeling f.

Lemma 5 A cut C on G corresponds to a labeling f¢ which is one a-ezpansion
away from the original labeling f.

93

PROOF: A cut C cannot sever t-links tg‘ for any pixel p s.t. f, = « due to the
infinite cost. Thus, f]f = « for any p which has label o in f. All the other pixels
either retain their old label or get assigned the label « in fg. [

If p and ¢ are neighboring pixels (that is {p,q} € N) such that f, = f, then
we have property 2.

Property 2 For any cut C and for any n-link egp g -

a) If t5,t3€C then epq ¢C.
b) If t3,t2€C then epq ¢C.
c) If t5,t3€C then epq €C.
d) If t5,12€C then epq €C.

The property above is proved exactly like property 1 in section 4.3.1 with 3
replaced by a.

Lemma 6 If {p,q} € N and f, = f, then any cut C on G satisfies

N e{p,q}| = V{p,q}(fzfach)-

Proor: The equation follows from property 2 above, equation 4.6, and the edge
weights. -

Consider now the triplet set of edges £, 41 corresponding to a pair of neigh-
boring pixels {p, ¢} € N such that f, # f,. In this case, there are several different
ways to cut these edges even when the pair of severed ¢-links at p and ¢ is fixed.
However, a minimum cut C on G is guaranteed to sever the edges in £ 5 in a
unique way depending on what ¢-links are cut at the pixels p and gq.

The rule for this case is described in property 3 below. Assume that a = a,q
is an auxiliary node between the corresponding pair of neighboring pixels.

Property 3 A minimum cut cut C on G satisfies:

a) If t5,t2€C then CNEyg =0.
b) If t3,t2€C then CNEyg =1,
c) If t5,t3€C then CNEyg = efpa)
d) If [tg‘ €C then CNE&ypg = €faq)-

Property(a) results from the fact that no subset of C is a cut. The others follow
from the minimality of |C| and the fact that egp q}, €fa,q} and £ satisfy the triangle
inequality so that cutting any one of them is cheaper than cutting the other two
together. These properties are illustrated in figure 4.6.

o4

Property 3(a) Property 3(b) Property 3(c,d)

Figure 4.6: Properties of a minimum cut C on G for two pixel p,q € N such that
fp # fq- Dotted lines show the edges cut by C and solid lines show the edges in
the induced graph G(C) = (V,€ - C).

Lemma 7 If {p,q} € N and f, # f, then the minimum cut C on G, satisfies

|C N g{p,q}| = V{p,q}(g,ch)

ProOOF: The equation follows from the property 3 above, equation 4.6, and the
edge weights. For example, if 13,12 € C then [C N Ep | = (13| = Vip,g3 (fp, fo)- At
the same time, 4.6 implies that f = f, and f$ = f,. |

Note that the correct penalty Vi, is imposed whenever f§ # f¢. This is
exactly what the auxiliary pixel construction was designed for. We had to develop
a special trick for the case when the original labels for p and ¢ do not agree (f, # f,)
in order to get the same effect that lemma 6 establishes for the simpler situation
when f, = f,.

Property 2 holds for any cut, and property 3 holds for a minimum cut. However,
there can be other cuts besides the minimum cut that satisfy these two properties.
See for example the cut in figure 4.7. We will define an elementary cut on G to be
a cut that satisfies properties 2 and 3.

Theorem 2 Then there is a one to one correspondence between the set of all
elementary cuts on G and the set of all labelings within one «a-expansion of f.
Moreover, for any elementary cut C we have |C| = Ep(f€).

ProOOF: We first show that an elementary cut C is uniquely determined by the
corresponding labeling f¢. The label f{ at the pixel p determines which of the ¢-
links to pisin C. Property 2 shows which n-links ef,, ;1 between pairs of neighboring

5%}

Figure 4.7: The cut is shown in dashed lines. It satisfies properties 2 and 3 but is

not the minimum cut on this graph. The minimum cut is C = {t7,15,%}.

pixels {p, ¢} such that f, = f, should be severed. Similarly, property 3 determines
which of the links in £, gy corresponding to {p,q} € N such that f, # f, should
be cut.

We now compute the cost of a elementary cut C, which is

|C| = Z|Cﬂ{t§‘,t§}| + Z |Cme{p,q}| + Z |Cmg{p,q}|- (4-7)
per Gy Gy

The cost of the cut ¢-links is
o] ifteec _{ Dy(a) if fS=a

P . Dy(f5).
13 iftdecC Dy(f,) if fS=f, ’

p

cn{t. 6 = {
Therefore, the first term in 4.7 is

> len{t, i} =3 Do(fy)-

peEP peEP

Lemmas 6 and 7 hold for elementary cuts, since they were based on properties 2
and 3. Then lemmas 6 and 7 give us the second and the third terms in 4.7. Thus,
the total cost of a elementary cut C is

|C| = ZDp(f5)+ Z V{p,q}(fgach):EM(fc)-

peP {pateN

96

Our main result is a simple consequence of this theorem, since the minimum
cut is an elementary cut.

Corollary 2 Let C be the minimum cut on G. Then the optimal labeling f =
argmin Ey(f') among f' within one a-expansion of f is given by f = fC.

4.3.3 Running time

We now discuss the running time of the swap and expansion move space algorithms.
The swap and expansion algorithms perform k% and k iterations in a cycle, respec-
tively. On each iteration we find a minimum cut on a graph of size O(n), and due
to the special structure of this graph, the time to find a cut is effectively linear.

Without making any assumptions, we do not have a good bound on the num-
ber of cycles it takes the algorithm to converge. Now assume that D,(f,) and
Vip.at (fp» fq) are independent of the image size. Initialize an algorithm with the
following labeling f°:

f, = arg min Dy(1) (4.8)

Without loss of generality we can assume f; = 0 because minimizing

E(f) = Z Dy(fp) + Z V{p,q}(fp’fq)

pEP {p.a}
is equivalent to minimizing
E(f) = Z D;)(fp) + Z Vipay (fps f0)
pEP {p.a}
where
D;,(fp) = D,(f) — argrlréiLnDp(l).
Let

= max
{p,a}CP, {l1)l2}CL
This is a constant independent of image size. Thus the algorithm starts with the

energy E(fs) S Z{p,q}e,/\f C.
Let u be the smallest possible difference between coefficients D, and Vi, q.

That is

V{;v,q} (llv l2)-

u = min |a — b,
a,bes

where
S = {‘/{P#I}(l?ll) | l7ll € '67 pE P} U {Dp(l) | le »C, pE P} .

It is obvious that u is a constant independent of n.

At each cycle except the last one, the energy must decrease by at least wu.
Therefore the algorithm must converge in Y-, 1en o cycles, which is O(n). This is
a rather large bound, however in all the experiments we performed the algorithms
converged in 2-8 cycles (see section 4.4).

a7

4.3.4 Optimality properties

In this section we prove that a local minimum in the expansion move space is within
some factor depending on Vi, 53 (fp, f) from the optimal solution. For notational
convenience we will write E instead of Ejy.

Let f¢ be a local minimum in the expansion move space, and let f* be the
optimal solution. Fix some o € £ and let

Poa={peP|f;=0c}
We can produce a labeling f’ within one a-expansion move from f¢ as follows:

f,:{a if p e Py,

p f; otherwise

The key observation is that since f€ is a local minimum in the expansion move
space,

E(f) < E(f). (4.9)

Let S be a set of pixels and pairs of neighboring pixels. If p, ¢ denote pixels, define
Es(f) as a restriction of the energy to the set S.

Formally,
Es(f) = Z Dy(fp) + Z V{p,q}(fp’fq)'

peS {p.q}es

Let I* be the set of pixels and pairs of neighboring pixels contained inside P,, B¢
be the set of pairs of neighboring pixels on the boundary of P,, and O¢ be the set
of pixels and pairs of neighboring pixels contained outside of P,.

Formally,

I*={p|pePatU{{p.q} | {p,q} € N and {p,q} C Pu},

B* ={{p,q} | {p,q} € N and {p,q} NPy # B and {p,q} N (P — Pa) # 0},
O*={plp¢PutU{{pq} | {p,q} €N and {p,q} C (P —Pu)}.
Obviously,
I*uB*UO*={p|pePtu{{p,q} | {p,q} € N},

and so we can break E(f¢), E(f%), and E(f*) into energies restricted to sets I¢,
B%, and O*:

E(f¢) = Ere(f) + Epa (/) + Eou(f9), (4.10)
B(f") = Era(f") + Epe (') + Eoa "), (4.11)
E(f*) = Era(f*) + Ege (f*) + Eoa(f°). (4.12)

98

Let
¢ = max (méxl#ba Vipar (b l2)> . (4.13)
{pateN \ ming,er Vip,gy (I3, la)
The following three facts hold:
Eoe(f') = Eoa(f°), (4.14)
Era(f") = Er(f*), (4.15)
Ega(f') < cEga(f*). (4.16)
Equations 4.14 and 4.15 are obvious, and equation 4.16 holds because
cEpa (f*) = Z C‘/{p,q}(f;7 f;) > Z ClIIlliélﬂ ‘/{P#I} (l17 l2) >
{p.g}eBe {p.ateBe 7

\% l,1
mf.inl,leE {P:‘I}(L, 2) min Vv{pyq}(h,b) >
{pgteBe Ty heL V{p,q}(ll’l?) fbael

> Z max Vi, (lh,l2) > I;leag_cEBa(f) > Ege(f).

{p.q}eB= fub el

Substituting 4.10 and 4.11 into 4.9 we get:

>

Era(f€) + Epa(f?) + Eoa(f*) < Era(f') + Epa(f') + Eoa(f’)
Using fact 4.14, the above equation simplifies to:
E1a(f€) + Epa(f€) < Era(f') + Epa(f").

Finally we use facts 4.15 and 4.16 to get a bound on the part of the energy restricted
to I¢ U O%

Era(f®) + Epa(f®) < Era(f*) + cEpa(f7). (4.17)
To get the bound on the total energy, we need to sum equation 4.17 over all labels
a€ L:

S (Bra(f%) + Epa (7)) < Y (Bra(f*) + cEpa (1)) (4.18)

acl acl

Let B = Uyeo B®. Observe that for every {p,q} € B, E, 4 (f°) appears twice
on the left side of 4.17, once in Ep=(f¢) for « = f; and once in Ega(f¢) for
o = fr. Similarly every Eg, ,(f*) appears 2c times on the right side of 4.17.
Therefore equation 4.18 can be rewritten to get the bound of 2¢:

E(f) + Ep(f*) < E(f*) + (2¢ = 1) Ep(f*) < 2¢E(f"),

and so
E(f¢) < 2cE(f*).

99

Note that Kleinberg and Tardos [29] develop an algorithm for minimizing Ej/
which also has optimality properties. In case of the Potts Vi, ;1 discussed in the
next chapter their algorithm has a bound of 2, the same bound as we have. In case
of a general metric Vj, 1 they have a bound of O(logkloglog k). Their algorithm
uses linear programming, which is impractical for the large number of variables
occurring in computer vision.

4.4 Experimental results

In this section we present experimental results for image restoration, stereo, and
motion. To assess how well our algorithms perform energy minimization, we com-
pare the energy achieved by our algorithms to the energy produced by simulated
annealing. To assess how well our algorithms solve the visual correspondence
problem, we compare the results to normalized correlation, the standard visual
correspondence method.

Dy(fp)’s are chosen as explained in 2.4.2. We experiment with truncated linear
and truncated quadratic Vi, ,’s for the swap algorithm and we use truncated
linear Vi, ,1’s for the expansion algorithm. For normalized correlation we chose
the parameters which appear to give the best results. For simulated annealing we
compared a number of annealing methods and chose the one that worked the best,
that is the one that appears to give faster convergence. It turned out to be the
“Metropolis-Heatbath” version with truncated logarithmic cooling schedules. To
give it a good starting point, simulated annealing was initialized with the input
image for the image restoration problem, and with results of normalized correlation
for the stereo problem.

4.4.1 Image restoration

Figure 4.8(a) shows an image consisting of large constant-intensity regions which
are gradually shaded, as if there were a light source to the left of the image. This
image corrupted by N (0, 100) noise is shown in figure 4.8(b). The energy computed
by our swap algorithm with truncated quadratic Vi, ,’s is compared with the en-
ergy computed by simulated annealing as a function of time in figure 4.9. Notice
that the horizontal axis representing time is on the logarithmic scale. Our algo-
rithm produces very low energy after the first iteration, while annealing decreases
the energy very slowly. The energies obtained are summarized in figure 4.10. Al-
though simulated annealing eventually achieves a slightly better energy, it takes an
extremely long time to do so. Figure 4.11 shows the final results of our algorithm
and simulated annealing.

60

(a)Original image (b) Image corrupted by N(0,100)

Figure 4.8: An instance of image restoration problem.

¢ Simulated annealing ® Our method

100,000
90,000
80,000
70,000
60,000
50,000
40,000
30,000
20,000
10,000

0

Energy

1 10 100 1000 10000 100000 1000000
Time

Figure 4.9: Performance comparison of swap method and simulated annealing for
the problem of stereo.

61

‘ E ‘ Esmooth ‘
our results annealing | our results annealing
First cycle, ¢t = 36 1577 55892 637 9658
Last cycle, ¢t = 389 1472 15215 576 8475
Annealing, t = 417317 — 1458 — 571

Figure 4.10: Summary of total energy and smoothness energy produced by our
algorithm and simulated annealing.

(a)Our method

Figure 4.11: An instance of image restoration problem.

(b) Simulated annealing

62

(b) Normalized correlation

(c) Expansion algorithm (d) Swap algorithm
Figure 4.12: Tree image

4.4.2 Stereo

In this section we compare the performance of the swap and expansion algorithms
when Vi, 1’s are modeled by a truncated linear function.

Figure 4.12(a) shows the left image of a stereo pair, figures 4.12(b),(c) and
(d) show the results of normalized correlation, expansion and swap algorithms
respectively. Notice that there is a large number of disparities for this stereo pair.
The ground consists of a large piece of smoothly varying disparity, but the tree
on the foreground form sharp discontinuities with the background. Our methods
do quite well in preserving sharp discontinuities while recovering smoothly varying
background disparity surface. Figure 4.13 compares the performance of expansion
and swap algorithms against each other. The swap algorithm converges faster, but

63

12000000 ~
L

10000000 \\

8000000 \

6000000 —e— Expansion algorithm
\ —m— Swap algorithm

4000000

2000000

Energy

0

0 100 200 300 400

Time in seconds

Figure 4.13: Comparison of swap and expansion algorithms.

gy ;
e " ! i

;

2

4

L |)

ok Rl P . | ~

(a) First image (b) Horizontal movement (c) Vertical movement

Figure 4.14: Moving cat

the expansion algorithm achieves a slightly lower energy in the end.

4.4.3 Motion

Figure 4.14(a) shows one image of a motion sequence where a cat moves against
moving background. This is a difficult sequence because the cat’s motion is non-
rigid. Figures 4.14(b) and (c) show the horizontal and vertical motions detected
with our expansion algorithm. Notice that the cat has been accurately localized.
Even the tail and parts of the legs are clearly separated from the background
motion.

Chapter 5

Piecewise constant prior

In this chapter we develop minimization algorithms for an energy whose smooth-
ness term expresses a piecewise constant prior. The piecewise constant prior can
be viewed as an important special case of the piecewise smooth prior, and even in
this case the minimization problem is NP-complete. For the special case of a piece-
wise constant prior, we show that finding the minimum of the energy is equivalent
to finding a minimum cost multiway cut on a certain graph (section 5.2). The
multiway cut is a generalization of the standard two-terminal graph cut problem.
Finding a minimum cost multiway cut is an NP-complete problem for which there
are good approximation algorithms. We apply our own swap and expansion al-
gorithms developed in chapter 4 to minimize the energy function in this chapter.
The solution given by the expansion algorithm is within a factor of two from the
optimal solution. In addition, in section 5.3.2, we develop a new algorithm that
finds a local minimum in the jump move space. Even though piecewise constant
priors model simpler interactions than piecewise smooth priors, we show that it
can be successfully used for problems where the number of labels is not large.

5.1 Preliminaries

The piecewise constant smoothness prior is the simplest smoothness prior that
allows discontinuities. It can be modeled by the following neighbor interaction
function:

Vipay = Upq - 0(fp # fo)

_ [1 if f(p) # f(@),
oo # 1) = {0 otherwise.
This neighbor interaction function gives penalty u(, 4 for assigning different labels
to two neighboring pixels. Notice that this penalty does not depend on the labels
assigned, as long as they are different. The graph of this function is shown in
figure 1.7.

where

64

65

The resulting energy function is:

Ep(f) =2 Dp(fp) + > uppa-0(fp # fo) (5.1)

peP {p.g}eN

When ug, 4 = const, the smoothness energy in 5.1 comes from a particular
MRF, and it is called Potts energy. We call the smoothness energy in 5.1 the
generalized Potts energy. Minimizing Ep(f) is an NP-hard problem, as will be
shown in the appendix.

5.2 Multiway cut

We now show that the problem of minimizing the generalized Potts energy Ep(f)
can be solved by computing a minimum cost multiway cut on a certain graph.

Consider a graph G = (V,) with non-negative edge weights, along with a set
of terminal vertices £ C V. A subset of edges C C £ is called a multiway cut if
the terminals are completely separated in the induced graph G(C) = (V,€ — C).
We will also require that no proper subset of C separates the terminals in G(C).
The cost of the multiway cut C is denoted by |C| and equals the sum of its edge
weights. The multiway cut problem is to find the minimum cost multiway cut [14].
The multiway cut problem is a generalization of the standard two-terminal graph
cut problem.

We take V = P U L. This means that G contains two types of vertices: p-
vertices (pixels) and [-vertices (labels). Note that [-vertices will serve as terminals
for our multiway cut problem. Two p-vertices are connected by an edge if and only
if the corresponding pixels are neighbors in the neighborhood system A. The set
En consists of the edges between p-vertices, which we will call n-links. Each n-link
{p,q} € Ey is assigned a weight

Wip,g} = U{p,q}- (5.2)

Each p-vertex is connected by an edge to each l-vertex. An edge {p,(} that
connects a p-vertex with a terminal (an [-vertex) will be called a ¢-link and the
set of all such edges will be denoted by £7. Each t-link {p,l} € £r is assigned a
weight

wpy = Kp — Dy(l), (5.3)

where K, > max; D,(l) is a constant that is large enough to make the weights
positive. The edges of the graph are & = €5 U £. Figure 5.1 shows the structure
of the graph G.

We now establish a one-to-one correspondence between multiway cuts and la-
belings. As an illustration, figure 5.2 shows an induced graph G(C) = (V,€ — C)
corresponding to some multiway cut C on G given in figure 5.1. It is easy to see
that in general there should be exactly one ¢-link to each p-vertex in the induced

66

terminals (l-vertices or labels)

pixels
(p-vertices)

Figure 5.1: An example of the graph G = (V,€) with terminals £ = {1,...,k}.
The pixels p € P are shown as white squares. Each pixel has an n-link to its four
neighbors. Each pixel is also connected to all terminals by ¢-links (some of the
t-links are omitted from the drawing for legibility). The set of vertices V =P UL
includes all pixels and terminals. The set of edges £ = Ex U &7 consists of all
n-links and ¢-links.

Figure 5.2: Graph induced by a multiway cut

67

graph G(C): if there were two or more ¢-links to a pixel, C would not separate the
corresponding terminals; while if there were no ¢-links, a proper subset of C would
separate the terminals. This yields an isomorphism between the set of all multiway
cuts and the set of all possible labelings f. A multiway cut C corresponds to the
labeling f€ which assigns the label [to all pixels p which are ¢-linked to the [-vertex
in G(C). It is clear that the n-link between p and ¢ is included in C just in case
f€(p) # f¢(q): if such an n-link were not included, C would not be a cut; while if
the n-link were in C, but f¢(p) = f(q), then a proper subset of C would be a cut.

Theorem 2 If C is a multiway cut on G, then |C| = Ep(f€) plus a constant.

PRrROOF: The cost of the cut C is the sum of the weights of the n-links and the
t-links in C. If f¢(p) # fC(q) then a pair of neighboring pixels {p,q} contributes
Wip,q} to the sum of the n-links in C which is

> wpe - 3(fp) # fC(a))- (5.4)

{p.g}ctn

The sum of the ¢-links is

> 2 wen =2 X (Kp=Dy()) =3 > K—3 3, Dyl

peEP €L peEP €L peEP leL peEP €L
1#£C(p) 1#£C (p) 1#£C (p) 1#fC(p)

This can be re-written as

(IL]=1)- 2 Kp = 3> Dpl) + 3. Dp(f5(p)). (55)

peP peEPleL peP

Only the last term depends on C; the other terms are constants. So by adding the
costs in (5.4) and (5.5), we obtain Ep(f¢) from (5.1) plus a constant. |

Corollary 1 IfC is a minimum cost multiway cut on G, then f¢ minimizes Ep.

When the number of terminals is 2, the multiway cut problem reduces to the
standard graph cut problem which can be solved efficiently. Thus when there are
just 2 labels, the exact minimum of Ep(f) can be found. This result was first
reported by Greig et al. in [21].

While the multiway cut problem is known to be NP-complete if there are more
than 2 terminals, there is a fast approximation algorithm [14]. This algorithm
works as follows. First, for each terminal [€ L it finds an isolating two-way
minimum cut C(I) that separates [from all other terminals. This is just the
standard graph cut problem. Then the algorithm generates a multiway cut C =
Uil C (1) Where lpq, = argmaxge,s |C()| is the terminal with the largest cost
isolating cut. This “isolation heuristic” algorithm produces a cut which is optimal
to within a factor of 2 — % However, the isolation heuristic algorithm suffers from
two problems that limits its applicability to our energy minimization problem.

68

e The algorithm will assign many pixels a label that is chosen essentially ar-
bitrarily. Note that the union of all isolating cuts U;cC(l) may leave some
vertices disconnected from any terminal. The multiway cut C = Uy, . C({)
connects all those vertices to the terminal [,,,,.

e While the multiway cut C produced is close to optimal, this does not imply
that the resulting labeling f€ is close to optimal. This is due to the constant
that appears in theorem 2; this results from equation (5.3), where we needed
to add constants to each ¢-link to ensure that the weights were positive. As
a result, the isolation heuristic algorithm does not produce a labeling whose
energy is within a constant factor of optimal.

5.3 Local energy minimization

5.3.1 Swap and expansion move space

The neighbor interaction function Vi, g1 (fp, fg) = upq10(fp # f4) obviously sat-
isfies the assumptions in (4.2) and (4.3). Therefore we can apply the swap and
expansion move space algorithms for Ep. Moreover, we can simplify the weights
on t-links for the swap move space algorithm, since

Z V{p,q}(av fo) = 2}\; V{p,q}(/@afq)-

geEND
q¢S q€S

Recall that S = {p | f, € {e, 5}}. The simplified edges are in the table below:

| edge | weight | for |
to Dy(a) | pe S

t;g Dy(B) |p€ S

The expansion move space algorithm gives a solution within a factor of two
from the optimal solution. In section 4.3.4 we showed that the expansion algorithm
produces an answer within a factor of 2¢ from the optimal, where ¢ is defined by
(4.13):

¢ = max (méxllﬂzeﬂ V{p’q}(ll’h)) .
{p.a}eN mlnl3¢l4€£ ‘/{p,q}(l37 l4)
For Ep(f)

llgéll?gﬂ Vipag (i, 12) = l?g}iléﬂ Vipgy (s, 1) = ugp gy,

and so ¢ = 1.

69

5.3.2 Jump move space

In this section we explain how to find a local minimum of Ep in the jump move
space. The structure of the algorithm is in figure 4.2. We just have to explain how
to perform step 3.1, that is how to find an optimal jump move.

Recall that for the jump move space there is a function b : £ — {0,1,...,k—1},
where k is the number of labels. The jump move space is indexed by an integer
i€{-k+1,—-k+2,...,k—1}. To simplify the notation, we will assume without
loss of generality that £ = {0,1,...,k — 1} and h is the identity function. Thus
we will refer to h(l) as just .

Given a labeling f and an integer 4, the task is to find an optimal ¢-jump move
from f. Like the previous methods, the technique is based on computing a cut
on a certain graph G = (V,). Its structure will be dynamically determined by a
labeling f and an integer :.

This section is organized as follows. First we describe the construction of G for
a given f and 7. We show that cuts C on G correspond in a natural way to labelings
f¢ which are within one i-jump move of f. Then, based on a number of simple
properties, we define a class of elementary cuts. Theorem 3 shows that elementary
cuts are in one to one correspondence with the set of labelings that are within one
i-jump of f, and also that the cost of an elementary cut is |C| = Ep(f€) plus a
constant. A corollary from this theorem states our main result that the desired
labeling f equals f¢ where C is a minimum cut on G.

The structure of the graph is illustrated in figure 5.4. The set of vertices V
contains two terminals 0 and 1, and all pixels p € P. In addition, for each pair
of neighboring pixels {p, ¢} € N such that |f, — f,| = |i|, we create an auxiliary
vertex aqpqy. Thus, the set of vertices is

V = {0}u{ltuPu U apa
Py A

Before describing the rest of the graph, we need a few definitions. Recall that in
the algorithm for the swap move space, the label assigned to a pixel p depends only
on the terminal from which p is disconnected: if p is disconnected from terminal
o, it is assigned label « and if p is disconnected from the terminal 3, it is assigned
label 3. In the algorithm for the expansion move space the label assigned to pixel
p does not depend on p if p is disconnected from «. However the label does depend
on p if p is disconnected from &; i.e. in this case p is assigned its old label f,. In the
algorithm for the jump move space, the label assigned to a pixel will always depend
on this pixel no matter which terminal it is disconnected from. We construct two
sets, L1 and Ly, such that if p is disconnected from terminal 1, it will be assigned
a certain [€ L;; and if p is disconnected from terminal 0, it will be assigned a
certain [€ L.

70

We design Ly and £, so that LU{—1} = Lo U L,. Here —1 is a special symbol
which corresponds to a dummy label. We ensure that £y N L£; = {—1}, and so
Ly —{-1} and £; — {—1} split £ into two disjoint sets.

To define £y and £; we introduce a binary function loc : £ — {0,1} defined as
follows. For [€ L there exists the unique decomposition [= ¢qi + r where r and ¢
are integers such that r < 1.

loc(l) 0 if qiseven
oc(l) =
1 otherwise.

Having defined the function loc,
Lo={l]loc(l) =0}u{-1}

and
Ly ={l]loc(l) =1} U{-1}.

Lemma 8 Letl € L. If0 <1+ <k —1, then loc(l) # loc(l + 7).

Proor: Letl = qi+r be the unique decomposition of [where r and ¢ are integers
such that 7 < 4. Then [+4 = (¢ + 1)i + r is the unique decomposition for [+ 1.
Obviously one of ¢ and ¢ + 1 is odd and the other one is even, and so we have the
required result. n

Now we define the functions go : L - LU {—1} and g, : L = LU {-1}. Ifp
is disconnected from terminal 0, p is assigned label go(f,), and if p is disconnected
from terminal 1, it is assigned g, (f).

fp if fp € ﬁo
gO(fp): Joti it fp+i€eLly

-1 otherwise.
Similarly,
Jo if fp€e Ly
al(fy) =% fo+ti iff,+iely
-1 otherwise.

Notice that due to Lemma 8, gy and g, are well defined.

Now we can describe the rest of the graph. Each pixel p € P is connected to the
terminals 0 and 1 by ¢-links tg and tzl,, correspondingly. Each pair of neighboring
pixels {p,q} € N such that f, = f; is connected by an n-link eg, 4. For each
{p,q} € N such that |f, — f,| = |i] we create a triplet of edges

g{l’y‘I} = {e{p,a}7 €{a,q}> ta}

71

t, is connected to ‘ conditions ‘
1 fp = fy+iandloc(f,) =0
0 fp = fy+iandloc(f,) =1
1 fo=fp+iandloc(f,) =0
0 fo=fp+iandloc(f,) =1

Figure 5.3: Table of connections for edge 2,

Figure 5.4: An example of the graph G for a 1D image. The set of

pixels in the image is P = {p,q,7,s,v}. The neighborhood system is
{{p,q},{q,7}, {r, s}, {s,v}}. Also assume that |f, — f,| = |i| and
|fs — fu| = |i|, therefore we create two auxiliary nodes a and b between neigh-

bor pairs {p, ¢} and {s,v}. f, = fr so there is an n-link between ¢ and r. Since
fr # fs and | fr — fs| # |i| there is neither an n-link nor auxiliary pixel construction
between pixels r and s.

72

where a = ayp g is the corresponding auxiliary node. The n-links ey, .1 and eg, g
connect pixels p and g to ap gy and the ¢-link ¢, connect the auxiliary node agy g
to terminal 0 or 1 as summarized in the table in figure 5.3.2.

Finally, we can write the set of all edges as

& = (U{tg7t§}) U U Epar | Y U €{p,q}

pEP {p.a}eN {p,q}eN
| fp—Ffql=ldl fo=fq

The weights assigned to the edges are shown in the table below. Here S =
{p|0< f,+i<k—1}. That is S is the set of pixels with labels which can be
increased by ¢ and still be in the legal range. We define D,(—1) = oo, that is the
cost of assigning a dummy label is infinitely high.

| edge | weight | for all |
tg Dp(go(fp))
peP
tp Dy(91(f3))

€ipa}s E{ag}, ANd Lo | Ufpg} {p,a} €N, |fp— fol = i

€{p.q} U{p,q} g} €N, fo=1,

Any cut C on the graph G must sever (include) exactly one t-link for any pixel
p € P, as proved in lemma 2. This defines a natural labeling f¢ corresponding to
a cut C on G. Formally,

fc— gO(fp) lf thC
P ey if thec

Lemma 9 A cut C on G corresponds to a labeling f¢ which is one i-jump away
from the original labeling f.

PROOF: ¢y(f,) and g¢,(f,) are defined to be f,, f, + i, or —1. Due to the infinite
penalties for assigning label —1, p will be assigned either f, or f,+¢ in the labeling
/¢, which means (f, f€) is an i-jump.]

Vp e P. (5.6)

We state property 4 and lemma 10 without a proof since their proofs are very
similar to property 2 and lemma 6.

Property 4 Let p and g be neighboring pizels such that f, = f,. For any cut C
and for any n-link eg, g1

s

If t),t9€C then epq &C.
If t,t,€C then egpq ¢C.
If t),t, €C then epq €C.
If t;,, tg € C then egpq €C.

=

o

N
e N N N

73

Lemma 10 If {p,q} € N and f, = f, then any cut C on G satisfies

C g
ICNewpa| = Voolfys fo)-
We state properties 5 and 6 without proofs; the proofs are similar to property 3.

Property 5 Let p and q be such that | f,— f4| = |i|, and a = ayp g be the auziliary
pizel between p and q. If t, connects a to terminal 0, then a minimum cut cut C
on G satisfies:

s

N N N’ N

If t,t9€C then CNEpg =t
If t,t;e€C then CNE&pgy =0
If 1.t €C then CNEpg = €pa}-
If tzl,, tg €C then CNE&pg = €faq)-

oo

S

Property 6 Let p and q be such that |f,— f4| = |i|, and a = a3 be the auziliary
pizel between p and q. If t, connects a to terminal 1, then a minimum cut cut C
on G satisfies:

s

N N N N

If t,t9€C then CNEpg =0.
If t,t,€C then CNEpg =t
If t),t,e€C then CNEpg = efq-
If t,tg€C then CNEpg = €pa}-

oo

S

Lemma 11 follows from figure 5.3.2, properties 5, 6 and is proven similar to
lemma, 7.

Lemma 11 If {p,q} € N and |f, — f,| = |i| then the minimum cut C on G,
satisfies

|C n g{p,q}| = V{p,q}(fzfa ch)

Property 4 holds for any cut, and properties 5 and 6 holds for a minimum
cut. However, there can be other cuts besides the minimum cut that satisfy these
two properties. We will define an elementary cut on G to be a cut that satisfies
properties 4, 5, and 6.

Theorem 3 There is a one to one correspondence between the set of all elementary
cuts on G and the set of all labelings within one i-jump of f. Moreover, for any
elementary cut C we have |C| = Ep(f€) plus a constant.

PROOF: Similarly to the proof of theorem 2, one to one correspondence between
the set of all elementary cuts and the set of all labelings within one i-jump of f
follows from properties 4, 5, and 6.

74

We now compute the cost of a elementary cut C, which is

|C| = Z|Cﬂ{tg7t;)}| + Z |Cme{p,q}| + Z |Cmg{p,q}|- (5-7)
pep e |f£ap—’qf}q€|f| il

Dp(g0(fp)) ifty€C
C 0 41 — p p p = D C)

Therefore, the first term in (5.7) is
dolen{t, 6, =>"Dy(f;)
3 3

Lemmas 10 and 11 hold for elementary cuts, since they were based on properties 4,
5, and 6. Then, lemmas 10 and 11 give us the second and the third terms in (5.7).
Thus, the total cost of a elementary cut C is

ZD fc)+ Z V{p,q}(fpaf + Z V{;v,q} fp7fc) =

{p,q}eN {p,q}eN
| fo— fql=lil fp=fq
=20+ X Va5)~ X Veall5) =
{p.ateN {p,a}eN
fo# fq
| fp—Fql#l4l
C C pC
:ZDP(-fp) + Z V{p,q}(fpqu) - Z U{p,q} =
p {p.ateN {p,q}eN
fo# fq
| fp—Ffql #l4l

= Ep(f€) + const

Our main result is a simple consequence of this theorem, since the minimum
cut is an elementary cut.

Corollary 3 Let C be the minimum cut on G. Then the optimal labeling f =
argmin Ep(f') among f' within one i-jump of f is given by f = f€.

5.4 Experimental results

In this section we present experimental results for image restoration and stereo.
To assess how well our algorithms perform energy minimization, we compare the
energy achieved by our algorithms to the energy produced by simulated annealing.
To assess how well our algorithms solve the visual correspondence problem, we
compare the results to normalized correlation, the standard visual correspondence

75

method. Since we found the performance of our swap, jump, and expansion algo-
rithms to be very similar, we show the results only for the expansion algorithm
everywhere except for the real stereo pair with the ground truth in section 5.4.2.
For this stereo pair we perform extensive comparisons of the swap, jump, and
expansion move space algorithms against each other.

For our method the coefficients u(, 41’s vary as proposed in section 3.3.1. In

particular, we chose
A it -1, <5
u =
{pa} 2\ otherwise

Dy(fp)’s are chosen as explained in 2.4.2. For normalized correlation we chose the
parameters which give the best statistics when the ground truth is available (i.e.
minimizing the total number of errors); when the ground truth is not available
we chose the parameters which appear to give the best results. For simulated
annealing we used the “Metropolis-Heat bath” version with truncated logarithmic
cooling schedules. To give it a good starting point, simulated annealing was initial-
ized with the input image for the image restoration problem and with the results
of normalized correlation for the visual correspondence problem. In contrast it
appears empirically that the initial labeling for our method is not important. The
speed improves by about 1.5 when we initialize with a good starting point, but the
final answers differ by less than 2% of pixels for any starting point we have tried.

5.4.1 Image restoration
Example 1

In this section we test the expansion move space algorithm on the image restoration
problem shown in figure 3.3. Notice that this image consists of several regions of
constant intensity, and thus it is appropriate for piecewise constant restoration.

The comparison with simulated annealing for A = 40 is shown in figure 5.5.
Starting from the initial energy of about 800,000 our method converges to the
energy of 201,860 in 90 seconds. Most of the progress occurs in the first 30 seconds.
In 120 seconds simulated annealing reduces the same initial energy to the energy
of about 406,000, and from this point on it makes very little progress in the 15
hours that we ran it. Even though our algorithm finds a local minimum, its value
is two times better than what simulated annealing finds in 15 hours. Clearly if
speed is important, then our algorithm is superior to simulated annealing for this
restricted class of energy functions.

To assess how well our algorithm solves the image restoration problem we com-
pare the labeling computed by our method with the labeling of the original scene.
Figure 5.6 shows the restored images for several values of A. For A = 0.1 the
restored image is fairly close to the original image. For A = 3 the restored image is
almost exactly the same as the original image. For A = 20000 the restored image

76

—e— Annealing —@— Our method

1000000

800000 \\
600000 .

>
o
o e
S 400000 . o e e
200000
O T T
1 10 100 1000 10000 100000

Time in seconds

Figure 5.5: Performance comparison on the image restoration task. The data
points for our method correspond to the 4 cycles the algorithm takes until conver-

gence.

(¢) A = 20000

Figure 5.6: Restored images for various values of A.

Mean absolute error in pixels

Percentage of pixels

77

4.5

3.5

25

15

0.5

100

10 100 1000 10000
Lambda

Figure 5.7: Mean absolute error.

| +/- 1 errors O Larger errors

90

80 -
70
60 -
50
40 -
30 -
20 -
10 -

— N~ Lo Ln o o o o o o
— (qV] < o] o o o o
— o o o
— (90] N~
Lambda

Figure 5.8: Percentage of pixels with nonzero error.

78

(a)Piecewise constant prior (b) Piecewise smooth prior

Figure 5.9: Images restored with piecewise constant and piecewise smooth priors.

has almost no discontinuities. Figure 5.7 plots mean absolute error versus A, and
figure 5.8 plots the percentage of absolute errors versus A. As expected, for small
values of A the algorithm performs poorly because it over emphasizes the data. For
large values of A\ the algorithm performs poorly due to over-smoothing. However
for a large range of A the algorithm finds the original labeling almost exactly. This
shows that our algorithm is robust in the choice of parameters.

Example 2

In this section we test our algorithm on the image restoration problem shown in fig-
ure 4.8. Notice that in this case, the image consists of several regions with intensity
smoothly varying inside each region. A piecewise constant prior is not appropri-
ate for this problem. The results of our algorithm are shown in figure 5.9, along
with the results from section 4.4.1 where we applied our algorithm for a piecewise
smooth prior to this example. As expected, the piecewise constant restoration does
not work as well as piecewise smooth restoration; there is a significant “banding”
effect if figure 5.9(a) compared to figure 5.9(b).

5.4.2 Stereo
Real imagery with ground truth

The left image of the real stereo pair with known ground truth is shown in
figure 3.8(a). Figure 5.10(a) shows the ground truth for this stereo pair. Fig-
ures 5.10(b),(c), and (d) show the results of swap, expansion, and jump algorithms

79

(e) Normalized correlation (f) Simulated annealing

Figure 5.10: Real imagery with ground truth

80

100000
90000
80000 (\
70000 \
60000 \ ! .
50000 —a— Expansion algorithm

—— i
40000 - \ Swap algorithm

30000 \\ \’\A —8— Jump algorithm

20000 1] goge h

10000
o T T T T 1
1 10 100 1000 10000 100000

Time in seconds

—e— Annealing

—

*

Smoothness energy

Figure 5.11: Performance comparison of expansion, swap, and jump algorithms
with simulated annealing for the problem in figure 3.8(a).

for A = 20. Figures 5.10(e) and (f) show the results of normalized correlation and
simulated annealing.

The table below summarizes the errors made by the algorithms. In approxi-
mately 20 minutes simulated annealing reduces the total errors normalized corre-
lation makes by about one fifth and it cuts the number of +1 errors in half. It
makes very little additional progress in the rest of 19 hours that we ran it. Our ex-
pansion, swap, and jump algorithms make approximately 3 times fewer +1 errors
and approximately 5 times fewer total errors compared to normalized correlation.

All of our algorithms perform approximately the same. The observed slight
difference in errors is quite insignificant (less than one percent). At each cycle the
order of labels to iterate over is chosen in a random manner. Another run of the
algorithms might give slightly different results where expansion algorithm might do
better than the other two algorithms. In general we observed very slight variation
between different runs of an algorithm. However the difference in the running time
is significant. On average the expansion algorithm takes 3 times less to converge
than the swap algorithm and 7 times less to converge than the jump algorithm.

algorithm % total errors | % of errors > +1 | running time
expansmn a 1%omthm 7.6 2.1 106 sec
swap algorithm 7.0 2.0 300 sec
jump algorithm 7.0 2.0 734 sec
simulated annealing 20.3 2.0 1200 sec
normalized correlation 24.7 10.0 d sec

Figure 5.11 shows the graph of E,n versus time for our algorithms versus
simulated annealing. Notice that the time axis is on the logarithmic scale. We do

81

A % of total errors | %of errors > +1 | Absolute average error
1 26.6 4.5 0.40
3 13.0 4.5 0.27
10 7.0 2.3 0.15
20 7.6 2.1 0.15
30 7.9 2.3 0.17
20 8.8 2.3 0.18
100 10.4 2.9 0.21
500 16.3 8.2 0.37

Figure 5.12: Table of errors for the expansion algorithm for different values of .

not show the graph for E4,, because the difference in the Fg,, term all algorithms
achieve is insignificant, as expected from the following argument. Most pixels in
real images have nearby pixels with very similar intensities. Thus for most pixels
p there are a few disparities d for which D,(d) is approximately the same and
small. For the rest of d’s, D,(d) is quite large. This latter group of disparities
are essentially excluded from consideration by energy minimizing algorithms. The
remaining choices of d are more or less equally likely. Thus the Eg,, term of the
energy function has very similar values for our methods and simulated annealing.
Our methods quickly reduce the smoothness energy to around 16, 000, while the
best simulated annealing can produce in 19 hours is around 30, 000, nearly twice
as bad.

The expansion algorithm gives a convergence curve significantly steeper than
the other curves; in fact the expansion algorithm makes 99% of the progress in the
first iteration. The jump algorithm reduces the energy most slowly out of all our
algorithms.

The algorithms appear to be quite stable in the choice of parameter A. For
example the table in figure 5.12 gives the errors made by the expansion algorithm
for different choices of A. For small A the algorithm makes a lot of errors because
it overemphasizes the data, for large values of A the algorithm makes a lot of errors
because it overemphasizes the prior. However for a large interval of A values the
results are good.

Overall there does not appear to be a significant difference in the results given
by our algorithms, but the expansion algorithm converges significantly faster than
the other algorithms.

Other real imagery

Figures 5.13 and 5.14 show the results on other standard benchmark image pairs.
Simulating annealing was run until it was making very slow progress. Our method
was run for two cycles. We show the running times for all algorithms and the final
energies for our algorithm and simulated annealing.

82

(a) Left image (b) Normalized correlation: 2 seconds

._-_--l =or (] = 2. 3 o e

(c) Annealing: Eg, = 211,508, (d) Our result: Ey, = 207,672,
Egmootn, = 87,215; 530 sec Enootn = 66,680; 55 seconds

Figure 5.13: The CMU meter image

83

(a) Left image (b) Normalized correlation: 15 seconds

. - o -
& . c -

- i

LR = T p—— & i T Bt e o
(c) Annealing: FEgu, = 1,010,140, (d) Our result: Eyu, = 874,620,
Egnootn = 1,137,840; 7745 sec Eootn = 528,270; 577 seconds

Figure 5.14: The shrub image

84

(a)Piecewise constant prior (b) Piecewise smooth prior
Figure 5.15: Results with piecewise constant and piecewise smooth priors.

Our method correctly localized many details in the images. Examples include
the front parking meter and the car in figure 5.13, and the sign in the figure 5.14.
Even fine details such as the thin pole on the right in figure 5.13 can be discerned
in the output.

Stereo pairs in figures 5.13 and 5.14 do not have many disparities. However if
the number of disparities is larger, Ep does not do as well as Ey or Ej; which were
discussed in chapter 4. For example figure 5.15 compares the results Ep and Ey
give for the stereo pair in figure 4.12. Notice that there are fewer disparities found
in figure 5.15, since the piecewise constant prior tends to produce large regions
with the same disparity.

Appendix

In this appendix we show that minimizing the Potts energy Ep(f) in (5.1) is an
NP-complete problem. This also implies that minimizing En(f) and E(f) in
chapter 4 are NP-complete problems.

In section 5.2 we showed that the problem of minimizing the energy Ep(f) in
(5.1) over all possible labelings f can be solved by computing a minimum multiway
cut on a certain graph. In this appendix we make the reduction in the opposite
direction. Specifically, for an arbitrary fixed graph G = (V, £) we will construct an
instance of minimizing Ep(f) where the optimal labeling f* determines a minimum
multiway cut on G. This will prove that a polynomial-time method for finding f*
would provide a polynomial-time algorithm for finding the minimum cost multiway
cut, which is known to be NP-hard [14]. This NP-hardness proof is based on a
construction due to Jon Kleinberg.

The energy minimization problem we address takes as input a set of pixels P,
a neighborhood relation A and a label set £, as well as a set of weights u(, 4 and
a function D,(l). The problem is to find the labeling f* that minimizes the energy
Ep(f) given in equation (5.1).

Let G = (V, £) be an arbitrary weighted graph with terminal vertices {¢1,...,#;} C
V and edge weights wy, 1. We will do the energy minimization using P = V),
N =€, and ugpg = Wipqy- The label set will be £ = {1,...,k}. Let K be a
constant such that K > Ep(f*); for example, we can select K to be the sum of all
Wip,q1- Our function Dy(I) will force f*(¢;) = j; if p = t; is a terminal vertex,

0 1=y
D = ’
P 0 { K otherwise.

For a non-terminal vertex p all labels are equally good,
VI Dy(l) =0.

We will define a labeling f to be feasible if the set of pixels labeled j by f forms
a connected component that includes ¢;. Feasible labelings obviously correspond
one-to-one with multiway cuts.

Theorem 3 The labeling f* is feasible, and the cost of a feasible labeling is the
cost of the corresponding multiway cut.

85

86

ProoF: To prove that f* is feasible, suppose that there were a set S of pixels
that f* labeled j which were not part of the component containing ¢;. We could
then obtain a labeling with lower energy by switching this set to the label of some
pixel on the boundary of 5. The energy of a feasible labeling f is

> upg - 6(F(p) # f(9),

{p.a}eN

which is the cost of the multiway cut corresponding to f. [

This shows that minimizing the Ep(f) on an arbitrary P and N is intractable.
In computer vision, however, P is usually a planar grid, and combinatorial prob-
lems that are intractable on arbitrary graphs sometimes become tractable on the
plane or grid.

We now sketch a proof that the energy minimization problem is intractable
even when restricted to a planar grid. The reduction is from a special case of the
multiway cut problem, where G is a planar graph with degree 11 and all the edges
have weight 1, which is shown to be NP-hard in [14]. We first must embed G in
a grid of pixels, which happens in two stages. In the first stage we convert G into
a planar graph of degree 4. In the second stage we embed this graph in the grid
by using a method given in [26]. This embedding can be done in polynomial time;
after it is done, each vertex v € G corresponds to a connected set of pixels S(v) in
the grid, and the adjacency relationships among vertices in G has been preserved.

The proof now proceeds along the same lines as theorem 3, except for three
subtleties. First, we need to ensure that for every vertex v all pixels in S(v) are
given the same label. We address this by making the edge weights K between
adjacent pixels in S(v). Second, when we embed G in the grid, there will be
gaps. We can solve this by adding additional “grid pixels”, which D forces to have
the extra label 0 (D will prevent non-grid pixels from having label 0 by making
D,(0) = K) and by taking the edge weights between grid pixels and non-grid pixels
to be one. The cost of a feasible labeling will be the cost of the corresponding
multiway cut plus a constant. Third, the constant K > Ep(f*) must be now
chosen more carefully.

Bibliography

[1]

2]

[10]

[11]

K. Ahuja, Thomas L. Magnati, and James B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, 1993.

A. Amini, T. Weymouth, and R. Jain. Using dynamic programming for solv-
ing variational problems in vision. IEEE Transactions on Pattern Analsis and
Machine Intelligence, 12(9):855-867, 1990.

S.T. Barnard. Stochastic stereo matching over scale. International Journal
of Computer Vision, 3:17-32, 1989.

J. Besag. Spatial interaction and the statistical analysis of lattice systems.
Journal of the Royal Statistical Society, Series B, 36:192-236, 1976.

J. Besag. On the statistical analysis of dirty pictures (with discussion). Jour-
nal of the Royal Statistical Society, Series B, 48(3):259-302, 1986.

Stan Birchfield and Carlo Tomasi. A pixel dissimilarity measure that is insen-
sitive to image sampling. IEFE Transactions on Pattern Analsis and Machine
Intelligence, 20(4):401-406, 1998.

A. Blake. Comparison of the efficiency of deterministic and stochastic algo-
rithms for visual reconstruction. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 11(1):2-12, 1989.

A. Blake and A. Zisserman. Visual Reconstruction. MIT Press, Cambridge,
MA, 1987.

Y. Boykov, O. Veksler, and R. Zabih. Markov random fields with efficient ap-
proximations. In IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 648-655, 1998.

Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization
via graph cuts. In International Conference on Computer Vision, 1999.

Y. Boykov, O. Veksler, and R. Zabih. A new algorithm for energy minimiza-
tion with discontinuities. In International Workshop on Energy Minimization
Methods in Computer Vision and Pattern Recognition, 1999.

87

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

88

V. Cerny. A thermodynamical approach to the traveling salesman problem: an
efficient simulation algorithm. Preprint, Institute of Physics and Biophisics,
1982.

P.B. Chou and C.M. Brown. The theory and practice of bayesian image
labeling. International Journal of Computer Vision, 4(3):185-210, 1990.

E. Dahlhaus, D.S. Johnson, C.H. Papadimitriou, P.D. Seymour, and M. Yan-
nakakis. The complexity of multiway cuts. In ACM Symposium on Theory of
Computing, pages 241-251, 1992.

H. Derin and H. Elliott. Modeling and segmentation of noisy and textured
images using Gibbs random fields. IEEE Transactions on Pattern Analsis and
Machine Intelligence, 9(1):39-55, 1987.

P. Ferrari, A. Frigessi, and P. de Sa. Fast approximate maximum a posteriori
restoration of multicolour images. Journal of the Royal Statistical Society,
Series B, 57(3):485-500, 1995.

P. Ferrari, m. Gubitoso, and E. Neves. Reconstruction of gray-scale images.
Available from http://wuw.ime.usp.br/ pablo, 1997.

L. Ford and D. Fulkerson. Flows in Networks. Princeton University Press,
1962.

D. Geiger and A. Yuille. A common framework for image segmentation. In-
ternational Journal of Computer Vision, 6(3):227-243, 1991.

S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the

Bayesian restoration of images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 6:721-741, 1984.

D. Greig, B. Porteous, and A. Seheult. Exact maximum a posteriori esti-
mation for binary images. Journal of the Royal Statistical Society, Series B,
51(2):271-279, 1989.

T. Hofmann, J. Puzicha, and J.M. Buhmann. Unsupervised texture segmen-
tation in a deterministic annealing framework. IEEE Transactions on Pattern
Analsis and Machine Intelligence, 20(8):803-818, 1998.

B.K.P. Horn and B.G. Schunck. Determining optical flow. Artificial Intelli-
gence, 17:185-203, 1981.

H. Ishikawa and D. Geiger. Occlusions, discontinuities, and epipolar lines in
stereo. In European Conference on Computer Vision, pages 232-247, 1998.

89

[25] H. Ishikawa and D. Geiger. Segmentation by grouping junctions. In IFEE
Conference on Computer Vision and Pattern Recognition, pages 125-131,
1998.

[26] G. Kant and X. He. Regular edge labeling of 4-connected plane graphs and
its applications in graph drawing problems. Theoretical Computer Science,
172:175-193, 1997.

[27] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active countour models.
International Journal of Computer Vision, 1(4):321-331, 1987.

[28] S. Kirkpatrick, C.D. Gelatt Jr., and M.P. Vecchi. Optimization by simulated
annealing. Science, 220:671-680, 1983.

[29] J. Kleinberg and E. Tardos. Approximation algorithms for classification prob-
lems with pairwise relationships: metric labeling and markov random fields.
In IEEE Symposium on Foundations of Computer Science, 1999.

[30] S. Z. Li. Markov Random Field Modeling in Computer Vision. Springer-
Verlag, 1995.

[31] D. Marr and T. Poggio. Cooperative computation of stereo disparity. Science,
194:209-236, 1976.

[32] R.H.JM. Otten and L.P.P.P van Ginneken. The Annealing Algorithm.
Kluwer Academic Publishers, 1989.

[33] G. Parisi. Statistical field theory. Addison-Wesley, Reading MA, 1988.

[34] T. Poggio, E. Gamble, and J. Little. Parallel integration of vision modules.
Science, 242:436-440, 1988.

[35] T. Poggio, V. Torre, and C. Koch. Computational vision and regularization
theory. Nature, 317:314-319, 1985.

[36] A. Rosenfeld, R.A. Hummel, and S.W. Zucker. Scene labeling by relaxation
operations. IEEE Transactions on systems, Man, and Cybernetics, 6(6):420—
433, 1976.

[37] S. Roy and I. Cox. A maximum-flow formulation of the n-camera stereo cor-
respondence problem. In 6th International Conference on Computer Vision,
1998.

[38] R. Szeliski. Bayesian modeling of uncertainty in low-level vision. Kluwer
Academic Publishers, 1989.

90
[39] R.S. Szeliski. Bayesian modeling of uncertainty in low-level vision. Interna-
tional Journal of Computer Vision, 5(3):271-302, 1990.

[40] D. Terzopoulos. Image analysis using multigrid relaxation methods. IFEE
Transactions on Pattern Analysis and Machine Intelligence, 8:129-139, 1986.

[41] V. Torre and T. Poggio. On edge detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 8(2):147-163, 1986.

[42] E. Wasserstrom. Numerical solutions by the continuation method. SIAM
Review, 15:89-119, 1973.

[43] G. Winkler. Image analysis, Random Fields and Dynamic Monte Carlo Meth-
ods. Springer Verlag, 1991.

