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AbstractÐThis paper describes a Bayesian approach for modeling 3D scenes as

a collection of approximately planar layers that are arbitrarily positioned and

oriented in the scene. In contrast to much of the previous work on layer-based

motion modeling, which computes layered descriptions of 2D image motion, our

work leads to a 3D description of the scene. There are two contributions within the

paper. The first is to formulate the prior assumptions about the layers and scene

within a Bayesian decision making framework which is used to automatically

determine the number of layers and the assignment of individual pixels to layers.

The second is algorithmic. In order to achieve the optimization, a Bayesian version

of RANSAC is developed with which to initialize the segmentation. Then, a

generalized expectation maximization method is used to find the MAP solution.

Index TermsÐLayer extraction, segmentation, stereo matching, motion

estimation.

æ

1 INTRODUCTION

EXTRACTING three-dimensional models from a series of still images
(the structure from motion problem) has been one of the defining
problems for computer vision involving geometry, segmentation,
and probability theory. Three-dimensional scene modeling from
multiple images can be broken into two subproblems: creating a
3D geometric model of the scene and creating a texture map that
captures the visual appearance of the scene. Despite a large
amount of research into the area (a summary of which can be
found in [8]), the recovery of accurate depth information remains
only partially solved. Most existing algorithms perform reasonably
well when when matching detected features or in textured regions,
but perform poorly around occlusion boundaries and in untex-
tured regions.

One approach that is somewhat effective in mitigating these

two problems is the layered approach [1], [17], [18]. Here, the aim

is to segment the image into a set of regions, such that pixels within

each region move in a manner consistent with a 2D parametric

transformation (e.g., affine). Then, the edges of the region

correspond to occlusion boundaries and the motion of all the

pixels within the region (textureless or not) is determined by the

(six in the case of affine) parameters of the motion model.

Typically, the EM (expectation maximization) algorithm [7] is

used to effect a segmentation. The use of the 2D affine motion

model corresponds to an assumption that the layer maps to a plane

in 3D viewed under orthographic conditions. This assumption is

valid for a wide variety of scenes, even for nonplanar objects for

which the distance to the camera is sufficiently large relative to the

depth variation across the object. The layered method tends to fail

when nonplanar objects are viewed in close up as the representa-

tion is not adequate in this case. In fact, any object that contains

significant parallax effects will cause the breakdown of a layered

representation with a global motion model. In order to overcome

this problem, we propose an approach in which each pixel within a
layer can have an associated disparity. The 2D layers, are usually
not intended to capture 3D scene structure. In contrast, it was
proposed in [2] that the scene should be decomposed into a
collection of 3D layers (or sprites), each of which consists of a plane
equation, a color image that captures the appearance of the sprite,
a per-pixel opacity map, and a per-pixel depth-offset relative to the
nominal plane of the layer. The advantage of this approach is that
roughness or parallax effects on the layer can be modeled without
the overfragmentation and instability inherent in a purely 2D
parametric approach. This approach to layered representation can
be viewed as an extension of the plane plus parallax decomposi-
tion of image disparities across multiple views. The class of scenes
the method works well for includes those that the 2D layered
method works well for, but pushes the envelope to include scenes
for which there is a small amount of per pixel parallax on each
plane. Although Baker et al. [2] proposed a generative model for
images based on layers, the algorithm described for recovering the
layers from a given set of input images is incomplete. Layer
initialization was based solely on manual user input and, as the
paper confesses, the final assignment of pixels to layers was not
fully developed.

In fact, the central problems of layer-based scene modeling are
the determination of the number of layers and the assignment of
pixels to layers. An infinite number of decompositions are equally
consistent with the generative model proposed in [2], ranging from
assigning one layer plane to every pixel (with no depth offset) to
modeling the entire scene with a single layer plane (with lots of
depth offset). Apart from object and scene level semantic
information (which is important, but outside the scope of this
paper), the natural criterion to use is compactness or parsimony of
description. But computing a parsimonious description is im-
plicitly and tightly tied to our prior assumptions about the scene
and the imaging process that generated the input images. Bayesian
decision theory provides a foundation for formally stating our
prior assumptions and then developing algorithms for applying
these priors during reconstruction.

2 THE BAYESIAN METHOD

The approach that follows is unashamedly Bayesian, to quote
E.T. Jaynes: ªVision is Bayesian inference from incomplete dataº
[12], in contrast to the mechanical approach set out in [6] or a
purely geometric approach [13]. As set out in his Internet book [12]
(which every vision postgraduate would be well advised to read),
the Bayesian method provides a consistent way of reasoning about
the world that can be viewed as an extension of the Aristotelian
calculus of logic to uncertainty. The Bayesian approach was
probably first proposed for vision (at least for segmentation) by
Besag [5] and then elaborated by Geman and Geman [10]. The
use of least committed priors for the world was set out in
Grenander et al. [11] and Bayesian stereo was developed by
Szeliski [15] and Belhemeur and Mumford [3] among others.

Some will complain that to use Bayesian methods one must
introduce arbitrary priors on the parameters. However, far from
being a disadvantage, this a tremendous advantage as it forces
open acknowledgment of what assumptions were used in
designing the algorithm, which all too often are hidden away
beneath the veneer of equations. Furthermore, there is nothing
wrong with injecting our prior information into the design of
vision algorithmsÐall vision researchers do it whenever they
choose the probability distribution of their error. As will be seen,
the validity of the prior assumptions can be tested by altering the
priors and seeing whether this leads to radically different results.

In addition to the utilization of prior information, Bayesian
methods are further distinguished from orthodox statistical
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methods by their use of full probability distributions rather than
the mode to describe parameters. This difference can be illustrated
by comparing two competing models for the data. This will be
useful later when we need to determine the number of layers used
to describe the image.

Given a closed set1 of k models M1 . . . Mk 2M that can explain
the data D Bayes rule leads us to

Pr�MijDI� � Pr�DjMiI�Pr�MijI�
Pr�DjI� ;

where I is the prior information assumed about the world. In this
paper, the set of models are: M1 that the data can be explained by
one layer, M2 that the data can be explained by two layers, etc. The
posterior probability that a given model Mi is the correct one is

Pr�MijDI� � Pr�DjMiI�Pr�MijI�Pj�k
j�1 Pr�DjMjI�Pr�MjjI�

: �1�

Note that by construction,
Pj�k

j�1 Pr�MjjD� � 1. The key to this
equation is the evaluation of Pr�DjMjI� which is called the
evidence. In contrast to non-Bayesian techniques, the evidence for
a model is in fact the integral of the likelihood over all possible
values of the model's parameters:

Pr�DjMjI� �
Z

Pr�DjMj��jI�Pr���jjMjI�@��j �2�

Evidence �
Z

likelihood� prior @��j; �3�

where ��j are the kth model's parameters, and Pr���jjMjI� is the
prior distribution of parameters of the model. How does this relate
to the principle of parsimony so prevalent in model selection (AIC,
MDL, etc.)? Not as it commonly believed, i.e., by penalizing more
complex models a priori.2 In the absence of any prior preference
between the two models, (Pr�Mi� � Pr�Mj�), all the models are
equally likely a priori. Rather, more complex models have the
probability of the prior dispersed over a greater region of
parameter space. Note by definition

R
Pr���jjMjI�d��j � 1. Thus, a

more complex model will only be supported if there is a
corresponding increase in the likelihood of the data given that
model. This is a subtle point and worthy of some reflection.
Equation (3), representing the evidence for a given model, is a
crucial equation and is worthy of close scrutiny. If one accepts

Bayes rule then logic dictates that this is the only way to

calculate the posterior probability of each model [12].
How to use this information in selecting the most appro-

priate model requires a little more machinery which is
furnished by Bayesian Decision Theory. We have a set of
potential actions a1 . . . ak 2 A, each corresponding to selecting
one of the models M1 . . . Mk. To decide on a course of action, a
cost/loss function u�� : A�M! < must be defined attaching
utilities to each action a 2 A given a state of the world M 2 M.
The optimal action is that which maximizes the expected
utility: maxa

P
i u�a;Mi�Pr�MijDI�. The simplest case is the

zero-one cost function that provides a reward of one in the
case of the correct model and zero if the choice is incorrect.
This choice of cost leads to selecting the model that maximizes
the posterior. This is the loss function that we consider in this
paper, noting that others may be appropriate depending on the
application.

Another useful Bayesian technique is that of marginalization,
which allows us to dispose of parameters that are not directly

useful to us at any given time by integrating them out. This is

effected by the following identity:
R1
ÿ1 Pr�X;YjI�@Y � Pr�XjI�. As

it turns out, the Bayesian technique of marginalization allows us to

finesse a problem that has plagued motion algorithms for decades,

namely the correspondence problem.

3 FIRST STAGEÐPREPROCESSING

The input to the algorithm is a sequence of images. These are the

(raw) data D. The first stage of the algorithm uses a coarse to fine

algorithm to obtain initial disparity estimates for each pixel [4].

Then, calibration and camera matrices are recovered [16]. Each

image is then transformed in such a way that the plane at infinity is

stabilized. In other words, the images are rectified to the first one

by transforming under H1j
1 the homography of the plane at infinity

between image 1 and the jth image to remove the effects of

rotation. Registering each image to the plane at infinity has the

effect that the disparity (motion) of each pixel now depends purely

on depth. Here, the disparity ��x; y� at pixel �x; y� in image 1 is

taken to mean the motion along the epipolar line between image 1

and image 2. Because the images are rectified to the plane at

infinity, it is a bijective function of the depth of that pixel,

��x; y� � � Z�x; y�� �. The transformation � is purely a function of the

calibration and camera matrices. The notation Z is adopted for the

set of depths and Z�x; y� for the depth of a pixel �x; y� in the first

image.

4 PARAMETRIC FORMULATION OF PROBLEM

The set of input images is denoted by D (the data), the model M,

consisting of a set of m planes �� with parameters ��j, j � 1 . . .m,

and a set L of per pixel labels l�x; y� for the first image. Nothing is

known about the number of layers mÐthis must also be recovered.

One image (image 1) is used to initialize the segmentation and

from here on the segmentation and labeling is done in the

coordinate system of image 1. Because interimage motions are

small, it is more natural to do the segmentation in the image rather

than in some 3D-based coordinate system. Hence, the aim is

simply to extract M from D.
The parameters of each plane are �� � �a; b; c� such that

aX � bY � cZ � 1, where X;Y ; Z are the Euclidean coordinates.

This parametrization is chosen as it excludes all planes passing

through the origin of the coordinate system (the optic center of the

first camera) i.e., planes of the form aX � bY � cZ � 0. These

project to a line in the first image (and subsequent images if the

baseline is small) and, thus, correspondence cannot be recovered

for them. Note that �� � �a; b; c� lies along the normal of the plane.

The coordinate system is chosen such that the origin is at the first

camera's optic centre. In image 1, x � X=Z and y � Y =Z, leading

to ax� by� c � 1=Z. Thus, given the plane and the �x; y�
coordinate of any pixel, its depth may be found (and, hence, its

corresponding pixel in any other image). For the case when the

direction of motion along the optic axis is small relative to the

distance to the 3D point, 1=Z is roughly proportional to the

disparity between images. The coefficients a and b give the

disparity gradients in the x; y directions and c gives the inverse

depth of the plane at the principal point.
One plane is privileged in that it is always represented by a

layer and has fixed parameters ��1 � �a; b; c� � �0; 0; 0�: This is the

plane at infinity. Although this ideal cannot truly exist in a

Euclidean representation, it serves a useful purpose. Pixels that are

so distant that their disparity is swamped by noise (e.g., sky) have

very ill-conditioned depths and cannot be easily segmented. These

are all grouped together into the plane at infinity.
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1. This is an important prerequisite and the burden is on us to explore
the most likely models.

2. Although there is nothing to stop us doing this, it is not necessary.



5 PROBABILISTIC FORMULATION

This section introduces the mixture model used to describe the

layers. Although some will consider this standard fare, we

consider it worth looking under the bonnet3 to show the logical

implications of our formulation. We will show how Bayesian

reasoning can be used to describe two vision heuristics of long

standing: the disparity gradient limit and plane plus parallax. We will

also show how the layers can be recovered without estimating

correspondence. It transpires that this is very useful for segmenta-

tion, as it finesses the problem of mismatches.

5.1 Posterior Probability of the Model

The model parameters m;��;L are chosen so as to maximize the

posterior probability:

max
m��L

Pr m��LjDI� � � Pr Djm��LI� �Pr m��LjI� �
Pr DjI� � : �4�

The denominator can be discounted for the purposes of parameter

estimation, (but not for the purposes of model comparison as will

be seen later), as it is constant for all values of the parameters. So

far, the estimation of depth (or disparity) has not been mentioned,

although it would apparently have a direct bearing on the

likelihood.

5.2 Recovering the Plane Parameters without
Correspondence

We can use the Bayesian method of marginalization to remove the

depth parameter from the posterior probability of the plane

Pr m��LjDI� � �
Z

Z

Pr m��LZjDI� �@Z: �5�

Later, it will be seen that this is most convenient when trying to

determine what label a pixel should have, or when reestimating

the planes using generalized expectation-maximization [9] GEM

described below. The advantage of marginalization is that it allows

us to use a plane to capture the motion of a region of an image, but

also allows for relief (or parallax) out of that plane. By margin-

alizing the depths rather than doing full MAP estimation, we avoid

a strong commitment to depth estimation. Typically, too early a

commitment to a depth estimate may result in convergence to a

local (rather than global) maximum of the posterior-likelihood

(especially in homogeneous regions of the image). By margin-

alizing, we are in effect ªhedging our betsº and not committing to a

single depth estimate. Rather, the distribution of depth at a pixel is

specified by the mixture model. Next, the posterior-likelihood will

be decomposed into its component parts and it will be explained

how it can be optimized using the GEM algorithm.

5.3 Decomposition

Assuming that the number of layers m has been determined

(techniques to do this are set out below) and the noise across the

image is not spatially correlated, the posterior-likelihood can be

evaluated as the product of the MAP likelihoods at each individual

pixel.Z
Z

Pr ��ZLjDI� �@Z /
Z

Z

Y
xy

Pr Dj��z�x; y�l�x; y�I� �Pr ��LZjI� �@Z:

�6�
Next, let us consider each pixel individually, drop the �x; y� index,

adopt the notation lj for l�x; y� � j, and let ~L be the set of labels

excluding the label for pixel �x; y�. Then,

Dj��lzI� � � Dj��iI� � if l�x; y� � i
0 e � T;

�
which is a mixture model [9] between the layers, with spatial
correlation between the label parameters.

5.4 The Likelihood

The term Pr Djz��jI
ÿ �

is the likelihood of the pixel having a
depth (or disparity) hypothesis z. It can be evaluated from the
cross-correlation between the pixel in question and its corre-
spondences in each other image of the sequence. As such, it
only depends directly on the depth, and fixing z can be written
Pr Dj��jzI
ÿ � � Pr DjzI� �. (This is logically correct; the likelihood

purely depends on the estimated disparity, it cannot depend on
anything else. How z is influenced by ��j is explained below.)
Suppose that the variation in intensity between images can be
modeled as Gaussian with mean �i and standard deviation �i.
Let �ij�x; y� be the difference in (color) intensity between the
pixel in image 1 and its corresponding pixel in image j. Then,

Pr DjzI� � �
Y
j6�1

�1ÿ po����ij�x; y�j�i�i� � �po
ÿ �

;

where ���ij�x; y�j�i�i� is the Gaussian-likelihood

���ij�x; y�j�i�i� � 1������
2�
p

�i

� �
expÿ�ij�x; y�

2�2
i

and po is the probability of occlusion, or that the pixel is in some
other way radically different (for instance, due to the interpolation
error when working out the cross-correlation), and � is a constant
being the probability of the intensity difference given an occlusion
(uniform over the range of intensity). Equation (5) is a form of
contaminated Gaussian with parameters �i; �i; �; po and distribu-
tion denoted by ���ijj�i; �i; �; po�. It provides a robust error
metric: The effect of any one observation is bounded. In our work,
po � 0:05 (although there is a switch in the code to switch this up
between 0:05ÿ 0:1 depending on how far away the pixel is,
encoding the fact that more distant pixels tend to be occluded
more), and � � �1=256�3, the range of pixel intensities for RGB.

As mentioned earlier, the depth is integrated out. To do this, the
likelihood is discretized. To discretize the likelihood given, for
each pixel, the likelihood (5) is estimated over a set of disparity
hypotheses. Typically, the scenes that we are dealing with are from
video sequences, the interframe motion is 0-4 pixels, thus
20 disparity hypotheses increasing in steps of 0.2 can be used to
sample the 0-4 pixel disparity range. Next, the form of the priors
are explained.

5.5 The Priors

Using the product rule, the prior can be decomposed as follows:
Pr Z��LjI� � � Pr Zj��LI� �Pr ��LjI� �: There is no reason to assume a
prior correlation between the parameters and shape of the projection
of a plane4 thus, Pr ��LjI� � � Pr LjI� �Pr ��jI� �: The prior Pr ��jI� � on a
given plane's parameters is assumed to be Gaussian on the
parameters a; b; c with zero mean and standard deviations �a, �b,
and �c. This has a very interesting physical interpretation. Since a
and b represent the disparity gradients, �a and �b can be chosen to
favor fronto-parallel planes and to control the disparity gradient
limit of the plane. This elegantly combines Bayesian reasoning with
an old vision heuristic. The parameter �c is a weak prior favoring
more distant planes and penalizes ones that are too close to the
camera. These are weak priors and will be overruled by observed
data. They serve as a regularization that helps finesse the effects of
outliers and ambiguity.
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smaller in extent, but we do not consider that here.



The prior Pr Zj��LI� � controls the amount of parallax favored. In
real situations, points will not always lie exactly on a plane. Yet,
many surfaces can be modeled as a plane together with some relief
leading to the much vaunted plane plus parallax algorithms.
However, this idea is typically used as a heuristic without concrete
definition. Bayesian methods allow the idea to be made concrete,
by defining the distribution of Pr Zj��LI� � in terms of a distribution
of the parallax from the plane. This allows the plane to be
recovered without knowing the exact disparities. The distribution
Pr Zj��LI� � is specified in terms of the amount of parallax, as a
mean zero Gaussian with �p � 0:5. This may then be convolved
with the discretized-likelihood specified above. To recover the
likelihood that any given pixel belongs to a given layer j, given the
plane parameters ��j, the integrated-likelihood may be used:

Pr DjljI
ÿ � � Z

z

Pr DjzI� �Pr ljjI
ÿ �

Pr zj��jI
ÿ �

Pr ��jjI
ÿ �

Pr ljj~LI
ÿ �

@z:

�8�
A uniform prior distribution is taken on z. This is easier than it
looks to evaluate, since the integration merely involves 20 multi-
plications, one for each putative disparity.

The prior Pr LjI� � represents our belief about the likelihood of
the spatial disposition of the world. In the general case, it is not
known how to evaluate this. Here, we use an MRF (Markov
Random Field) formulation [5], [10]. Therefore, what can be
evaluated is the probability that pixel �x; y� has a label k given a
local neighborhood in L. What follows is the update rules for a
single label given its neighbors. Let lk�x; y� be an indicator variable
such that lk�x; y� � 1 if pixel �x; y� is in the kth layer, or 0 otherwise.
Then,

Pr lk�x; y�j~LI
ÿ � � Pr ~Ljlk�x; y�I

ÿ �
Pr lk�x; y�jI� �

Pr ~LjIÿ � :

The normalizing constant is just

Pr ~LjIÿ � �Xj�m
j�1

Pr ~Ljlj�x; y�I
ÿ �

Pr lj�x; y�jI
ÿ �

: �9�

The prior Pr lk�x; y�jI� � is simply the probability that a given pixel

lies in a given layer. In the absence of other information, it seems

reasonable that this should be uniform except, however, for the

layer of the plane at infinity l1, which is deemed more likely

a priori. Given points with low disparity (and, hence, high variance

in Z) it is reasonable to assign them to the plane at infinity rather

than some arbitrary and ill-conditioned plane. Next, we use a

factored approximation Pr ~Ljlk�x; y�I
ÿ � �Quv Pr l�u; v�jlk�x; y�I� �.

As l�u; v� is not known (only its distribution is known), the above

quantity is replaced by its expectation when using EM:

Pr ~Ljlk�x; y�I
ÿ � �Y

uv

Xj�m
j�1

Pr lj�u; v�jlk�x; y�I
ÿ �

Pr lj�u; v�jI
ÿ �

: �10�

The question then is how to evaluate pjk � Pr lj�u; v�jlk�x; y�I
ÿ �

.
What information do we have that might affect this distribution?
All that we have a priori is the distance between the points �d and
the difference in their color values �c. We would like the following
properties for this distribution. If l�u; v� � k, we would like pjk to
be high. If the two pixels are close and/or of the similar color, they
are more likely to have the same label, falling off to a probability
1=m (where m is the number of layers) if the pixels are far apart or
dissimilar in color. We would like the converse to also be true: If
l�u; v� 6� k, we would like pjk to be low if the pixels have the same
color or are near, rising to mÿ 1=m if they are distant.

There is no clear answer for what this distribution should be. In
the future, we hope to try and learn it from the data. In Section 8,
we shall try several forms for the distribution. Here is one
suggestion: The probability that the two pixels belong to the same
layer pjk; j � k could be modeled by a contaminated Gaussian
(defined above) ���cj�c; �c; �c; pc�, where pc � 1=m. The mixing
parameter �c controls the amount of homogeneity expected in the
layer; the mean �c � 0 and the standard deviation are set to be a
function of the distance �c � �c=�x. This function satisfies all the
desiderata given above, as well as possessing some interesting
properties.

Consider the log probability that a given pixel has label k

log Pr lk�x; y�j~LI
ÿ � �X

uv

log�mPr l�u; v�jlk�x; y�I� �� � log Pr lk�x; y�jI� � � constant:

�11�
For each pixel nearby that is expected to have label k, there will be
a positive addition to this log-likelihood proportionate to the color
similarity and inverse distance of that pixel. In addition, if
neighboring pixels have a similar color but are likely to have a
label other than k, there is a negative contribution to the log-
likelihood. Thus, if a pixel takes on a particular interpretation, it
not only excites its neighbors to have a similar interpretation, it
also inhibits its neighbors of a similar color from having a different
interpretation.

6 GENERALIZED EM

With the priors specified, the next problem is how to optimize the
posterior-likelihood of the interpretation. One method of estima-
tion that has been used successfully for estimation of mixtures is
the EM algorithm [7] in which the labels are treated as missing
data. EM is a useful procedure in finding the mode of a posterior
distribution Pr���jD� in which it is hard to maximize Pr���jD�
directly but easy to work with Pr���jLD� and Pr�Lj��D�.

The EM algorithm proceeds as follows:

1. Estimate the number of layers m and the parameters of
their associated planes using the algorithm described in
Section 7.

2. Replace missing data values L by their expectations given
the parameters ��.

3. Estimate parameters ��, assuming the missing data are
given by their expected values.

4. Reestimate the missing values, assuming the new para-
meters are correct.

5. Reestimate the parameters, etc., iterating until convergence.

The EM algorithm has the very desirable property that each of its
cycles will increase the posterior-likelihood.

6.1 E-Step

The expectation step proceeds as follows: For a given label lk�x; y�,
dropping terms that are independent,

Pr l̂kjD��k ~LI
� �

� Pr DjlkI� �Pr ~LjlkI
ÿ �

Pr lkjI� �Pj�k
j�1 Pr DjljI

ÿ �
Pr ~LjljI
ÿ �

Pr ljjI
ÿ � ;

where the quantities on the right-hand side are those estimated at
the previous iteration and l̂k is to be estimated. This can be
evaluated using (8) and (9).

6.2 M-Step

The maximization step involves finding the set of plane para-
meters �� that maximize (4). This is computationally difficult if all
of the plane parameters are to be maximized simultaneously as in
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traditional EM, as there are 3m parameters to be determined,
where m is the number of layers. Fortunately, we can use a
generalized EM algorithm [9], in which the posterior-likelihood
still increases at each iteration. Rather than maximize all the
parameters simultaneously, subsets of the parameters are max-
imized in turn using a gradient descent technique, while the others
are held constant. In this case, natural subsets are the parameters of
each plane. The covariance matrix of each plane is approximated
by the Hessian of the error function at the minimum.

7 INITIALIZATION

ªOne forms provisional theories and waits for time or fuller

knowledge to explode them. A bad habit, Mr. Ferguson, but human

nature is weak.º5

The GEM algorithm described in the last section is provable
convergent to a maximum of the posterior distribution, which is all
well and good, except that typically it will 1) take a very long time
to converge and 2) converge to a local maximum. The most

important thing in a segmentation algorithm is the initialization.
The GEM algorithm is no panacea for poor initialization and for
something as complicated as image segmentation, it will get
trapped in local minima unless started with a good solution. Next,
the PILLAGE algorithm is outlined for selecting the initial
parameters of the planes.

7.1 Choosing the Number of Layers to Maximize the
Posterior-Likelihood

The Bayesian method for model selection is encapsulated by (1)
and the evaluation of the evidence for each model (one layer, two
layers, three layers, etc.). Evaluation of the evidence involves
integrating the posterior probability (4) over the prior range of the
parameters. At present, this is simply not computationally feasible,
so we must think of a good approximation to the evidence.
Examination of the posterior probability (4) reveals that only pixels
that have a high entropy distribution for Pr�DjzI� (entropy is
simply

P
p log p, with normalization

P
p � 1) will affect the

posterior distribution of ��. This is simply the intuition that pixels
for which there is great uncertainty about a correspondence (e.g.,
those within homogeneous regions) contribute little to the accuracy
of the estimation of the plane parameters. Thus, computational
effort is concentrated on those pixels with high entropy.

To detect these, a feature extractor is run on the first image and
features with high entropy used as input to the algorithm. Next, for
each model Mi, with i layers, i � 1 . . . k, the 3i parameters of the
plane ��i are robustly estimated from the high entropy points. To
do the robust estimation, a RANSAC like algorithm is used (which
shall be referred to as PILLAGE6), but with a vast improvement.
Rather, select the sample that maximizes the number of inliers. The
posterior (4) itself is estimated and the sample that maximizes this
is selected as the initial estimate for GEM. In effect, PILLAGE is the
Bayesian version of RANSAC.

The PILLAGE algorithm proceeds as follows:

1. Simultaneously sample 3 spatial close points for each
plane.

2. Estimate the parameters of each plane ��i, i � 1 . . . k.
3. Estimate label probabilities (one step of EM).
4. Calculate the posterior for this set of plane parameters.

The sampling is repeated a fixed number of times, the best result
stored, and then GEM is used to improve the result.

In this way, we can get initializations of the plane parameters for
each Mi. The evidence can then be approximated assuming that
each of the estimated plane parameters is approximately normally
distributed around its mode, discounting the effect of spatial
correlation. (This is not as bad as it sounds, as there is less spatial
correlation between a sparse set of features, and this is only an
approximation to get a rough idea as to how many layers we should
use.) The details of this calculation using Laplace's approximation
are not given here due to space consideration; the reader is referred
to a detailed explanation given in Sivia [14, p. 88]. Fig. 1 shows the
graphs of the approximated unnormalized posterior-likelihood
given models M comprising different numbers of layers.

7.2 Initializing the Pixel Labeling

Once the number of layers has been estimated, a labeling is
assigned to the high entropy points. This is done by running the
GEM algorithm just on the high entropy points until convergence.
This optimizes the segmentation of the points in which we have
high confidence disparities prior to running GEM on every pixel.

8 RESULTS

Fig. 2 shows results in two sequences of six images: the MPEG
flower garden sequence and the Dayton Taylor symposium
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Fig. 1. The unnormalized approximation to the (negative log) posterior-likelihood of the number of layers for (left) the garden and (right) the Dayton sequences. For the

garden sequence, it can be seen that after four layers are selected, the graph begins to increase with subsequent layers being less likely, but with no dramatic increase in

posterior, even for seven layers. This is also the case for three layers in the Dayton example.

5. Sherlock Holmes, The Adventure of the Sussex Vampire. 6. Posterior Likelihood Aggrandizement
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Fig. 2. (a), (b), (c), and (d) Four images of the garden sequence. (e), (f), (g), and (h) Four images of the symposium sequence (provided by kind permission of Dayton

Taylor). (i), (j), and (k) Top three layers with high entropy features superimposed on them. (l) Label image, cyan represents uncertain regions that have low confidence.

(m), (n), and (o) Top three layers with high entropy features superimposed on them for the Dayton Taylor sequence. (p) Label image. (q), (r), (s), (t), (u), (v), (w), and (x)

Top four layers for each example sequence (note the graden is split into three segements by a horizontal ridge, see (l)).



sequence [2]. As the amount of support for the plane gets smaller,
the parameters of the plane normal become increasing ill-
conditioned. Note for instance that, the layer in Fig. 2o is largely
determined by the white haired fellow in the red shirt and was
fairly ill-conditioned. It can be likened to a door on a hinge looking
for something to latch on toÐin this case, it latched onto the jolly
man on the left waving his arms in the air. This has happened for
the layer shown in Fig. 2r to a lesser extent which is anchored by
the large lady and the tree.

In the garden sequence Fig. 2v, it is very difficult to segment the
sky from the trees, as in this sequence the sky provides very little
motion information (being largely homogeneous), unless the prior
on continuity for color is turned up. But there is always a danger in
choosing our prior so that we obtain a desired result. The effects of
changing the prior on the Garden sequence segmentation are
shown in Fig. 3a for a prior with the smoothness (the probability
two neighboring pixels have the same label controlled by �c)
turned up, Fig. 3b for a prior favoring fronto-parallel planes (lower
�a and �b), and Fig. 3c with smoothness turned down. In keeping
with the Bayesian approach, one should not only report the mode
of the posterior but also, solutions that might be ªnearly as good.º
Fig. 3d shows another possible layer for the Dayton Taylor
sequence that could also be part of any of the other layers with
little change in the posterior-likelihood as it is contains relatively
little information (low entropy).

9 SUMMARY AND CONCLUSIONS

In this paper, we have developed a novel Bayesian framework for
segmenting a 3D scene into plane plus parallax layers. We have
demonstrated the extension of the highly successful robust
estimator RANSAC to its Bayesian analogue which we have
termed PILLAGE. From these, the number of planes can be
estimated; the labelings of the rest of the pixels can then be
initialized from the initial labeling of the high entropy points.
Several pieces of evidence are aggregated within a Generalized
Expectation Maximization algorithm: the original votes from the
image data as to the likelihood of a given disparity, the deviation
from the plane equation of a particular layer, and the spatial and
color support of nearby pixels lying on the same layer.

In this paper, a zero-one utility function is assumed for

choosing the number of layers. It would be interesting for specific

applications to design appropriate utility functions, as this should

optimize the choice of layers to take account of specific criteria.

Another improvement would be to improve the priors used in this

paper using ground truth (hand-labeled) training images. These

are current strands of research.
A potential problem with the algorithm is that it segments

purely based on the first image. This was done to get preliminary
results as it was easy to implement. However, the logical
progression would be to model the planar layers in 3D as in [2]
and use this generative model together with the methods outlined
here for automatic segmentation.

We believe that the Bayesian framework developed in this

paper provides a more principled approach to estimating layers

than previous approaches. Instead of relying on heuristic assump-

tions such as smoothness or planarity, we are able to express our

prior assumptions about the scene and the imaging process

explicitly. The number of layers as well as the assignment of

individual pixels to layers is then automatically determined.
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Fig. 3. (a), (b), and (c) Effects of changing the prior by large amounts: (a) increased smoothness prior, (b) fronto-parallel, (c) decreased smoothness prior (note that the

twigs and branches are detected as seperate from the background), and (d) ambiguous piece of sky in the Dayton Taylor sequence.


